diff options
Diffstat (limited to '587/CH9')
-rwxr-xr-x | 587/CH9/EX9.1/example9_1.sce | 31 | ||||
-rwxr-xr-x | 587/CH9/EX9.2/example9_2.sce | 42 | ||||
-rwxr-xr-x | 587/CH9/EX9.3/example9_3.sce | 29 | ||||
-rwxr-xr-x | 587/CH9/EX9.4/example9_4.sce | 25 | ||||
-rwxr-xr-x | 587/CH9/EX9.5/example9_5.sce | 24 | ||||
-rwxr-xr-x | 587/CH9/EX9.6/example9_6.sce | 41 | ||||
-rwxr-xr-x | 587/CH9/EX9.7/example9_7.sce | 15 | ||||
-rwxr-xr-x | 587/CH9/EX9.8/example9_8.sce | 21 | ||||
-rwxr-xr-x | 587/CH9/EX9.9/example9_9.sce | 14 |
9 files changed, 242 insertions, 0 deletions
diff --git a/587/CH9/EX9.1/example9_1.sce b/587/CH9/EX9.1/example9_1.sce new file mode 100755 index 000000000..79d18474b --- /dev/null +++ b/587/CH9/EX9.1/example9_1.sce @@ -0,0 +1,31 @@ +clear;
+clc;
+
+//Example9.1[Heat Loss from Hot Water Pipes]
+//Given:-
+l=6;//Length[m]
+d=0.08;//diameter[m]
+T_room=20;//[degree Celcius]
+Ts=70;//Surface temperature of pipe[degree Celcius]
+Tf=(Ts+T_room)/2;//Film temperature[degree Celcius]
+//Properties of air at Tf
+k=0.02699;//[W/m.degree Celcius]
+Pr=0.7241;//Prandtl number
+nu=1.750*10^(-5);//[m^2/s]
+b=(1/(Tf+273));//[K^-1]
+g=9.81;//Acc dur to gravity[m/s^2]
+e=1;//Emissivity
+//Solution:-
+Lc=d;//Characteristic length[m]
+Ra_d=g*b*(Ts-T_room)*(d^3)*Pr/(nu^2);
+disp(Ra_d,"The Rayleigh number is")
+Nu=((0.6+((0.387*(Ra_d^(1/6)))/((1+((0.559/Pr)^(9/16)))^(8/27))))^2);
+disp(Nu," The natural convection Nusselt number is")
+h=k*Nu/d;//[W/m^2.degree Celcius]
+As=%pi*d*l;//[m^2]
+Q=h*As*(Ts-T_room);//[W]
+disp("by natural convection","W",round(Q),"The pipe loses heat to the air in the room at a rate of")
+Q_rad=e*As*(5.76*10^(-8))*(((Ts+273)^4)-((T_room+273)^4));//[W]
+disp("W",ceil(Q_rad),"The radiation heat transfer is")
+
+
diff --git a/587/CH9/EX9.2/example9_2.sce b/587/CH9/EX9.2/example9_2.sce new file mode 100755 index 000000000..15bc120dd --- /dev/null +++ b/587/CH9/EX9.2/example9_2.sce @@ -0,0 +1,42 @@ +clear;
+clc;
+
+//Example9.2[Cooling of a Plate in different orientaions]
+L=0.6;//side of square plate[m]
+T_surr=30;//[degree Celcius]
+Tp=90;//Temp of plate[degree Celcius]
+Tf=(Tp+T_surr)/2;//Film temperature[degree Celcius]
+//Properties of air at Tf
+k=0.02808;//[W/m.degree Celcius]
+Pr=0.7202;//Prandtl number
+nu=1.896*10^(-5);//Kinematic viscosity[m^2/s]
+b=1/(Tf+273);//[K^-1]
+g=9.81;//Acc due to gravity[m/s^2]
+//Solution (a)
+Lc_a=L;//Characteristic length
+Ra_1=g*b*(Tp-T_surr)*(L^3)*Pr/(nu^2);
+disp(Ra_1,"(a) The Rayleigh no is")
+Nu_a=((0.825+(0.387*(Ra_1^(1/6)))/((1+((0.492/Pr)^(9/16)))^(8/27)))^2);
+disp(Nu_a,"The natural convection Nusselt number is")
+h_a=k*Nu_a/L;//[W/m^2.degree Celcius]
+As=L^2;//[m^2]
+Q_a=h_a*As*(Tp-T_surr);//[W]
