summaryrefslogtreecommitdiff
path: root/431/CH2
diff options
context:
space:
mode:
Diffstat (limited to '431/CH2')
-rwxr-xr-x431/CH2/EX2.10/EX2_10.sce20
-rwxr-xr-x431/CH2/EX2.10/resultEX2_10.txt4
-rwxr-xr-x431/CH2/EX2.11/EX2_11.sce23
-rwxr-xr-x431/CH2/EX2.11/resultEX2_11.txt6
-rwxr-xr-x431/CH2/EX2.12/EX2_11.sce23
-rwxr-xr-x431/CH2/EX2.12/resultEX2_11.txt6
-rwxr-xr-x431/CH2/EX2.13/EX2_13.sce27
-rwxr-xr-x431/CH2/EX2.13/resultEX2_13.txt12
-rwxr-xr-x431/CH2/EX2.14/EX2_14.sce26
-rwxr-xr-x431/CH2/EX2.14/resultEX2_14.txt11
-rwxr-xr-x431/CH2/EX2.15/EX2_15.sce26
-rwxr-xr-x431/CH2/EX2.15/resultEX2_15.txt8
-rwxr-xr-x431/CH2/EX2.16/EX2_16.sce22
-rwxr-xr-x431/CH2/EX2.16/resultEX2_16.txt3
-rwxr-xr-x431/CH2/EX2.17/EX2_17.sce31
-rwxr-xr-x431/CH2/EX2.17/resultEX2_17.txt11
-rwxr-xr-x431/CH2/EX2.18/EX2_18.sce26
-rwxr-xr-x431/CH2/EX2.18/resultEX2_18.txt11
-rwxr-xr-x431/CH2/EX2.19/EX2_19.sce25
-rwxr-xr-x431/CH2/EX2.19/resultEX2_19.txt9
-rwxr-xr-x431/CH2/EX2.20/EX2_20.sce23
-rwxr-xr-x431/CH2/EX2.20/resultEX2_20.txt5
-rwxr-xr-x431/CH2/EX2.21/EX2_21.sce18
-rwxr-xr-x431/CH2/EX2.21/resultEX2_21.txt3
-rwxr-xr-x431/CH2/EX2.22/EX2_22.sce30
-rwxr-xr-x431/CH2/EX2.22/resultEX2_22.txt3
-rwxr-xr-x431/CH2/EX2.23/EX2_23.sce30
-rwxr-xr-x431/CH2/EX2.23/resultEX2_23.txt6
-rwxr-xr-x431/CH2/EX2.24/EX2_24.sce18
-rwxr-xr-x431/CH2/EX2.24/resultEX2_24.txt4
-rwxr-xr-x431/CH2/EX2.25/EX2_25.sce16
-rwxr-xr-x431/CH2/EX2.25/resultEX2_25.txt2
-rwxr-xr-x431/CH2/EX2.26/EX2_26.sce28
-rwxr-xr-x431/CH2/EX2.26/resultEX2_26.txt8
-rwxr-xr-x431/CH2/EX2.27/EX2_27.sce20
-rwxr-xr-x431/CH2/EX2.27/resultEX2_27.txt5
-rwxr-xr-x431/CH2/EX2.29/EX2_29.sce21
-rwxr-xr-x431/CH2/EX2.29/resultEX2_29.txt3
-rwxr-xr-x431/CH2/EX2.30/EX2_30.sce30
-rwxr-xr-x431/CH2/EX2.30/resultEX2_30.txt5
-rwxr-xr-x431/CH2/EX2.31/EX2_31.sce20
-rwxr-xr-x431/CH2/EX2.31/resultEX2_31.txt2
-rwxr-xr-x431/CH2/EX2.32/EX2_32.sce24
-rwxr-xr-x431/CH2/EX2.32/resultEX2_32.txt4
-rwxr-xr-x431/CH2/EX2.33/EX2_33.sce14
-rwxr-xr-x431/CH2/EX2.33/resultEX2_33.txt3
-rwxr-xr-x431/CH2/EX2.34/EX2_34.sce29
-rwxr-xr-x431/CH2/EX2.34/resultEX2_34.txt3
-rwxr-xr-x431/CH2/EX2.4/EX2_4.sce18
-rwxr-xr-x431/CH2/EX2.4/resultEX2_4.txt3
-rwxr-xr-x431/CH2/EX2.5/EX3_5.sce19
-rwxr-xr-x431/CH2/EX2.5/resultEX3_5.txt2
-rwxr-xr-x431/CH2/EX2.6/EX2_6.sce14
-rwxr-xr-x431/CH2/EX2.6/resultEX2_6.txt2
-rwxr-xr-x431/CH2/EX2.7/EX2_7.sce15
-rwxr-xr-x431/CH2/EX2.7/resultEX2_7.txt6
-rwxr-xr-x431/CH2/EX2.8/EX2_8.sce20
-rwxr-xr-x431/CH2/EX2.8/resultEX2_8.txt7
-rwxr-xr-x431/CH2/EX2.9/EX2_9.sce14
-rwxr-xr-x431/CH2/EX2.9/resultEX2_9.txt3
60 files changed, 830 insertions, 0 deletions
diff --git a/431/CH2/EX2.10/EX2_10.sce b/431/CH2/EX2.10/EX2_10.sce
new file mode 100755
index 000000000..bd763f5a5
--- /dev/null
+++ b/431/CH2/EX2.10/EX2_10.sce
@@ -0,0 +1,20 @@
+//calculating the torque developed
+//Chapter 2
+//Example 2.10
+//page 98
+clear;
+clc;
+disp("Example 2.10")
+n=10; //number of turns in 1 coil
+l=0.2;
+d=0.2; //diameter in metres
+B=1; //uniform magnetic field density in weber per m^2
+N=1500; //speed in rpm
+r=(d/2); //radius in metres
+E=(B*l*((2*3.14*N)/60)*r*2*n);
+printf("total induced emf=%f V",E)
+R=4; //total resistance in ohms
+I=E/R;
+printf("\nThe current through the armature coil when connected to the load,I=%f A",I)
+T=(E*I)/((2*3.14*N)/60)
+printf("\ntorque=%f Nm",T) \ No newline at end of file
diff --git a/431/CH2/EX2.10/resultEX2_10.txt b/431/CH2/EX2.10/resultEX2_10.txt
new file mode 100755
index 000000000..e4ea80188
--- /dev/null
+++ b/431/CH2/EX2.10/resultEX2_10.txt
@@ -0,0 +1,4 @@
+ Example 2.10
+total induced emf=62.800000 V
+The current through the armature coil when connected to the load,I=15.700000 A
+torque=6.280000 Nm \ No newline at end of file
diff --git a/431/CH2/EX2.11/EX2_11.sce b/431/CH2/EX2.11/EX2_11.sce
new file mode 100755
index 000000000..a69c6ec08
--- /dev/null
+++ b/431/CH2/EX2.11/EX2_11.sce
@@ -0,0 +1,23 @@
+//calculating various parameters of dc motor
+//Chapter 2
+//Example 2.11
+//page 99
+clear;
+clc;
+disp("Example 2.11")
+V=230; //armature voltage supply in volts
+Ia=12; //armature current in amperes
+Ra=0.8; //armature resistance in ohms
+N=100; //speed in radian per second
+E=(V-(Ia*Ra))
+printf("induced emf,E=%fV",E)
+Te=(E*Ia)/N
+printf("\nthe electromagnetic torque=%fNm",Te)
+Pi=V*Ia
+printf("\nelectrical input to the armature,Pinput= %dW",Pi)
+Pd=Te*N
+printf("\nmechanical developed=%fW",Pd)
+loss=(Ia^2*Ra)
+printf("\narmature copper loss=%fW",loss)
+
+
diff --git a/431/CH2/EX2.11/resultEX2_11.txt b/431/CH2/EX2.11/resultEX2_11.txt
new file mode 100755
index 000000000..ed22ff7de
--- /dev/null
+++ b/431/CH2/EX2.11/resultEX2_11.txt
@@ -0,0 +1,6 @@
+Example 2.11
+induced emf,E=220.400000V
+the electromagnetic torque=26.448000Nm
+electrical input to the armature,Pinput= 2760W
+mechanical developed=2644.800000W
+armature copper loss=115.200000W \ No newline at end of file
diff --git a/431/CH2/EX2.12/EX2_11.sce b/431/CH2/EX2.12/EX2_11.sce
new file mode 100755
