summaryrefslogtreecommitdiff
path: root/629/CH3/EX3.11/example3_11.sce
diff options
context:
space:
mode:
Diffstat (limited to '629/CH3/EX3.11/example3_11.sce')
-rw-r--r--629/CH3/EX3.11/example3_11.sce33
1 files changed, 33 insertions, 0 deletions
diff --git a/629/CH3/EX3.11/example3_11.sce b/629/CH3/EX3.11/example3_11.sce
new file mode 100644
index 000000000..dd4d790df
--- /dev/null
+++ b/629/CH3/EX3.11/example3_11.sce
@@ -0,0 +1,33 @@
+clear
+clc
+//Example 3.11 HYDROSTATIC FORCE ON A CURVED SURFACE
+//Equilibrium in horizontal direction
+g_w=9.81; //specific weight of water[kN/m^3]
+r=2; //[m]
+w=1; //[m]
+A=r*w //area[m^2]
+l=5; //[m]
+p=g_w*l //pressure[kN/m^3]
+Fx=p*A //horizontal force on side AC[kN]
+
+//Equilibrium in vertical direction
+h=4; //height[m]
+p0=g_w*h //[kN/m^2]
+Fv=p0*A //vertical force on side CB[kN]
+W=g_w*(%pi*r^2/4)*w //weight of water in ABC[kN]
+Fy=W+Fv //[kN]
+
+//Line of action (horizontal force)
+y=5; //[m]
+ycp=y+(w*r^3/12)/(y*A) //[m]
+
+//For line of action for vertical forces, sum moments about point C
+xW=4*r/(3*%pi) //distance of centroid from C[m]
+xcp=(Fv*r/2+W*xW)/Fy //[m]
+printf("\n The line of action for vertical force, xcp = %.3fm\n and for horizontal force, ycp = %.3fm\n\n",xcp,ycp)
+
+//tan(theta)=Fy/Fx
+theta=atand(Fy/Fx) //angle with the horizontal(degrees)
+F=sqrt(Fx^2+Fy^2) //resultant force[kN]
+printf("\n Hydrostatic force on curved surface AB = %.1f kN at %.f degrees to the horizontal.\n",F,theta)
+