+disp("W",ceil(Q_a),"Heat loss to the surrounding is")
+//Solution (b)
+Lc_b=As/(4*L);//[m]
+Ra_2=g*b*(Tp-T_surr)*(Lc_b^3)*Pr/(nu^2);
+disp(Ra_2,"(b) The Rayleigh number is")
+Nu_b=0.54*(Ra_2^(1/4));
+disp(Nu_b,"The natural convection Nusselt number is")
+h_b=k*Nu_b/Lc_b;//[W/m^2.degree Celcius]
+Q_b=h_b*As*(Tp-T_surr);//[W]
+disp("W",round(Q_b),"Heat Loss is")
+//Solution (c)
+Lc_c=Lc_b
+Nu_c=(0.27*Ra_2^(1/4));
+disp(Nu_c,"(c) Natural convection Nusselt number")
+h_c=k*Nu_c/Lc_c;//[W/m^2.degree Celcius]
+Q_c=h_c*As*(Tp-T_surr);//[W]
+disp("W",Q_c,"Heat Loss is")
+Q_rad=e*(5.67*10^(-8))*As*(((Tp+273)^4)-((T_surr+273)^4));//[W]
+disp("W",round(Q_rad),"Radiation heat loss is")
diff --git a/587/CH9/EX9.3/example9_3.sce b/587/CH9/EX9.3/example9_3.sce new file mode 100755 index 000000000..dbfa763ad --- /dev/null +++ b/587/CH9/EX9.3/example9_3.sce @@ -0,0 +1,29 @@ +clear;
+clc;
+
+//Example9.3[Optimum Fin Spacing of a Heat Sink]
+//Given:-
+w=0.12;//width[m]
+l=0.18;//length[m]
+t=0.001;//thickness[m]
+H=0.024;//height[m]
+Ts=80;//Bast temperature[degree Celcius]
+T_surr=30;//[degree Celcius]
+Tf=(Ts+T_surr)/2;//[degree Celcius]
+//Properties of air at film temperature
+k=0.02772;//[W/m.degree Celcius]
+Pr=0.7215;//Prandtl number
+nu=1.847*10^(-5);//[m^2/s]
+b=1/(Tf+273);//[K^-1]
+g=9.81;//[m/s^2]
+//Solution:-
+Ra_l=g*b*(Ts-T_surr)*(l^3)*Pr/(nu^2);
+disp(Ra_l,"The Rayleigh number is")
+S_opt=2.714*l/(Ra_l^(0.25));//[m]
+disp("mm",S_opt*100,"The optimum spacing is")
+n=w/(S_opt+t);
+disp(round(n),"The no of for this optimum fin spacing are")
+Nu_opt=1.307;//Optimum Nusselt number
+h=Nu_opt*k/S_opt;//[W/m^2.degree Celcius]
+Q=h*2*round(n)*l*H*(Ts-T_surr);//[W]
+disp("W",Q,"The rate of natural convection heat transfer")
diff --git a/587/CH9/EX9.4/example9_4.sce b/587/CH9/EX9.4/example9_4.sce new file mode 100755 index 000000000..7113df50b --- /dev/null +++ b/587/CH9/EX9.4/example9_4.sce @@ -0,0 +1,25 @@ +clear;
+clc;
+
+//Example9.4[Heat Loss through a Double Pane Window]
+//Given:-
+H=0.8;//Height[m]
+L=0.02;//Air gap[m]
+w=2;//Width[m]
+T1=12,T2=2;//Glass Surface temperatures across the air gap
+Tavg=(T1+T2)/2;//[degree Celcius]
+k=0.02416;//[W/m.degree Celcius]
+Pr=0.7344;//Prandtl Number
+nu=1.4*10^(-5);//Kinematic Viscosity[m^2/s]
+g=9.81;//[m/s^2]
+//Solution:-
+Lc=L;//Characteristic length
+b=1/(Tavg+273);//[K^-1]
+Ra_L=g*b*(T1-T2)*Pr*(Lc^3)/(nu^2);
+disp(Ra_L,"The Rayleigh Number is")
+Nu=0.42*(Ra_L^(1/4))*(Pr^(0.012))*((H/L)^(-0.3));
+disp(Nu,"The Nusselt Number is")
+As=H*w;//[m^2]
+h=k*Nu/L;//[W/m^2.degree Celcius]
+Q=h*As*(T1-T2);
+disp("W",Q,"Rate at which Heat is Lost through the window is")
