diff options
Diffstat (limited to '534/CH13')
-rw-r--r-- | 534/CH13/EX13.1/13_1_Theoretical_Problem.sce | 8 | ||||
-rw-r--r-- | 534/CH13/EX13.2/13_2_View_Factor_Geometries.sce | 24 | ||||
-rw-r--r-- | 534/CH13/EX13.3/13_3_Curved_Surface.sce | 43 | ||||
-rw-r--r-- | 534/CH13/EX13.4/13_4_Cylindrical_Furnace.sce | 23 | ||||
-rw-r--r-- | 534/CH13/EX13.5/13_5_Concentric_Tube_Arrangement.sce | 24 | ||||
-rw-r--r-- | 534/CH13/EX13.6/13_6_Triangular_Baking_Duct.sce | 31 | ||||
-rw-r--r-- | 534/CH13/EX13.7/13_7_Semicircular_Tube.sce | 51 |
7 files changed, 204 insertions, 0 deletions
diff --git a/534/CH13/EX13.1/13_1_Theoretical_Problem.sce b/534/CH13/EX13.1/13_1_Theoretical_Problem.sce new file mode 100644 index 000000000..e39b18582 --- /dev/null +++ b/534/CH13/EX13.1/13_1_Theoretical_Problem.sce @@ -0,0 +1,8 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 13.1 Page 820 \n')// Example 13.1
+//Theoretical Problem
+
+printf('\n The given example is theoretical and does not involve any numerical computation')
+
+//End
diff --git a/534/CH13/EX13.2/13_2_View_Factor_Geometries.sce b/534/CH13/EX13.2/13_2_View_Factor_Geometries.sce new file mode 100644 index 000000000..dcc25225a --- /dev/null +++ b/534/CH13/EX13.2/13_2_View_Factor_Geometries.sce @@ -0,0 +1,24 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 13.2 Page 821 \n')// Example 13.2
+
+// View Factors of known surface Geometries
+
+// (1) Sphere within Cube
+F12a = 1 ;//By Inspection
+F21a = (%pi/6)*F12a ; //By Reciprocity
+
+// (2) Partition within a Square Duct
+F11b = 0 ;//By Inspection
+//By Symmetry F12 = F13
+F12b = (1-F11b)/2 ; //By Summation Rule
+F21b = sqrt(2)*F12b ; //By Reciprocity
+
+// (3) Circular Tube
+//From Table 13.2 or 13.5, with r3/L = 0.5 and L/r1 = 2
+F13c = .172;
+F11c = 0; //By Inspection
+F12c = 1 - F11c - F13c ;//By Summation Rule
+F21c = F12c/4 ;//By Reciprocity
+
+printf('\n Desired View Factors may be obtained from inspection, the reciprocity rule, the summation rule and/or use of charts \n (1) Sphere within Cube F21 = %.3f \n (2) Partition within a Square Duct F21 = %.3f \n (3) Circular Tube F21 = %.3f',F21a,F21b,F21c);
\ No newline at end of file diff --git a/534/CH13/EX13.3/13_3_Curved_Surface.sce b/534/CH13/EX13.3/13_3_Curved_Surface.sce new file mode 100644 index 000000000..aa34769e3 --- /dev/null +++ b/534/CH13/EX13.3/13_3_Curved_Surface.sce @@ -0,0 +1,43 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 13.3 Page 826 \n')// Example 13.3
+
+// Net rate of Heat transfer to the absorber surface
+
+L = 10 ;//[m] Collector length = Heater Length
+T2 = 600 ;//[K] Temperature of curved surface
+A2 = 15 ;//[m^2] Area of curved surface
+e2 = .5 ;// emissivity of curved surface
+stfncnstt = 5.67*10^-8; //[W/m^2.K^4] Stefan-Boltzmann constant
+T1 = 1000 ;//[K] Temperature of heater
+A1 = 10 ;//[m^2] area of heater
+e1 = .9 ;// emissivity of heater
+W = 1 ;//[m] Width of heater
+H = 1 ;//[m] Height
+T3 = 300 ;//[K] Temperature of surrounding
+e3 = 1 ;// emissivity of surrounding
+
+J3 = stfncnstt*T3^4; //[W/m^2]
+//From Figure 13.4 or Table 13.2, with Y/L = 10 and X/L =1
+F12 = .39;
+F13 = 1 - F12; //By Summation Rule
+//For a hypothetical surface A2h