index 000000000..a69c6ec08
--- /dev/null
+++ b/431/CH2/EX2.12/EX2_11.sce
@@ -0,0 +1,23 @@
+//calculating various parameters of dc motor
+//Chapter 2
+//Example 2.11
+//page 99
+clear;
+clc;
+disp("Example 2.11")
+V=230; //armature voltage supply in volts
+Ia=12; //armature current in amperes
+Ra=0.8; //armature resistance in ohms
+N=100; //speed in radian per second
+E=(V-(Ia*Ra))
+printf("induced emf,E=%fV",E)
+Te=(E*Ia)/N
+printf("\nthe electromagnetic torque=%fNm",Te)
+Pi=V*Ia
+printf("\nelectrical input to the armature,Pinput= %dW",Pi)
+Pd=Te*N
+printf("\nmechanical developed=%fW",Pd)
+loss=(Ia^2*Ra)
+printf("\narmature copper loss=%fW",loss)
+
+
diff --git a/431/CH2/EX2.12/resultEX2_11.txt b/431/CH2/EX2.12/resultEX2_11.txt
new file mode 100755
index 000000000..ed22ff7de
--- /dev/null
+++ b/431/CH2/EX2.12/resultEX2_11.txt
@@ -0,0 +1,6 @@
+Example 2.11
+induced emf,E=220.400000V
+the electromagnetic torque=26.448000Nm
+electrical input to the armature,Pinput= 2760W
+mechanical developed=2644.800000W
+armature copper loss=115.200000W \ No newline at end of file
diff --git a/431/CH2/EX2.13/EX2_13.sce b/431/CH2/EX2.13/EX2_13.sce
new file mode 100755
index 000000000..927571772
--- /dev/null
+++ b/431/CH2/EX2.13/EX2_13.sce
@@ -0,0 +1,27 @@
+//calculating speed of machine
+//Chapter 2
+//Example 2.13
+//page 101
+clear;
+clc;
+disp("Example 2.13")
+disp("At generator condition")
+P=50000; //power delivered in watts
+V=250; //voltage in volts
+Ra=0.02; //armature resistance in ohms
+Rf=50; //field resistance in ohms
+If=V/Rf //field current in amperes
+Ng=400; //speed in generating condition in rpm
+printf("field current,If=%dA",If)
+Il=P/V //load current in amperes
+printf("\nLoad current,If=%dA",Il)
+Ia=If+Il //armature current in amperes
+printf("\nAramture current,If=%dA\n",Ia)
+Eg=(V+(Ia*Ra))
+disp("At motor condition")
+Ia=(Il-If)
+printf("Aramture current,If=%dA",Ia)
+Em=(V-(Ia*Ra))
+printf("\nEm=%fV",Em)
+Nm=(Ng*Em)/Eg
+printf("\nSpeed of the motor=%drpm",Nm)
diff --git a/431/CH2/EX2.13/resultEX2_13.txt b/431/CH2/EX2.13/resultEX2_13.txt
new file mode 100755
index 000000000..13586a458
--- /dev/null
+++ b/431/CH2/EX2.13/resultEX2_13.txt
@@ -0,0 +1,12 @@
+
+ Example 2.13
+
+ At generator condition
+field current,If=5A
+Load current,If=200A
+Aramture current,If=205A
+
+ At motor condition
+Aramture current,If=195A
+Em=246.100000V
+Speed of the motor=387rpm \ No newline at end of file
diff --git a/431/CH2/EX2.14/EX2_14.sce b/431/CH2/EX2.14/EX2_14.sce
new file mode 100755
index 000000000..fa96846c1
--- /dev/null
+++ b/431/CH2/EX2.14/EX2_14.sce
@@ -0,0 +1,26 @@
+//calculating speed ratio of generator and motor working conditios
+//Chapter 2
+//Example 2.14
+//page 101
+clear;
+clc;
+disp("Example 2.14")
+V=250; //voltage supply in volts
+Ra=0.12; //armature resistance in ohms
+Rf=100; //field resistance in ohms
+Il=80; //load current in amperes
+If=V/Rf
+printf("Field current,If=%f",If)
+disp("When machine is generating")
+Ia=Il+If
+Eg=(V+(Ia*Ra))
+printf("\nIa=%fA",Ia)
+printf("\nEg=%fV",Eg)
+disp("When machine is motoring")
+Ia=Il-If
+Em=(V-(Ia*Ra))
+printf("\nIa=%fA",Ia)
+printf("\nEg=%fV",Em)
+ratio=Eg/Em
+printf("\nRatio of speeds=%f",ratio)
+
diff --git a/431/CH2/EX2.14/resultEX2_14.txt b/431/CH2/EX2.14/resultEX2_14.txt
new file mode 100755
index 000000000..9391acb5d
--- /dev/null
+++ b/431/CH2/EX2.14/resultEX2_14.txt
@@ -0,0 +1,11 @@
+ Example 2.14
+Field current,If=2.500000
+ When machine is generating
+
+Ia=82.500000A
+Eg=259.900000V
+ When machine is motoring
+
+Ia=77.500000A
+Eg=240.700000V
+Ratio of speeds=1.079767 \ No newline at end of file
diff --git a/431/CH2/EX2.15/EX2_15.sce b/431/CH2/EX2.15/EX2_15.sce
new file mode 100755
index 000000000..2ae75f072
--- /dev/null
+++ b/431/CH2/EX2.15/EX2_15.sce
@@ -0,0 +1,26 @@
+//calculating flux, area of pole shoe and no-load terminal voltage
+//Chapter 2
+//Example 2.15
+//page 102
+clear;
+clc;
+disp("Example 2.15")
+V=550; //voltage supply in volts
+P=16; //number of poles
+N=150; //speed in rpm
+Z=2500; //number of armature conductors
+A=16;
+Power=1500000; //power in watt
+Cl=25000; //full-load copper loss
+B=0.9; //flux density in the pole
+Ia=Power/V
+printf("Full load current=%fA",Ia)
+Ra=Cl/(Ia^2)
+printf("\nRa=%fohms",Ra)
+E=V+(Ia*Ra)
+printf("\nInduced emf=%fvolts",E)
+phi=(E*60*A)/(Z*N*P)
+printf("\nflux density=%fWb/m^2",B)
+printf("\nflux=%fWb",phi)
+area=(phi/B)
+printf("\n Area of pole shoe=%fcm^2",(area*10000)) \ No newline at end of file
diff --git a/431/CH2/EX2.15/resultEX2_15.txt b/431/CH2/EX2.15/resultEX2_15.txt
new file mode 100755
index 000000000..dc9db2633
--- /dev/null
+++ b/431/CH2/EX2.15/resultEX2_15.txt
@@ -0,0 +1,8 @@
+
+ Example 2.15
+Full load current=2727.272727A
+Ra=0.003361ohms
+Induced emf=559.166667volts
+flux density=0.900000Wb/m^2
+flux=0.089467Wb
+ Area of pole shoe=994.074074cm^2 \ No newline at end of file
diff --git a/431/CH2/EX2.16/EX2_16.sce b/431/CH2/EX2.16/EX2_16.sce