\ No newline at end of file diff --git a/587/CH9/EX9.5/example9_5.sce b/587/CH9/EX9.5/example9_5.sce new file mode 100755 index 000000000..fe82ef8a7 --- /dev/null +++ b/587/CH9/EX9.5/example9_5.sce @@ -0,0 +1,24 @@ +clear;
+clc;
+
+//Example9.5[Heat Transfer through a Spherical Enclosure]
+//Given:-
+Di=0.2;//Inner Diameter[m]
+Do=0.3;//Outer Diameter[m]
+Ti=320,To=280;//The surface temperatures of two spheres enclosing the air[K]
+Tavg=(Ti+To)/2;//[K]
+//Properties at Tavg
+k=0.02566;//[W/m.K]
+Pr=0.7290;//Prandtl Number
+nu=1.58*10^(-5);//[m^2/s]
+b=(1/Tavg);
+g=9.81;//[m/s^2]
+//Solution:-
+Lc=(Do-Di)/2;//Characteristic length[m]
+Ra_L=g*b*(Ti-To)*(Lc^3)*Pr/(nu^2);
+disp(Ra_L,"The Rayleigh Number is")
+Fsph=Lc/(((Di*Do)^4)*((((Di^(-7/5))+(Do^(-7/5))))^5));
+keff=0.74*k*((Pr/(0.861+Pr))^(1/4))*((Fsph*Ra_L)^(1/4));//[W/m.K]
+disp(Fsph,keff)
+Q=keff*(%pi*Di*Do/Lc)*(Ti-To);//[W]
+disp("W",Q,"The rate of heat transfer between the spheres is")
\ No newline at end of file diff --git a/587/CH9/EX9.6/example9_6.sce b/587/CH9/EX9.6/example9_6.sce new file mode 100755 index 000000000..cefe008a6 --- /dev/null +++ b/587/CH9/EX9.6/example9_6.sce @@ -0,0 +1,41 @@ +clear;
+clc;
+//Example9.6[Heating Water in a Tube by Solar Enegy]
+//Given:-
+Ts=40;//Glass Temp[degree Celcius]
+T_surr=20;//Surrounding temperature[degree Celcius]
+Tavg=(Ts+T_surr)/2;//[degree Celcius]
+Do=0.1;//[m]
+Di=0.05;//[m]
+L=1;//[m]
+//Properties of glass at Tavg
+k=0.02588;//[W/m.degree Celcius]
+Pr=0.7282;//Prandtl Number
+nu=1.608*10^(-5);//[m^2/s]
+b=1/(Tavg+273);//[K^-1]
+
+Q=30;//Rate pof absorpto\ion of solar radiation[W]
+g=9.81;//[m/s^2]
+//Solution:-
+Ao=%pi*Do*L;//Heat transfer surface area of the glass cover[m^2]
+Ra_D=g*b*(Ts-T_surr)*(Do^3)*Pr/(nu^2);
+disp(Ra_D,"The Rayleigh Number is")
+Nu=((0.6+((0.387*(Ra_D^(1/6)))/((1+((0.550/Pr)^(9/16)))^(8/27))))^2);
+disp(Nu,"The Nusselt number is")
+ho=k*Nu/Do;//[W/m^2.degree Celcius]
+Qo=ho*Ao*(Ts-T_surr);//[W]
+disp("W",Qo,"The rate of natural convection heat transfer from the glass cover to the ambient air is")
+//Value of Qo is less than 30W so assuming a higher temp of glass cover
+T_surr1=41;//[degree Celcius]
+Ts1=90;//[degree Celcius]
+Tavg1=(T_surr1+Ts1)/2;//[degree Celcius]
+b1=1/(Tavg1+273);//[K^-1]
+Lc=(Do-Di)/2;//Characteristic length [m]
+Ra_L1=g*b1*(Ts1-T_surr1)*(Lc^3)*Pr/(nu^2);
+disp(Ra_L1,"The Rayleigh number on assuming higher temperatures")
+Fcyl=((log(Do/Di))^4)/((Lc^3)*(((Di^(-3/5))+(Do^(-3/5)))^5));
+keff=0.386*k*((Pr/(0.861+Pr))^(1/4))*((Fcyl*Ra_L1)^(1/4));//[W/m.degree Celcius]
+Q1=2*%pi*keff*(Ts1-T_surr1)/(log(Do/Di));//[W]
+disp("W",Q1,"The rate of heat transfer between the cylinders is")
+//Obtained value of Q1 is more than 30 W, so using hit and trial aand suuming more values we get the tube temperature to be 82 degree Celcius,
