diff options
Diffstat (limited to '534/CH2')
-rw-r--r-- | 534/CH2/EX2.1/2_1_Thermal_Diffusivity.sce | 46 | ||||
-rw-r--r-- | 534/CH2/EX2.2/2_2_Non_Uniform_Temp_Distribution.sce | 46 | ||||
-rw-r--r-- | 534/CH2/EX2.3/2_3_Theoretical_Problem.sce | 8 |
3 files changed, 100 insertions, 0 deletions
diff --git a/534/CH2/EX2.1/2_1_Thermal_Diffusivity.sce b/534/CH2/EX2.1/2_1_Thermal_Diffusivity.sce new file mode 100644 index 000000000..dd10dc0c1 --- /dev/null +++ b/534/CH2/EX2.1/2_1_Thermal_Diffusivity.sce @@ -0,0 +1,46 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 2.1 Page 68 \n')//Example 2.1
+// Find Value for Thermal Diffusivity
+
+function a=alpha(p, Cp, k)
+ a=k/(p*Cp); //[m^2/s]
+ funcprot(0);
+endfunction
+
+//(a) Pure Aluminium at 300K
+// From Appendix A, Table A.1
+
+p = 2702; //[Kg/m^3] - Density Of Material
+Cp = 903; //[J/kg.K] - Specific heat of Material
+k = 237; //[W/m.k] - Thermal Conductivity of Material
+
+printf("\n (a) Thermal Diffuisivity of Pure Aluminium at 300K = %.2e m^2/s\n",alpha(p, Cp, k));
+
+//(b) Pure Aluminium at 700K
+// From Appendix A, Table A.1
+
+p = 2702; //[Kg/m^3] - Density Of Material
+Cp = 1090; //[J/kg.K] - Specific heat of Material
+k = 225; //[W/m.k] - Thermal Conductivity of Material
+
+printf("\n (b) Thermal Diffuisivity of Pure Aluminium at 700K = %.2e m^2/s\n",alpha(p, Cp, k));
+
+//(c) Silicon Carbide at 1000K
+// From Appendix A, Table A.2
+
+p = 3160; //[Kg/m^3] - Density Of Material
+Cp = 1195; //[J/kg.K] - Specific heat of Material
+k = 87; //[W/m.k] - Thermal Conductivity of Material
+
+printf("\n (c) Thermal Diffuisivity of Silicon Carbide at 1000K = %.2e m^2/s\n",alpha(p, Cp, k));
+
+//(d) Paraffin at 300K
+// From Appendix A, Table A.3
+
+p = 900; //[Kg/m^3] - Density Of Material
+Cp = 2890; //[J/kg.K] - Specific heat of Material
+k = .24; //[W/m.k] - Thermal Conductivity of Material
+
+printf("\n (d) Thermal Diffuisivity of Paraffin at 300K = %.2e m^2/s",alpha(p, Cp, k));
+//END
diff --git a/534/CH2/EX2.2/2_2_Non_Uniform_Temp_Distribution.sce b/534/CH2/EX2.2/2_2_Non_Uniform_Temp_Distribution.sce new file mode 100644 index 000000000..cc8bae725 --- /dev/null +++ b/534/CH2/EX2.2/2_2_Non_Uniform_Temp_Distribution.sce @@ -0,0 +1,46 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 2.2 Page 75 \n')//Example 2.2
+// Analyze a Situation of Non-Uniform Temperature Distribution
+//T(x) = a + bx +cx^2 T-degC & x-meter
+
+a = 900; //[degC]
+b = -300; //[degC/m]
+c = -50; //[degC/m^2]
+
+q = 1000; //[W/m^2.K] - Unifrom heat Generation
+A = 10 ; //[m^2] - Wall Area
+//Properties of Wall
+p = 1600; //[kg/m^3] - Density
+k = 40; //[W/m] - Thermal Conductivity
+Cp = 4000; //[J/kg.K] - Specific Heat
+L = 1; //[m] - Length of wall
+
+//(i) Rate of Heat Transfer entering the wall and leaving the wall
+// From Eqn 2.1
+// qin = -kA(dT/dx)|x=0 = -kA(b)
+
+qin= - b*k*A;
+
+// Similarly
+// qout = -kA(dT/dx)|x=L = -kA(b+2cx)|x=L
+
+qout= - k*A*(b+2*c*L);
+
+printf("\n (i) Rate of Heat Transfer entering the wall = %i W \n And leaving the wall = %i W \n", qin, qout);
+
+//(ii) Rate of change Of Energy Storage in Wall E`st
+// Applying Overall Energy Balance across the Wall
+//E`st = E`in + E`g + E`out = qin + q`AL - qout
+Est = qin + q*A*L - qout;
+
+printf("\n (ii) Rate of change Of Energy Storage in Wall = %i W\n",Est);
+
+//(iii) Time rate of Temperature change at x= 0, 0.25 and .5m
+//Using Eqn 2.19
+// T`= dT/dt = (k/p*Cp)*d(dT/dx)/dx + q`/p*Cp
+//As d(dT/dx)/dx = d(b + 2cx)/dx = 2c - Independent of x
+T = (k/(p*Cp))*(2*c)+ q/(p*Cp);
+printf("\n (iii) Time rate of Temperature change independent of x = %f degC/s\n",T);
+
+//END
diff --git a/534/CH2/EX2.3/2_3_Theoretical_Problem.sce b/534/CH2/EX2.3/2_3_Theoretical_Problem.sce new file mode 100644 index 000000000..f00d529d2 --- /dev/null +++ b/534/CH2/EX2.3/2_3_Theoretical_Problem.sce @@ -0,0 +1,8 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 2.3 Page 79 \n')// Example 2.3
+//Theoretical Problem
+
+printf('\n The given example is theoretical and does not involve any numerical computation')
+
+//End
|