new file mode 100755
index 000000000..c88a73e34
--- /dev/null
+++ b/431/CH2/EX2.16/EX2_16.sce
@@ -0,0 +1,22 @@
+//calculate approximate time of commmutation
+//Chapter 2
+//Example 2.16
+//page 103
+clear;
+clc;
+disp("Example 2.16")
+Cd=0.76; //commutator diameter in metres
+Cr=.38; //commutator radius in metres
+bw=1.5*10^(-2); //brush width in metres
+N=600; //speed in rpm
+n=10; //speed in rps
+V=Cr*(2*3.14*n);
+printf("peripheral speed of commutator,V=%fm/sec",V);
+ Tc=bw/V;
+ printf("\nTime of commutation=%fseconds",Tc)
+
+
+
+
+
+ \ No newline at end of file
diff --git a/431/CH2/EX2.16/resultEX2_16.txt b/431/CH2/EX2.16/resultEX2_16.txt
new file mode 100755
index 000000000..d6f97a4e9
--- /dev/null
+++ b/431/CH2/EX2.16/resultEX2_16.txt
@@ -0,0 +1,3 @@
+ Example 2.16
+peripheral speed of commutator,V=23.864000m/sec
+Time of commutation=0.000629seconds \ No newline at end of file
diff --git a/431/CH2/EX2.17/EX2_17.sce b/431/CH2/EX2.17/EX2_17.sce
new file mode 100755
index 000000000..58ef5a9e9
--- /dev/null
+++ b/431/CH2/EX2.17/EX2_17.sce
@@ -0,0 +1,31 @@
+//calculate resistance
+//Chapter
+//Example 2.17
+//page 123
+clear;
+clc;
+disp("Example 2.17")
+V=240; //supply voltage in volts
+N=800; //speed in rpm
+Ia=2; //armeture current in amperes
+Ra=0.4; //armature resistance in ohms
+Rf=160; //field resistance in ohms
+Il1=30; //line current in amperes
+E=V-(Ia*Ra); //induced emf in volts
+disp("At no-load")
+printf("E=%fV",E)
+If=V/Rf; //field current in amperes
+printf("\nIf=%fA",If)
+K1=E/(If*N);
+printf("\nK1=%f",K1)
+disp("At a load of 30A")
+Ia1=(Il1-If);
+E1=V-(Ia1*Ra);
+N1=950; //speed in rpm
+If1=E1/(K1*N1);
+printf("If1=%fA\n",If1);
+Rr=V/If1;
+R=(Rr-Rf);
+printf("\nExtra resistance required in the field circuit,R=%fohms",R)
+
+
diff --git a/431/CH2/EX2.17/resultEX2_17.txt b/431/CH2/EX2.17/resultEX2_17.txt
new file mode 100755
index 000000000..2d2fd28af
--- /dev/null
+++ b/431/CH2/EX2.17/resultEX2_17.txt
@@ -0,0 +1,11 @@
+
+ Example 2.17
+
+ At no-load
+E=239.200000V
+If=1.500000A
+K1=0.199333
+ At a load of 30A
+If1=1.207182A
+
+Extra resistance required in the field circuit,R=38.810149ohms \ No newline at end of file
diff --git a/431/CH2/EX2.18/EX2_18.sce b/431/CH2/EX2.18/EX2_18.sce
new file mode 100755
index 000000000..ec0e70ce4
--- /dev/null
+++ b/431/CH2/EX2.18/EX2_18.sce
@@ -0,0 +1,26 @@
+//calculating resistance required in series
+//Chapter 2
+//Example 2.18
+//page 124
+clear;
+clc;
+disp("Example 2.18")
+V=230; //voltage supply in volts
+Ia=20; //armature current in amperes
+Ra=0.5; //armature resistance in ohms
+E=V-(Ia*Ra);
+printf("E=%dV",E)
+disp("when extra resistance is added in the armature circuit,the speed is halved")
+E2=E/2;
+R=((V-E2)/Ia)-Ra;
+disp("The load torque is conatant")
+printf("extra resistance in the armature circui,R=%fohms",R)
+disp("The load torque directly proportional to square of speed")
+disp("if N is halfed, Iais one-fourthed")
+Ia2=Ia/4;
+R=((V-E2)/Ia2)-Ra;
+printf("extra resistance in the armature circui,R=%fohms",R)
+
+
+
+
diff --git a/431/CH2/EX2.18/resultEX2_18.txt b/431/CH2/EX2.18/resultEX2_18.txt
new file mode 100755
index 000000000..28ab354a8
--- /dev/null
+++ b/431/CH2/EX2.18/resultEX2_18.txt
@@ -0,0 +1,11 @@
+
+ Example 2.18
+E=220V
+ when extra resistance is added in the armature circuit,the speed is halved
+
+ The load torque is conatant
+extra resistance in the armature circui,R=5.500000ohms
+ The load torque directly proportional to square of speed
+
+ if N is halfed, Iais one-fourthed
+extra resistance in the armature circui,R=23.500000ohms \ No newline at end of file
diff --git a/431/CH2/EX2.19/EX2_19.sce b/431/CH2/EX2.19/EX2_19.sce
new file mode 100755
index 000000000..0aa812543
--- /dev/null
+++ b/431/CH2/EX2.19/EX2_19.sce
@@ -0,0 +1,25 @@
+//calculating resistance required in series and also the speedwhen torque is halfed
+//Chapter 2
+//Example 2.19
+//page 125
+clear;
+clc;
+disp("Example 2.19")
+V=250; //voltage supply in volts
+Ia=50; //armature current in amperes
+Ra=0.3; //armature resistance in ohms
+N=1000;
+E=V-(Ia*Ra);
+printf("E=%dV",E)
+disp("when extra resistance is added in the armature circuit when the speed is 800rpm")
+N2=800;
+E2=(E*N2)/N;
+printf("\nE at 800rpm=%dV",E2)
+R=((V-E2)/Ia)-Ra;
+printf("\nextra resistance in the armature circui,R=%fohms",R)
+disp("if load is halfed,Ia will be halfed")
+Ia2=Ia/2;
+E1=V-(Ia2*(Ra+R));
+printf("E1=%dV",E1)
+N1=(N2*E1)/E2;
+printf("\nN1=%frpm",N1)
diff --git a/431/CH2/EX2.19/resultEX2_19.txt b/431/CH2/EX2.19/resultEX2_19.txt
new file mode 100755
index 000000000..5f8cc1860
--- /dev/null
+++ b/431/CH2/EX2.19/resultEX2_19.txt
@@ -0,0 +1,9 @@
+ Example 2.19
+E=235V
+ when extra resistance is added in the armature circuit when the speed is 800rpm
+
+E at 800rpm=188V
+extra resistance in the armature circui,R=0.940000ohms
+ if load is halfed,Ia will be halfed
+E1=219V
+N1=931.914894rpm \ No newline at end of file
