diff options
Diffstat (limited to '534/CH13/EX13.7')
-rw-r--r-- | 534/CH13/EX13.7/13_7_Semicircular_Tube.sce | 51 |
1 files changed, 51 insertions, 0 deletions
diff --git a/534/CH13/EX13.7/13_7_Semicircular_Tube.sce b/534/CH13/EX13.7/13_7_Semicircular_Tube.sce new file mode 100644 index 000000000..1270d9011 --- /dev/null +++ b/534/CH13/EX13.7/13_7_Semicircular_Tube.sce @@ -0,0 +1,51 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 13.7 Page 841 \n')// Example 13.7
+
+// Rate at which heat must be supplied
+// Temperature of the insulated surface
+
+T1 = 1000 ;//[K] Temperature of Heated Surface
+e1 = .8 ;// emissivity of Heated Surface
+e2 = .8 ; // emissivity of Insulated Surface
+r = .02 ;//[m] Radius of surface
+Tm = 400 ;//[K] Temperature of surrounding air
+m = .01 ;//[kg/s] Flow rate of surrounding air
+p = 101325 ;//[Pa] Pressure of surrounding air
+stfncnstt = 5.670*10^-8 ;//[W/m^2.K^4] Stefan Boltzman Constant
+//Table A.4 Air Properties at 1 atm, 400 K
+k = .0338 ;//[W/m.K] conductivity
+u = 230*10^-7 ;//[kg/s.m] Viscosity
+cp = 1014 ;//[J/kg] Specific heat
+Pr = .69 ;// Prandtl Number
+
+//Hydraulic Diameter
+Dh = 2*%pi*r/(%pi+2) ;//[m]
+//Reynolds number
+Re = m*Dh/(%pi*r^2/2)/u;
+//View Factor
+F12 = 1 ;
+
+printf("\n As Reynolds Number is %i, Hence it is Turbulent flow inside a cylinder. Hence we will use Dittus-Boelter Equation",Re);
+
+//From Dittus-Boelter Equation
+Nu = .023*Re^.8*Pr^.4;
+h = Nu*k/Dh; //[W/m^2.K]
+
+//From Equation 13.18 Heat Energy balance
+//Newton Raphson
+T2=600; //Initial Assumption
+while(1>0)
+f=(stfncnstt*(T1^4 - T2^4)/((1-e1)/(e1*2*r)+1/(2*r*F12)+(1-e2)/(e2*%pi*r)) - h*%pi*r*(T2-Tm));
+fd=(4*stfncnstt*( - T2^3)/((1-e1)/(e1*2*r)+1/(2*r*F12)+(1-e2)/(e2*%pi*r)) - h*%pi*r*(T2));
+T2n=T2-f/fd;
+if(stfncnstt*(T1^4 - T2n^4)/((1-e1)/(e1*2*r)+1/(2*r*F12)+(1-e2)/(e2*%pi*r)) - h*%pi*r*(T2n-Tm))<=.01
+ break;
+end;
+T2=T2n;
+end
+
+//From energy Balance
+q = h*%pi*r*(T2-Tm) + h*2*r*(T1-Tm) ;//[W/m]
+
+printf('\n Rate at which heat must be supplied per unit length of duct = %.2f W/m & Temperature of the insulated surface = %i K',q,T2);
\ No newline at end of file |