blob: 3a35f37c8233974d0eaad39d22ff6898104c3ddd (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
|
//CAPTION: TE10_In_Rectangular_Waveguide
//CHAPTER-4
// EXAMPLE: 4-1-1,page no.-128.
//(a)program_to_find_the_cut-off_frequency_(fc)_of_an_airfilled_rectangular_waveguide_in_TE10_mode.
a=0.07 ; b=0.035 ; //wave-guide_dimensions_in_metres
f=3.5*(10^9); //Given_that_guide_is_operating_at_a_frequency_of 3.5 GHZ
c=3*(10^8); // c_is_the_speed_of_the_light
m=1 ; n=0; //Given_that_guide_operates_in_the_dominant_mode_TE10
fc=c/(a*2); //since,fc=(c/2)*sqrt(((m/a)^2)+((n/b)^2)). For TE10 mode m=1,n=0,fc=c/2*a
disp(fc/(10^9),'cut-off_frequency_for_TE10_mode_in_GHZ='); //display_fc ,fc_is_divided_by_10^9 to_obtain_frequency_in_GHZ
// (b) program_to_find_the phase_velocity_of_the wave_in_the_guide_at_a_frequency_of_3.5GHZ
f=3.5*(10^9); //Given that_guide_is_operating_at_a_frequency_of_3.5.GHZ
vg=c/(sqrt(1-((fc/f)^2))); //since , phase_velocity=c/(sqrt(1-((fc/f)^2)))
disp(vg,'phase_velocity_for_a_wave_at_a_frequency_of_3.5GHZ__(m/s)='); //display_the_phase_velocity
// (c) program_to_find_the_guide_wavelength(lg_of_the_wav__at_a_frequency_of 3.5GHZ
lo=c/f; // lo= wavelength in an unbounded dielectric and lo is in metres
lginmetres=lo/(sqrt(1-((fc/f)^2))); //since ,lg=lo/sqrt(1-(fc/f^2)); guide_wavelength(lg)_is_in_metres
lgincm=100*lginmetres; //guide_wavelength (lg) is_in_centimetres
disp(lgincm,'Guide_wavelength_for_a_wave_at_frequency_of_3.5GHZ_(cm)=') //display_the_guide_wavelength
|