summaryrefslogtreecommitdiff
path: root/72/CH4/EX4.1.1/4_1_1.sce
diff options
context:
space:
mode:
Diffstat (limited to '72/CH4/EX4.1.1/4_1_1.sce')
-rwxr-xr-x72/CH4/EX4.1.1/4_1_1.sce76
1 files changed, 38 insertions, 38 deletions
diff --git a/72/CH4/EX4.1.1/4_1_1.sce b/72/CH4/EX4.1.1/4_1_1.sce
index 3a35f37c8..05a1c05e3 100755
--- a/72/CH4/EX4.1.1/4_1_1.sce
+++ b/72/CH4/EX4.1.1/4_1_1.sce
@@ -1,39 +1,39 @@
-//CAPTION: TE10_In_Rectangular_Waveguide
-//CHAPTER-4
-// EXAMPLE: 4-1-1,page no.-128.
-
-//(a)program_to_find_the_cut-off_frequency_(fc)_of_an_airfilled_rectangular_waveguide_in_TE10_mode.
-
-
-a=0.07 ; b=0.035 ; //wave-guide_dimensions_in_metres
-f=3.5*(10^9); //Given_that_guide_is_operating_at_a_frequency_of 3.5 GHZ
-c=3*(10^8); // c_is_the_speed_of_the_light
-m=1 ; n=0; //Given_that_guide_operates_in_the_dominant_mode_TE10
-
-fc=c/(a*2); //since,fc=(c/2)*sqrt(((m/a)^2)+((n/b)^2)). For TE10 mode m=1,n=0,fc=c/2*a
-disp(fc/(10^9),'cut-off_frequency_for_TE10_mode_in_GHZ='); //display_fc ,fc_is_divided_by_10^9 to_obtain_frequency_in_GHZ
-
-
-
-// (b) program_to_find_the phase_velocity_of_the wave_in_the_guide_at_a_frequency_of_3.5GHZ
-
-f=3.5*(10^9); //Given that_guide_is_operating_at_a_frequency_of_3.5.GHZ
-vg=c/(sqrt(1-((fc/f)^2))); //since , phase_velocity=c/(sqrt(1-((fc/f)^2)))
-disp(vg,'phase_velocity_for_a_wave_at_a_frequency_of_3.5GHZ__(m/s)='); //display_the_phase_velocity
-
-
-
-
-// (c) program_to_find_the_guide_wavelength(lg_of_the_wav__at_a_frequency_of 3.5GHZ
-
-
-lo=c/f; // lo= wavelength in an unbounded dielectric and lo is in metres
-lginmetres=lo/(sqrt(1-((fc/f)^2))); //since ,lg=lo/sqrt(1-(fc/f^2)); guide_wavelength(lg)_is_in_metres
-lgincm=100*lginmetres; //guide_wavelength (lg) is_in_centimetres
-disp(lgincm,'Guide_wavelength_for_a_wave_at_frequency_of_3.5GHZ_(cm)=') //display_the_guide_wavelength
-
-
-
-
-
+
+//CHAPTER-4
+// EXAMPLE: 4-1-1,page no.-128.
+
+//(a)program_to_find_the_cut-off_frequency_(fc)_of_an_airfilled_rectangular_waveguide_in_TE10_mode.
+
+
+a=0.07 ; b=0.035 ; //wave-guide_dimensions_in_metres
+f=3.5*(10^9); //Given_that_guide_is_operating_at_a_frequency_of 3.5 GHZ
+c=3*(10^8); // c_is_the_speed_of_the_light
+m=1 ; n=0; //Given_that_guide_operates_in_the_dominant_mode_TE10
+
+fc=c/(a*2); //since,fc=(c/2)*sqrt(((m/a)^2)+((n/b)^2)). For TE10 mode m=1,n=0,fc=c/2*a
+disp(fc/(10^9),'cut-off_frequency_for_TE10_mode_in_GHZ='); //display_fc ,fc_is_divided_by_10^9 to_obtain_frequency_in_GHZ
+
+
+
+// (b) program_to_find_the phase_velocity_of_the wave_in_the_guide_at_a_frequency_of_3.5GHZ
+
+f=3.5*(10^9); //Given that_guide_is_operating_at_a_frequency_of_3.5.GHZ
+vg=c/(sqrt(1-((fc/f)^2))); //since , phase_velocity=c/(sqrt(1-((fc/f)^2)))
+disp(vg,'phase_velocity_for_a_wave_at_a_frequency_of_3.5GHZ__(m/s)='); //display_the_phase_velocity
+
+
+
+
+// (c) program_to_find_the_guide_wavelength(lg_of_the_wav__at_a_frequency_of 3.5GHZ
+
+
+lo=c/f; // lo= wavelength in an unbounded dielectric and lo is in metres
+lginmetres=lo/(sqrt(1-((fc/f)^2))); //since ,lg=lo/sqrt(1-(fc/f^2)); guide_wavelength(lg)_is_in_metres
+lgincm=100*lginmetres; //guide_wavelength (lg) is_in_centimetres
+disp(lgincm,'Guide_wavelength_for_a_wave_at_frequency_of_3.5GHZ_(cm)=') //display_the_guide_wavelength
+
+
+
+
+
\ No newline at end of file