diff --git a/431/CH2/EX2.20/EX2_20.sce b/431/CH2/EX2.20/EX2_20.sce
new file mode 100755
index 000000000..176bda504
--- /dev/null
+++ b/431/CH2/EX2.20/EX2_20.sce
@@ -0,0 +1,23 @@
+//calculating the speed of the motor
+//Chapter 2
+//Example 2.20
+//page 125
+clear;
+clc;
+disp("Example 2.20")
+Il=5; //current in amperes al no-load
+V=250; //voltage in volts
+Rf=250; //field resistance in ohms
+If1=V/Rf; //field current in amperes
+Ia1=Il-If1; //armature current
+Ra=0.2; //armature resistance in ohms
+disp("at a load current of 50A")
+Il2=50; //load current in amperes
+//armature reaction weakens by 3percent
+If2=0.97; //current in amperes
+Ia2=Il2-If2;
+N1=1000;
+E1=(V-(Ia1*Ra));
+E2=(V-(Ia2*Ra));
+N2=(N1*E2)/(0.97*E1);
+printf("N2=%frpm",N2)
diff --git a/431/CH2/EX2.20/resultEX2_20.txt b/431/CH2/EX2.20/resultEX2_20.txt
new file mode 100755
index 000000000..70febf8c8
--- /dev/null
+++ b/431/CH2/EX2.20/resultEX2_20.txt
@@ -0,0 +1,5 @@
+
+ Example 2.20
+
+ at a load current of 50A
+N2=993.670467rpm \ No newline at end of file
diff --git a/431/CH2/EX2.21/EX2_21.sce b/431/CH2/EX2.21/EX2_21.sce
new file mode 100755
index 000000000..fc3503fc7
--- /dev/null
+++ b/431/CH2/EX2.21/EX2_21.sce
@@ -0,0 +1,18 @@
+//Calculate the fully-load speed of the motor
+//Chapter 2
+//Example 2.21
+//page 126
+clear;
+clc;
+disp("Example 2.21")
+P=4;..................//pole
+V=500;................//shunt motor in volts
+Ia=60;......................//armature current in amperes
+Ra=0.2;..........................//armature resistance in ohms
+E=V-(Ia*Ra)-2;
+printf("voltage drop across each brush=%fV",E)
+phi=0.03;.................................//flux per pole in Wb
+Z=720;.....................................//total armature current in volts
+A=2;
+N=(E*60*A)/(phi*Z*P)
+printf("\nfull load speed of the motor=%frpm",N) \ No newline at end of file
diff --git a/431/CH2/EX2.21/resultEX2_21.txt b/431/CH2/EX2.21/resultEX2_21.txt
new file mode 100755
index 000000000..80c2bae6d
--- /dev/null
+++ b/431/CH2/EX2.21/resultEX2_21.txt
@@ -0,0 +1,3 @@
+ Example 2.21
+voltage drop across each brush=486.000000V
+full load speed of the motor=675.000000rpm \ No newline at end of file
diff --git a/431/CH2/EX2.22/EX2_22.sce b/431/CH2/EX2.22/EX2_22.sce
new file mode 100755
index 000000000..ee72d9450
--- /dev/null
+++ b/431/CH2/EX2.22/EX2_22.sce
@@ -0,0 +1,30 @@
+//Calculate the value of resistance
+//Chapter 2
+//Example 2.22
+//page 126
+clear;
+clc;
+disp("Example 2.22")
+V=440; //primary voltage in volts
+Ia=50; //armature current in amperes
+Ra=0.2; //armature resistance in ohms
+N=600; //speed in rpm
+E=V-(Ia*Ra); //emf induced in volts before adding extra resistance
+//E=K*phi*N=K1*Ia*N
+K1=E/(Ia*N);
+//we have the relation T=Kt1*Ia^2, T1=Kt1*Ia1^2
+//when torque is half, say torque be T1
+//T1=T/2. r=T/T1
+r=2;
+Ia1=sqrt(Ia^2/r);
+printf("Ia1=%fA",Ia1);
+//extra resistance R is introduced in the circuit
+N1=400;
+E1=(K1*Ia1*N1);
+R=((V-E1)/Ia1)-Ra;
+printf("\nvalue of extra resistance added=%fohms",R)
+
+
+
+
+
diff --git a/431/CH2/EX2.22/resultEX2_22.txt b/431/CH2/EX2.22/resultEX2_22.txt
new file mode 100755
index 000000000..bc5d55fd8
--- /dev/null
+++ b/431/CH2/EX2.22/resultEX2_22.txt
@@ -0,0 +1,3 @@
+ Example 2.22
+Ia1=35.355339A
+value of extra resistance added=6.511746ohms \ No newline at end of file
diff --git a/431/CH2/EX2.23/EX2_23.sce b/431/CH2/EX2.23/EX2_23.sce
new file mode 100755
index 000000000..663dc4e68
--- /dev/null
+++ b/431/CH2/EX2.23/EX2_23.sce
@@ -0,0 +1,30 @@
+//Calculate the speed
+//Chapter 2
+//Example 2.23
+//page 127
+clear;
+clc;
+disp("Example 2.23")
+V=200; //voltage in volts
+Ia=20; //armature current in amperes
+Ra=0.5; //armature resistance in ohms
+Rse=0.2; //field winding resistance in ohms
+E=V-(Ia*(Ra+Rse));
+printf("In first case,E=%fV",E)
+//E=k*phi*N
+N=1000; //speed in rpm
+Kphi=E/N;
+//a resistance R is connected in parallel with the series field which is called diverter
+disp("when resistace R is added and new conditions")
+I=20; //total current flowing
+//current is equally devided between series field and diverter
+Ise2=I/2;
+//flux at 10A current is 20percent of flux at 20A current
+p=0.70; //percentage of flux
+Kpih1=p*Kphi;
+E1=(V-((Ia*Ra)+(Ise2*Rse)));
+printf("Induced emf=%fV",E1)
+//new speed is N1
+N1=E1/(p*Kphi)
+printf("\nN1=%frpm",N1)
+
diff --git a/431/CH2/EX2.23/resultEX2_23.txt b/431/CH2/EX2.23/resultEX2_23.txt
new file mode 100755
index 000000000..555c8b7be
--- /dev/null
+++ b/431/CH2/EX2.23/resultEX2_23.txt
@@ -0,0 +1,6 @@
+
+ Example 2.23
+In first case,E=186.000000V
+ when resistace R is added and new conditions
+Induced emf=188.000000V
+N1=1443.932412rpm \ No newline at end of file
diff --git a/431/CH2/EX2.24/EX2_24.sce b/431/CH2/EX2.24/EX2_24.sce
new file mode 100755
index 000000000..7b309e79c
--- /dev/null
+++ b/431/CH2/EX2.24/EX2_24.sce
@@ -0,0 +1,18 @@
+//Calculate the fully-load speed of the motor
+//Chapter 2
+//Example 2.24
+//page 128
