diff options
Diffstat (limited to '534/CH13/EX13.3/13_3_Curved_Surface.sce')
-rw-r--r-- | 534/CH13/EX13.3/13_3_Curved_Surface.sce | 43 |
1 files changed, 43 insertions, 0 deletions
diff --git a/534/CH13/EX13.3/13_3_Curved_Surface.sce b/534/CH13/EX13.3/13_3_Curved_Surface.sce new file mode 100644 index 000000000..aa34769e3 --- /dev/null +++ b/534/CH13/EX13.3/13_3_Curved_Surface.sce @@ -0,0 +1,43 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 13.3 Page 826 \n')// Example 13.3
+
+// Net rate of Heat transfer to the absorber surface
+
+L = 10 ;//[m] Collector length = Heater Length
+T2 = 600 ;//[K] Temperature of curved surface
+A2 = 15 ;//[m^2] Area of curved surface
+e2 = .5 ;// emissivity of curved surface
+stfncnstt = 5.67*10^-8; //[W/m^2.K^4] Stefan-Boltzmann constant
+T1 = 1000 ;//[K] Temperature of heater
+A1 = 10 ;//[m^2] area of heater
+e1 = .9 ;// emissivity of heater
+W = 1 ;//[m] Width of heater
+H = 1 ;//[m] Height
+T3 = 300 ;//[K] Temperature of surrounding
+e3 = 1 ;// emissivity of surrounding
+
+J3 = stfncnstt*T3^4; //[W/m^2]
+//From Figure 13.4 or Table 13.2, with Y/L = 10 and X/L =1
+F12 = .39;
+F13 = 1 - F12; //By Summation Rule
+//For a hypothetical surface A2h
+A2h = L*W;
+F2h3 = F13; //By Symmetry
+F23 = A2h/A2*F13; //By reciprocity
+Eb1 = stfncnstt*T1^4; //[W/m^2]
+Eb2 = stfncnstt*T2^4; //[W/m^2]
+//Radiation network analysis at Node corresponding 1
+//-10J1 + 0.39J2 = -510582
+//.26J1 - 1.67J2 = -7536
+//Solving above equations
+A = [-10 .39;
+ .26 -1.67];
+B = [-510582;
+ -7536];
+
+X = inv(A)*B;
+
+q2 = (Eb2 - X(2))/(1-e2)*(e2*A2);
+
+printf('\n Net Heat transfer rate to the absorber is = %.1f kW',q2/1000);
\ No newline at end of file |