diff options
Diffstat (limited to '534/CH8/EX8.6')
-rw-r--r-- | 534/CH8/EX8.6/8_6_Metal_Duct.sce | 37 |
1 files changed, 37 insertions, 0 deletions
diff --git a/534/CH8/EX8.6/8_6_Metal_Duct.sce b/534/CH8/EX8.6/8_6_Metal_Duct.sce new file mode 100644 index 000000000..6c3fb77ef --- /dev/null +++ b/534/CH8/EX8.6/8_6_Metal_Duct.sce @@ -0,0 +1,37 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 8.6 Page 516 \n'); //Example 8.6
+// Heat Loss from the Duct over the Length L, q
+// Heat flux and suface temperature at x=L
+
+//Operating Conditions
+m = .05; //[kg/s] mass flow rate of water
+Ti = 103+273; //[K] Inlet temp
+To = 77+273; //[K] Outlet temperature
+D = .15; //[m] Diameter
+L = 5; //[m] length
+ho = 6; //[W/m^2.K] Heat transfer convective coefficient
+Tsurr = 0+273; //[K] Temperature of surrounding
+
+//Table A.4 Air Properties T = 363 K
+cp = 1010; //[J/kg.K] specific heat
+//Table A.4 Air Properties T = 350 K
+k = .030; //[W/m] Thermal Conductivity
+u = 20.82*10^-6; //[N.s/m^2] Viscosity
+Pr = .7; //Prandtl Number
+
+q = m*cp*(To-Ti);
+
+Re = m*4/(%pi*D*u);
+printf("\n As Reynolds Number is %i. The flow is Turbulent.",Re);
+
+//Equation 8.6
+n = 0.3;
+Nu = .023*Re^.8*Pr^.3;
+h = Nu*k/D;
+q2 = (To-Tsurr)/[1/h + 1/ho];
+Ts = -q2/h+To;
+
+printf("\n\n Heat Loss from the Duct over the Length L, q = %i W \n Heat flux and suface temperature at x=L is %.1f W/m^2 & %.1f degC respectively",q,q2,Ts-273);
+
+//END
\ No newline at end of file |