+A2h = L*W;
+F2h3 = F13; //By Symmetry
+F23 = A2h/A2*F13; //By reciprocity
+Eb1 = stfncnstt*T1^4; //[W/m^2]
+Eb2 = stfncnstt*T2^4; //[W/m^2]
+//Radiation network analysis at Node corresponding 1
+//-10J1 + 0.39J2 = -510582
+//.26J1 - 1.67J2 = -7536
+//Solving above equations
+A = [-10 .39;
+ .26 -1.67];
+B = [-510582;
+ -7536];
+
+X = inv(A)*B;
+
+q2 = (Eb2 - X(2))/(1-e2)*(e2*A2);
+
+printf('\n Net Heat transfer rate to the absorber is = %.1f kW',q2/1000);
\ No newline at end of file diff --git a/534/CH13/EX13.4/13_4_Cylindrical_Furnace.sce b/534/CH13/EX13.4/13_4_Cylindrical_Furnace.sce new file mode 100644 index 000000000..a30032052 --- /dev/null +++ b/534/CH13/EX13.4/13_4_Cylindrical_Furnace.sce @@ -0,0 +1,23 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 13.4 Page 830 \n')// Example 13.4
+
+// Power required to maintain prescribed temperatures
+
+T3 = 300 ;//[K] Temperature of surrounding
+L = .15 ;//[m] Furnace Length
+T2 = 1650+273 ;//[K] Temperature of bottom surface
+T1 = 1350+273 ;//[K] Temperature of sides of furnace
+D = .075 ;//[m] Diameter of furnace
+stfncnstt = 5.670*10^-8; //[W/m^2.K^4] Stefan Boltzman Constant
+A2 = %pi*D^2/4 ;//[m] Area of bottom surface
+A1 = %pi*D*L ;//[m] Area of curved sides
+//From Figure 13.5 or Table 13.2, with ri/L = .25
+F23 = .056;
+F21 = 1 - F23; //By Summation Rule
+F12 = A2/A1*F21; //By reciprocity
+F13 = F12 ;//By Symmetry
+//From Equation 13.17 Heat balance
+q = A1*F13*stfncnstt*(T1^4 - T3^4) + A2*F23*stfncnstt*(T2^4 - T3^4);
+
+printf('\n Power required to maintain prescribed temperatures is = %i W',q);
\ No newline at end of file diff --git a/534/CH13/EX13.5/13_5_Concentric_Tube_Arrangement.sce b/534/CH13/EX13.5/13_5_Concentric_Tube_Arrangement.sce new file mode 100644 index 000000000..c198ebab9 --- /dev/null +++ b/534/CH13/EX13.5/13_5_Concentric_Tube_Arrangement.sce @@ -0,0 +1,24 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 13.5 Page 834 \n')// Example 13.5
+
+// Heat gain by the fluid passing through the inner tube
+// Percentage change in heat gain with radiation shield inserted midway between inner and outer tubes
+
+T2 = 300 ;//[K] Temperature of inner surface
+D2 = .05 ;//[m] Diameter of Inner Surface
+e2 = .05 ;// emissivity of Inner Surface
+T1 = 77 ;//[K] Temperature of Outer Surface
+D1 = .02 ;//[m] Diameter of Inner Surface
+e1 = .02 ;// emissivity of Outer Surface
+D3 = .035 ;//[m] Diameter of Shield
+e3 = .02 ;// emissivity of Shield
+stfncnstt = 5.670*10^-8 ;//[W/m^2.K^4] Stefan Boltzman Constant
+
+//From Equation 13.20 Heat balance
+q = stfncnstt*(%pi*D1)*(T1^4-T2^4)/(1/e1 + (1-e2)/e2*D1/D2) ;//[W/m]
+
+RtotL = (1-e1)/(e1*%pi*D1) + 1/(%pi*D1*1) + 2*[(1-e3)/(e3*%pi*D3)] + 1/(%pi*D3*1) + (1-e2)/(e2*%pi*D2) ;//[m^-2]
+q2 = stfncnstt*(T1^4 - T2^4)/RtotL; //[W/m]
+
+printf('\n Heat gain by the fluid passing through the inner tube = %.2f W/m \n Percentage change in heat gain with radiation shield inserted midway between inner and outer tubes is = %.2f percent',q,(q2-q)*100/q);
\ No newline at end of file diff --git a/534/CH13/EX13.6/13_6_Triangular_Baking_Duct.sce b/534/CH13/EX13.6/13_6_Triangular_Baking_Duct.sce new file mode 100644 index 000000000..6f6aafc18 --- /dev/null +++ b/534/CH13/EX13.6/13_6_Triangular_Baking_Duct.sce @@ -0,0 +1,31 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 13.6 Page 836 \n')// Example 13.6