+clear;
+clc;
+disp("Example 2.24")
+V=200;..............................//motor runs in volts
+Ia=15;.............................//current taken in amperes
+Ra=1;.................................//motor resistance in ohms
+E1=V-(Ia*Ra);
+printf("resistance when 1ohm=%fV",E1)
+R=5;....................................//resistance
+E2=V-(Ia*(Ra+R))
+printf("\nResistance when 5ohms connected in series=%fV",E2)
+N1=800;............................//speed of motor in rpm
+N2=N1*(E2/E1);
+printf("\nspeed at which motor will run when resistance is 5ohms=%frpm",N2) \ No newline at end of file
diff --git a/431/CH2/EX2.24/resultEX2_24.txt b/431/CH2/EX2.24/resultEX2_24.txt
new file mode 100755
index 000000000..d55aebde6
--- /dev/null
+++ b/431/CH2/EX2.24/resultEX2_24.txt
@@ -0,0 +1,4 @@
+Example 2.24
+resistance when 1ohm=185.000000V
+Resistance when 5ohms connected in series=110.000000V
+speed at which motor will run when resistance is 5ohms=475.675676rpm \ No newline at end of file
diff --git a/431/CH2/EX2.25/EX2_25.sce b/431/CH2/EX2.25/EX2_25.sce
new file mode 100755
index 000000000..030f3fea0
--- /dev/null
+++ b/431/CH2/EX2.25/EX2_25.sce
@@ -0,0 +1,16 @@
+//Calculate the ampere turns for each commutating pole
+//Chapter 2
+//Example 2.25
+//page 135
+clear;
+clc;
+disp("Example 2.25")
+P=8;..........................//pole
+Z=107;.........................//generator with slots
+Ia=1000;.....................//current containing in amperes
+Bag=0.32;......................//gap flux density in Wb/m^2
+lg=0.012;..........................//interpole air gap in meters
+pi=3.14;
+Mu=(4*pi*10^-7)
+AT=(((Ia*Z)/(2*P))+((Bag*lg)/Mu));
+printf("current for each commutating pole=%f",AT) \ No newline at end of file
diff --git a/431/CH2/EX2.25/resultEX2_25.txt b/431/CH2/EX2.25/resultEX2_25.txt
new file mode 100755
index 000000000..548bdc2b2
--- /dev/null
+++ b/431/CH2/EX2.25/resultEX2_25.txt
@@ -0,0 +1,2 @@
+Example 2.25
+current for each commutating pole=9744.824841 \ No newline at end of file
diff --git a/431/CH2/EX2.26/EX2_26.sce b/431/CH2/EX2.26/EX2_26.sce
new file mode 100755
index 000000000..c97be8fd4
--- /dev/null
+++ b/431/CH2/EX2.26/EX2_26.sce
@@ -0,0 +1,28 @@
+//Estimating the number of turns needed on each commutating pole
+//Chapter 2
+//Example 2.26
+//page 135
+clear;
+clc;
+disp("Example 2.26")
+Bag=0.3;..................................//flux density in the interpole air gap in Wb/m^2
+Ia=200000/200;.........................//armature current in amperes
+printf("Armature current=%f",Ia)
+Z=540;..........................//Number of armature conductors
+Zt=540/2;............................//Number armature winding turns
+printf("\nNumber armature winding turns=%f",Zt)
+A=6;...............//the winding lap
+Ap=Zt/A;........................//Number of armature turns per parallel path
+printf("\nNumber of armature turns per parallel path=%f",Ap)
+P=6;...............................//pole
+Np=((Ia*Ap)/P);
+printf("\nNumber of armature ampere turns per pole=%f",Np)
+lg=0.01;..............................//inter pole air gap in meters
+pi=3.14;
+Mu=(4*pi*10^-7)
+Nipg=((Bag*lg)/Mu);..........................//Air gap
+printf("\nampere turns for the air gap=%f",Nipg)
+NipI=(Np+Nipg);................................//total interpole ampere
+printf("\nTotal interpole ampere turns=%f",NipI)
+Nip=(NipI/Ia);
+printf("\nNumber of turns needed on each commutating pole=%f",Nip) \ No newline at end of file
diff --git a/431/CH2/EX2.26/resultEX2_26.txt b/431/CH2/EX2.26/resultEX2_26.txt
new file mode 100755
index 000000000..b4a2bcea0
--- /dev/null
+++ b/431/CH2/EX2.26/resultEX2_26.txt
@@ -0,0 +1,8 @@
+Example 2.26
+Armature current=1000.000000
+Number armature winding turns=270.000000
+Number of armature turns per parallel path=45.000000
+Number of armature ampere turns per pole=7500.000000
+ampere turns for the air gap=2388.535032
+Total interpole ampere turns=9888.535032
+Number of turns needed on each commutating pole=9.888535 \ No newline at end of file
diff --git a/431/CH2/EX2.27/EX2_27.sce b/431/CH2/EX2.27/EX2_27.sce
new file mode 100755
index 000000000..8292b7516
--- /dev/null
+++ b/431/CH2/EX2.27/EX2_27.sce
@@ -0,0 +1,20 @@
+//Calculating the efficiency of motor
+//Chapter 2
+//Example 2.27
+//page 128
+clear;
+clc;
+disp("Example 2.27")
+N=960;...........................//speed in rpm
+F=23;............................//effictive load in kgf
+r=45/2;...............................//radius of the drum
+printf("radius of the drum=%fcm",r)
+pi=3.14;
+OP=(2*pi*N*F*r*9.81)/(60*100);
+printf("\noutput power=%fW",OP)
+Vi=230;..................//motor input in volts
+Ci=28;.......................//input current in amperes
+IP=(Vi*Ci);
+printf("\ninput power =%fW",IP)
+Effi=(OP/IP)*100;
+printf("\nEfficiency of the motor=%fpercent",Effi) \ No newline at end of file
diff --git a/431/CH2/EX2.27/resultEX2_27.txt b/431/CH2/EX2.27/resultEX2_27.txt
new file mode 100755