+disp("Therefore tube will reach an equilibrium temperature of 82 degree Celcius when the pump fails")
\ No newline at end of file diff --git a/587/CH9/EX9.7/example9_7.sce b/587/CH9/EX9.7/example9_7.sce new file mode 100755 index 000000000..4ec529542 --- /dev/null +++ b/587/CH9/EX9.7/example9_7.sce @@ -0,0 +1,15 @@ +clear;
+clc;
+
+//Example9.7[U factor for Center of glass Section of Windows]
+//Given:-
+e=0.84;//Emissivity
+//For winter season
+hi=8.29;//[W/m^2.degree Celcius]
+ho=34.0;//[W/m^2.degree Celcius]
+//Solution:-
+e_eff=1/((1/e)+(1/e)-1);//Effective emissivity of air space
+//the effective emissivity and an average air space temperature of 0 degree Celcius read
+h_space=7.2;//[W/m^2.degree Celcius]
+U_center=1/((1/hi)+(1/ho)+(1/h_space));//[W/m^s.degree Celcius]
+disp("W/m^2.degree Celcius",U_center,"The center of glass U-factor value is")
diff --git a/587/CH9/EX9.8/example9_8.sce b/587/CH9/EX9.8/example9_8.sce new file mode 100755 index 000000000..9600aeffc --- /dev/null +++ b/587/CH9/EX9.8/example9_8.sce @@ -0,0 +1,21 @@ +clear;
+clc;
+
+//Example9.8[Heat Loss through Aluminium Framed Windows]
+//Given:-
+H=1.2;//Height[m]
+w=1.8;//Width[m]
+Ti=22;//Inside temp[degree Celcius]
+To=-10;//Outside temp[degree Celcius]
+U_a=6.63,U_b=3.51,U_c=1.92,hi=8.3;//[W/m^.degree Celcius]
+//Solution:-
+A_win=h*w;//[m^2]
+Q_win_a=U_a*A_win*(Ti-To);//[W]
+T_glass_a=Ti-(Q_win_a/(hi*A_win));//[degree Celcius]
+disp("degree Celcius",T_glass_a,"(a) The Inner surface temperature of the window glass is")
+Q_win_b=U_b*A_win*(Ti-To);//[W]
+T_glass_b=Ti-(Q_win_b/(hi*A_win));//[degree Celcius
+disp("degree Celcius",T_glass_b,"(b) The Inner surface temperature of the window glass is")
+Q_win_c=U_c*A_win*(Ti-To);//[W]
+T_glass_c=Ti-(Q_win_c/(hi*A_win));//[degree Celcius]
+disp("degree Celcius",T_glass_c,"(c) The Inner surface temperature of the window glass is")
\ No newline at end of file diff --git a/587/CH9/EX9.9/example9_9.sce b/587/CH9/EX9.9/example9_9.sce new file mode 100755 index 000000000..23c1a4ae2 --- /dev/null +++ b/587/CH9/EX9.9/example9_9.sce @@ -0,0 +1,14 @@ +clear;
+clc;
+
+//Example9.9[U-Factor of a Double-Door Window]
+//Given:-
+A_win=1.8*2.0;//[m^2]
+A_glazing=2*1.72*0.94;//[m^2]
+U_c=3.24,U_e=3.71,U_f=2.8;//U factors for the center edge and frame sections respectively [W/m^2.degree Celcius]
+//Solution:-
+A_frame=A_win-A_glazing;//[m^2]
+A_center=2*(1.72-0.13)*(0.94-0.13);//[m^2]
+A_edge=A_glazing-A_center;//[m^2]
+U_win=((U_c*A_center)+(U_e*A_edge)+(U_f*A_frame))/A_win;//[W/m^2.degree Celcius]
+disp("W/m^2.degree Celcius",U_win,"The overall U factor of the entire window is")
\ No newline at end of file |