diff options
Diffstat (limited to '72/CH4/EX4.1.1/4_1_1.sce')
-rwxr-xr-x | 72/CH4/EX4.1.1/4_1_1.sce | 76 |
1 files changed, 38 insertions, 38 deletions
diff --git a/72/CH4/EX4.1.1/4_1_1.sce b/72/CH4/EX4.1.1/4_1_1.sce index 3a35f37c8..05a1c05e3 100755 --- a/72/CH4/EX4.1.1/4_1_1.sce +++ b/72/CH4/EX4.1.1/4_1_1.sce @@ -1,39 +1,39 @@ -//CAPTION: TE10_In_Rectangular_Waveguide
-//CHAPTER-4
-// EXAMPLE: 4-1-1,page no.-128.
-
-//(a)program_to_find_the_cut-off_frequency_(fc)_of_an_airfilled_rectangular_waveguide_in_TE10_mode.
-
-
-a=0.07 ; b=0.035 ; //wave-guide_dimensions_in_metres
-f=3.5*(10^9); //Given_that_guide_is_operating_at_a_frequency_of 3.5 GHZ
-c=3*(10^8); // c_is_the_speed_of_the_light
-m=1 ; n=0; //Given_that_guide_operates_in_the_dominant_mode_TE10
-
-fc=c/(a*2); //since,fc=(c/2)*sqrt(((m/a)^2)+((n/b)^2)). For TE10 mode m=1,n=0,fc=c/2*a
-disp(fc/(10^9),'cut-off_frequency_for_TE10_mode_in_GHZ='); //display_fc ,fc_is_divided_by_10^9 to_obtain_frequency_in_GHZ
-
-
-
-// (b) program_to_find_the phase_velocity_of_the wave_in_the_guide_at_a_frequency_of_3.5GHZ
-
-f=3.5*(10^9); //Given that_guide_is_operating_at_a_frequency_of_3.5.GHZ
-vg=c/(sqrt(1-((fc/f)^2))); //since , phase_velocity=c/(sqrt(1-((fc/f)^2)))
-disp(vg,'phase_velocity_for_a_wave_at_a_frequency_of_3.5GHZ__(m/s)='); //display_the_phase_velocity
-
-
-
-
-// (c) program_to_find_the_guide_wavelength(lg_of_the_wav__at_a_frequency_of 3.5GHZ
-
-
-lo=c/f; // lo= wavelength in an unbounded dielectric and lo is in metres
-lginmetres=lo/(sqrt(1-((fc/f)^2))); //since ,lg=lo/sqrt(1-(fc/f^2)); guide_wavelength(lg)_is_in_metres
-lgincm=100*lginmetres; //guide_wavelength (lg) is_in_centimetres
-disp(lgincm,'Guide_wavelength_for_a_wave_at_frequency_of_3.5GHZ_(cm)=') //display_the_guide_wavelength
-
-
-
-
-
+ +//CHAPTER-4 +// EXAMPLE: 4-1-1,page no.-128. + +//(a)program_to_find_the_cut-off_frequency_(fc)_of_an_airfilled_rectangular_waveguide_in_TE10_mode. + + +a=0.07 ; b=0.035 ; //wave-guide_dimensions_in_metres +f=3.5*(10^9); //Given_that_guide_is_operating_at_a_frequency_of 3.5 GHZ +c=3*(10^8); // c_is_the_speed_of_the_light +m=1 ; n=0; //Given_that_guide_operates_in_the_dominant_mode_TE10 + +fc=c/(a*2); //since,fc=(c/2)*sqrt(((m/a)^2)+((n/b)^2)). For TE10 mode m=1,n=0,fc=c/2*a +disp(fc/(10^9),'cut-off_frequency_for_TE10_mode_in_GHZ='); //display_fc ,fc_is_divided_by_10^9 to_obtain_frequency_in_GHZ + + + +// (b) program_to_find_the phase_velocity_of_the wave_in_the_guide_at_a_frequency_of_3.5GHZ + +f=3.5*(10^9); //Given that_guide_is_operating_at_a_frequency_of_3.5.GHZ +vg=c/(sqrt(1-((fc/f)^2))); //since , phase_velocity=c/(sqrt(1-((fc/f)^2))) +disp(vg,'phase_velocity_for_a_wave_at_a_frequency_of_3.5GHZ__(m/s)='); //display_the_phase_velocity + + + + +// (c) program_to_find_the_guide_wavelength(lg_of_the_wav__at_a_frequency_of 3.5GHZ + + +lo=c/f; // lo= wavelength in an unbounded dielectric and lo is in metres +lginmetres=lo/(sqrt(1-((fc/f)^2))); //since ,lg=lo/sqrt(1-(fc/f^2)); guide_wavelength(lg)_is_in_metres +lgincm=100*lginmetres; //guide_wavelength (lg) is_in_centimetres +disp(lgincm,'Guide_wavelength_for_a_wave_at_frequency_of_3.5GHZ_(cm)=') //display_the_guide_wavelength + + + + +
\ No newline at end of file |