index 000000000..270d05685
--- /dev/null
+++ b/431/CH2/EX2.27/resultEX2_27.txt
@@ -0,0 +1,5 @@
+Example 2.27
+radius of the drum=22.500000cm
+output power=5101.043040W
+input power =6440.000000W
+Efficiency of the motor=79.208743percent \ No newline at end of file
diff --git a/431/CH2/EX2.29/EX2_29.sce b/431/CH2/EX2.29/EX2_29.sce
new file mode 100755
index 000000000..503f395e4
--- /dev/null
+++ b/431/CH2/EX2.29/EX2_29.sce
@@ -0,0 +1,21 @@
+//Calculate the efficiency of machine when running as generator and motor
+//Chapter 2
+//Example 2.29
+//page 145
+clear;
+clc;
+disp("Example 2.29")
+I=440;......................//input at no-load in watt
+V=220;........................//voltage in volts
+Ic=I/V;......................//input current at no-load in amperes
+i=1;....................//input current in amperes
+A=2;.......................//current in amperes
+C=A-i;.....................//armature current at no-load in amperes
+L=I-((((C)^2)*0.5)+(V*C));.................//iron,friction and windage losses in watt
+a=40;...................//motor current in amperes
+OP=(V*a);
+Ra=0.5;
+Effi=(OP*100)/(OP+(((a+i)^2)*Ra)+(V*i)+L)
+printf("Efficiency as a generator when delivering 40A at 220V=%fpercent",Effi)
+Eff=((OP-(((a-i)^2)*Ra)-(V*C)-L)/OP)*100;
+printf("\nEfficiency as a motor when taking 40A from at 220V=%fpercent",Eff) \ No newline at end of file
diff --git a/431/CH2/EX2.29/resultEX2_29.txt b/431/CH2/EX2.29/resultEX2_29.txt
new file mode 100755
index 000000000..fa9253c42
--- /dev/null
+++ b/431/CH2/EX2.29/resultEX2_29.txt
@@ -0,0 +1,3 @@
+Example 2.29
+Efficiency as a generator when delivering 40A at 220V=87.301587percent
+Efficiency as a motor when taking 40A from at 220V=86.363636percent \ No newline at end of file
diff --git a/431/CH2/EX2.30/EX2_30.sce b/431/CH2/EX2.30/EX2_30.sce
new file mode 100755
index 000000000..6fee9ca57
--- /dev/null
+++ b/431/CH2/EX2.30/EX2_30.sce
@@ -0,0 +1,30 @@
+//Calculating the efficiency of the generator at full load and at half load
+//Chapter 2
+//Example 2.30
+//page 147
+clear;
+clc;
+disp("Example 2.30")
+V=400;.............................//motor in volts
+Rf=200;............................//field resistance in ohms
+If=V/Rf;...........................//current in amperes
+i=5;......... .....................//current at no load in amperes
+IP=V*i;.... ......................//motor input at no load
+Ia=3;..... ........................//aramture current in amperes
+Ra=0.5;.... .......................//armature resistance in ohms
+L=IP-(((Ia)^2)*Ra)-(V*If);.....................//iron,friction and windage in losses in watt
+printf("iron,friction and windage in losses=%fW",L)
+At=50;....................... ..//armature total current in amperes
+A=At-2;.......... ...//armature current in amperes
+Ls=(((A)^2)*Ra)+(V*If)+L;.............. //Losses
+Eff=(((V*At)-Ls)/(V*At))*100;
+printf("\nEfficiency of full load=%fpercent",Eff)
+//flux is constant
+E1=V-(Ia*Ra);................... //induced emf in the armature at no load
+E2=V-(A*Ra);............................ //induced emf in the armature at full load
+// since N1/N2=E1/E2
+percentload=(1-(E2/E1))*100;
+printf("\nPercentage change in speed from no load to full load=%fpercent",percentload)
+
+
+ \ No newline at end of file
diff --git a/431/CH2/EX2.30/resultEX2_30.txt b/431/CH2/EX2.30/resultEX2_30.txt
new file mode 100755
index 000000000..d72bbe992
--- /dev/null
+++ b/431/CH2/EX2.30/resultEX2_30.txt
@@ -0,0 +1,5 @@
+
+ Example 2.30
+iron,friction and windage in losses=1195.500000W
+Efficiency of full load=84.262500percent
+Percentage change in speed from no load to full load=5.646173percent \ No newline at end of file
diff --git a/431/CH2/EX2.31/EX2_31.sce b/431/CH2/EX2.31/EX2_31.sce
new file mode 100755
index 000000000..2476765cb
--- /dev/null
+++ b/431/CH2/EX2.31/EX2_31.sce
@@ -0,0 +1,20 @@
+//Calculate the efficiency of machine
+//Chapter 2
+//Example 2.31
+//page 148
+clear;
+clc;
+disp("Example 2.31")
+Ra=0.5;.................//armature resistance in ohms
+Rf=750;...............//field circuit resistance in ohms
+V=500;.......................//voltage in volts
+If=V/Rf;..........................//current in amperes
+l=3;..........................//line current in amperes
+i=2.33;..........................//current in motor in amperes
+I=0.67;.........................//current i amperes
+L=(V*l)-(((i)^2)*Ra)-(V*I);.........................//Iron,friction and windage losses
+O=20;...............................//generator
+OP=(O*1000)/V;................//output current of the generator under loaded condition in amperes
+Ia=I+OP;............//output in amperes
+Effi=(O*1000*100)/((O*1000)+(((Ia)^2)*Ra)+(V*I)+L);
+printf("efficiency of the machine=%fpercent",Effi) \ No newline at end of file
diff --git a/431/CH2/EX2.31/resultEX2_31.txt b/431/CH2/EX2.31/resultEX2_31.txt
new file mode 100755
index 000000000..679384337
--- /dev/null
+++ b/431/CH2/EX2.31/resultEX2_31.txt
@@ -0,0 +1,2 @@