+
+// Rate at which heat must be supplied per unit length of duct
+// Temperature of the insulated surface
+
+T2 = 500 ;//[K] Temperature of Painted surface
+e2 = .4 ;// emissivity of Painted Surface
+T1 = 1200 ;//[K] Temperature of Heated Surface
+W = 1 ; //[m] Width of Painted Surface
+e1 = .8 ;// emissivity of Heated Surface
+er = .8 ;// emissivity of Insulated Surface
+stfncnstt = 5.670*10^-8 ;//[W/m^2.K^4] Stefan Boltzman Constant
+
+//By Symmetry Rule
+F2R = .5;
+F12 = .5;
+F1R = .5;
+
+//From Equation 13.20 Heat balance
+q = stfncnstt*(T1^4-T2^4)/((1-e1)/e1*W+ 1/(W*F12+[(1/W/F1R) + (1/W/F2R)]^-1) + (1-e2)/e2*W) ;//[W/m]
+
+//Surface Energy Balance 13.13
+J1 = stfncnstt*T1^4 - (1-e1)*q/(e1*W) ;// [W/m^2] Surface 1
+J2 = stfncnstt*T2^4 - (1-e2)*(-q)/(e2*W) ;// [W/m^2] Surface 2
+//From Equation 13.26 Heat balance
+JR = (J1+J2)/2;
+TR = (JR/stfncnstt)^.25;
+
+printf('\n Rate at which heat must be supplied per unit length of duct = %.2f kW/m \n Temperature of the insulated surface = %i K',q/1000,TR);
\ No newline at end of file diff --git a/534/CH13/EX13.7/13_7_Semicircular_Tube.sce b/534/CH13/EX13.7/13_7_Semicircular_Tube.sce new file mode 100644 index 000000000..1270d9011 --- /dev/null +++ b/534/CH13/EX13.7/13_7_Semicircular_Tube.sce @@ -0,0 +1,51 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 13.7 Page 841 \n')// Example 13.7
+
+// Rate at which heat must be supplied
+// Temperature of the insulated surface
+
+T1 = 1000 ;//[K] Temperature of Heated Surface
+e1 = .8 ;// emissivity of Heated Surface
+e2 = .8 ; // emissivity of Insulated Surface
+r = .02 ;//[m] Radius of surface
+Tm = 400 ;//[K] Temperature of surrounding air
+m = .01 ;//[kg/s] Flow rate of surrounding air
+p = 101325 ;//[Pa] Pressure of surrounding air
+stfncnstt = 5.670*10^-8 ;//[W/m^2.K^4] Stefan Boltzman Constant
+//Table A.4 Air Properties at 1 atm, 400 K
+k = .0338 ;//[W/m.K] conductivity
+u = 230*10^-7 ;//[kg/s.m] Viscosity
+cp = 1014 ;//[J/kg] Specific heat
+Pr = .69 ;// Prandtl Number
+
+//Hydraulic Diameter
+Dh = 2*%pi*r/(%pi+2) ;//[m]
+//Reynolds number
+Re = m*Dh/(%pi*r^2/2)/u;
+//View Factor
+F12 = 1 ;
+
+printf("\n As Reynolds Number is %i, Hence it is Turbulent flow inside a cylinder. Hence we will use Dittus-Boelter Equation",Re);
+
+//From Dittus-Boelter Equation
+Nu = .023*Re^.8*Pr^.4;
+h = Nu*k/Dh; //[W/m^2.K]
+
+//From Equation 13.18 Heat Energy balance
+//Newton Raphson
+T2=600; //Initial Assumption
+while(1>0)
+f=(stfncnstt*(T1^4 - T2^4)/((1-e1)/(e1*2*r)+1/(2*r*F12)+(1-e2)/(e2*%pi*r)) - h*%pi*r*(T2-Tm));
+fd=(4*stfncnstt*( - T2^3)/((1-e1)/(e1*2*r)+1/(2*r*F12)+(1-e2)/(e2*%pi*r)) - h*%pi*r*(T2));
+T2n=T2-f/fd;
+if(stfncnstt*(T1^4 - T2n^4)/((1-e1)/(e1*2*r)+1/(2*r*F12)+(1-e2)/(e2*%pi*r)) - h*%pi*r*(T2n-Tm))<=.01
+ break;
+end;
+T2=T2n;
+end
+
+//From energy Balance
+q = h*%pi*r*(T2-Tm) + h*2*r*(T1-Tm) ;//[W/m]
+
+printf('\n Rate at which heat must be supplied per unit length of duct = %.2f W/m & Temperature of the insulated surface = %i K',q,T2);
\ No newline at end of file |