+Example 2.31
+efficiency of the machine=89.588435percent \ No newline at end of file
diff --git a/431/CH2/EX2.32/EX2_32.sce b/431/CH2/EX2.32/EX2_32.sce
new file mode 100755
index 000000000..cc0af2921
--- /dev/null
+++ b/431/CH2/EX2.32/EX2_32.sce
@@ -0,0 +1,24 @@
+//Calculate the appox. efficiency of each machine
+//Chapter 2
+//Example 2.32
+//page 149
+clear;
+clc;
+disp("Example 2.32")
+Ig=25;...............//current of generator in amperes
+I=30;...................//current in motor in amperes
+Il=I-Ig;..............//current in amperes
+Ra=0.25;................//resistance in ohms
+Gl=((Ig)^2)*Ra;................//loss in generator in watt
+M=((I)^2)*Ra;....................//loss in motor in watt
+T=Gl+M;...................//total loss in watt
+V=100;.............//voltage in volts
+P=V*Il;...............//power supplied from mains in watt
+L=P-T;..................//iron,friction and windages losses in the two machines in ohms
+l=L/2;...................//iron,friction and windages losses in each machines in ohms
+IP=I*V;....................//input
+Eff=((IP-M-l)/IP)*100;
+printf("Efficiency of the motor=%fpercent",Eff)
+OP=Ig*V;.................//output
+Effi=((OP)/(OP+Gl+l))*100;
+printf("\nEfficiency of the generator=%fpercent",Effi) \ No newline at end of file
diff --git a/431/CH2/EX2.32/resultEX2_32.txt b/431/CH2/EX2.32/resultEX2_32.txt
new file mode 100755
index 000000000..8b3812787
--- /dev/null
+++ b/431/CH2/EX2.32/resultEX2_32.txt
@@ -0,0 +1,4 @@
+
+ Example 2.32
+Efficiency of the motor=90.520833percent
+Efficiency of the generator=92.059839percent \ No newline at end of file
diff --git a/431/CH2/EX2.33/EX2_33.sce b/431/CH2/EX2.33/EX2_33.sce
new file mode 100755
index 000000000..78fe39b37
--- /dev/null
+++ b/431/CH2/EX2.33/EX2_33.sce
@@ -0,0 +1,14 @@
+//Calculate the appox. efficiency of each machine
+//Chapter 2
+//Example 2.33
+//page 150
+clear;
+clc;
+disp("Example 2.33")
+V=440;....................//voltage in volts
+P=200*1000;...............//power in watt
+Ig=P/V;..............//rated current of each machine in amperes
+//assume losses to be equal
+I=90;..............//addition currnet supply
+Effi=sqrt(Ig/(Ig+I))*100;
+printf("approximate efficiency=%fpercent",Effi) \ No newline at end of file
diff --git a/431/CH2/EX2.33/resultEX2_33.txt b/431/CH2/EX2.33/resultEX2_33.txt
new file mode 100755
index 000000000..3c8b38e64
--- /dev/null
+++ b/431/CH2/EX2.33/resultEX2_33.txt
@@ -0,0 +1,3 @@
+
+ Example 2.33
+approximate efficiency=91.363261percent \ No newline at end of file
diff --git a/431/CH2/EX2.34/EX2_34.sce b/431/CH2/EX2.34/EX2_34.sce
new file mode 100755
index 000000000..25f05a486
--- /dev/null
+++ b/431/CH2/EX2.34/EX2_34.sce
@@ -0,0 +1,29 @@
+//Calculate the efficiences of the generator at full load
+//Chapter 2
+//Example 2.34
+//page 150
+clear;
+clc;
+disp("Example 2.34")
+Ig=2000;.............................//output current of generator in amperes
+I=380;...............................//Input current from supply mains in amperes
+Effi=sqrt(Ig/(Ig+I))*100;..................//Efficiency of generator assuming equal efficiencies of the two machines
+printf("Efficiences of the generator at full load assuming equal efficiencies=%fpercent",Effi)
+S=22;............................//Shunt field current of generator
+G=Ig+S;........................//Armature current of generator in amperes
+R=0.01;...............................//Resistance of the armature circuit of each machine in ohms
+Gc=((G)^2)*R;..........................//copper loss in arrmature circuit of generator in W
+V=500;................................//Voltage in volts
+L=V*S;..............................//loss in the field circuit of the generator in W
+T=Ig+I;............................//total current suuply in amperes
+Sf=17;........................................//shunt field current of motor in amperes
+A=T-Sf;..............................//armature current in motor in amperes
+Lc=((A)^2)*R;........................//loss in armature circuit of motor in amperes
+Lf=V*Sf;.................................//loss in the shunt field circuit of motor in W
+Tin=V*I;......................//total input to motor and generator in W
+Ml=Tin-(Gc+L+Lc+Lf);.....................//iron,friction and windage loss in both machines in W
+Me=Ml/2;...................................//iron,friction and windage loss in each machine in W
+p=1000;.....................//power in kW
+OP=(Ig*V)/p;........................//full load output of the generator
+Eff=(p*100)/(p+((Gc+L+Me)/1000));
+printf("\nEfficiency of the generator at full load=%fpercent",Eff) \ No newline at end of file
diff --git a/431/CH2/EX2.34/resultEX2_34.txt b/431/CH2/EX2.34/resultEX2_34.txt
new file mode 100755
index 000000000..1ae7ef6bc
--- /dev/null
+++ b/431/CH2/EX2.34/resultEX2_34.txt
@@ -0,0 +1,3 @@
+ Example 2.34
+Efficiences of the generator at full load assuming equal efficiencies=91.669850percent
+Efficiency of the generator at full load=91.846461percent \ No newline at end of file
diff --git a/431/CH2/EX2.4/EX2_4.sce b/431/CH2/EX2.4/EX2_4.sce
new file mode 100755
index 000000000..e84617383
--- /dev/null
+++ b/431/CH2/EX2.4/EX2_4.sce
@@ -0,0 +1,18 @@
+//Calculating average induced emf
+//Chapter 2
+//Example 2.4
+//page 92
+clear;
+clc;
+disp("example 2.4")
+P=2 //number of poles
+Z=400 //number of conducters
+n=300 //speed in rpm
+E=200 //voltage of generator
+A=2 //number of parallel paths
+N=1200 //number of turns in each field coil
+phi=(E*60*A)/(Z*n*P) //flux at the end of 0.15sec
+t=0.15 //time
+printf("magnitude of flux at the end of 15sec is %f wb",phi)
+e=N*(phi/t)
+printf("\ninduced emf in the field coil= %d volts",e)
diff --git a/431/CH2/EX2.4/resultEX2_4.txt b/431/CH2/EX2.4/resultEX2_4.txt
new file mode 100755
index 000000000..c4e1b96b1
--- /dev/null
+++ b/431/CH2/EX2.4/resultEX2_4.txt
@@ -0,0 +1,3 @@
+example 2.4
+magnitude of flux at the end of 15sec is 0.100000 wb
+induced emf in the field coil= 800 volts \ No newline at end of file
diff --git a/431/CH2/EX2.5/EX3_5.sce b/431/CH2/EX2.5/EX3_5.sce
new file mode 100755
index 000000000..a7598d500
--- /dev/null
+++ b/431/CH2/EX2.5/EX3_5.sce
@@ -0,0 +1,19 @@
+//Calculating the current and power factor of the primary circuit
+//Chapter 3
+//Example 3.5
+//page 206
+clear;
+clc;
+disp("Example 3.5")
+I2=300;........................//Secondary current in amperes
+N1=1200; //number of primary turns
+N2=300; //number of secondary turns
+I0=2.5; //load current in amperes
+I1=(I2*N2)/N1;
+phi0=acosd(0.2);
+phi2=acosd(0.8);
+I1c=(I1*cosd(phi2))+(I0*cosd(phi0));
+I1s=(I1*sind(phi2))+(I0*sind(phi0));
+I=sqrt(I1c^2+I1s^2);
+phi=atand(I1s/I1c)
+printf("primary power factor=%fdegrees",cosd(phi)); \ No newline at end of file
diff --git a/431/CH2/EX2.5/resultEX3_5.txt b/431/CH2/EX2.5/resultEX3_5.txt
new file mode 100755
index 000000000..421d58957
--- /dev/null
+++ b/431/CH2/EX2.5/resultEX3_5.txt
@@ -0,0 +1,2 @@
+ Example 3.5
+primary power factor=0.786863degrees \ No newline at end of file
diff --git a/431/CH2/EX2.6/EX2_6.sce b/431/CH2/EX2.6/EX2_6.sce
new file mode 100755
index 000000000..26993d5db
--- /dev/null
+++ b/431/CH2/EX2.6/EX2_6.sce
@@ -0,0 +1,14 @@
+//Calculating emf generated onopen circuit condition
+//Chapter 2
+//Example 2.6
+//page 93
+clear;
+clc;
+disp("example 2.5")
+P=8 //number of poles
+A=8 //number of parallel paths in the armature
+Z=960 //number of conductors
+N=400 //speed in rpm
+phi=0.04 //flux per pole
+E=(phi*Z*N*P)/(60*A) //emf generated onopen circuit condition
+printf("emf generated on open circuit condition, E=%d volts",E) \ No newline at end of file
diff --git a/431/CH2/EX2.6/resultEX2_6.txt b/431/CH2/EX2.6/resultEX2_6.txt
new file mode 100755
index 000000000..d729cb5d4
--- /dev/null
+++ b/431/CH2/EX2.6/resultEX2_6.txt
@@ -0,0 +1,2 @@
+example 2.5
+emf generated on open circuit condition, E=256 volts \ No newline at end of file
diff --git a/431/CH2/EX2.7/EX2_7.sce b/431/CH2/EX2.7/EX2_7.sce
new file mode 100755
index 000000000..7eaef8fd0
--- /dev/null
+++ b/431/CH2/EX2.7/EX2_7.sce
@@ -0,0 +1,15 @@
+//calculate induced emf
+//Chapter 2
+//Example 2.7
+//page 97
+clear;
+clc;
+disp("example 2.7")
+disp("flux is constant")
+
+E=180;...............//induced emf at 500rpm
+N=500;.................//speed in rpm
+K1=(E/N)
+printf("K1=%f",K1)
+E1=(K1*600) //induced emf at 600rpm
+printf("\n induced emf at 600rpm is=%d V",E1) \ No newline at end of file
diff --git a/431/CH2/EX2.7/resultEX2_7.txt b/431/CH2/EX2.7/resultEX2_7.txt
new file mode 100755
index 000000000..9f7f62e72
--- /dev/null
+++ b/431/CH2/EX2.7/resultEX2_7.txt
@@ -0,0 +1,6 @@
+
+ example 2.7
+
+ flux is constant
+K1=0.360000
+ induced emf at 600rpm is=216 V \ No newline at end of file
diff --git a/431/CH2/EX2.8/EX2_8.sce b/431/CH2/EX2.8/EX2_8.sce
new file mode 100755
index 000000000..423564beb
--- /dev/null
+++ b/431/CH2/EX2.8/EX2_8.sce
@@ -0,0 +1,20 @@
+//calculating the speed and percentage increase in flux
+//Chapter 2
+//Example 2.8
+//page 97
+clear;
+clc;
+disp("example 2.8")
+disp("assuming constant flux")
+E1=220; //induced emf at N1 speed in volts
+N1=750; // speed
+K1=(E1/N1)
+E2=250; //induced emf at speed N2
+N2=E2/K1
+printf("speed at induced emf of 250V =%d rpm",N2)
+disp("when induced emf is 250V and speed 700 rpm")
+E3=250; //induced emf at N3 speed
+N3=700; //speed
+ratio=(E3*N1)/(E1*N3)
+Pi=(ratio-1)*100
+printf("percentage increase in flux is %f percent",Pi) \ No newline at end of file
diff --git a/431/CH2/EX2.8/resultEX2_8.txt b/431/CH2/EX2.8/resultEX2_8.txt
new file mode 100755
index 000000000..57c9d7b65
--- /dev/null
+++ b/431/CH2/EX2.8/resultEX2_8.txt
@@ -0,0 +1,7 @@
+
+ example 2.8
+
+ assuming constant flux
+speed at induced emf of 250V =852 rpm
+ when induced emf is 250V and speed 700 rpm
+percentage increase in flux is 21.753247 percent \ No newline at end of file
diff --git a/431/CH2/EX2.9/EX2_9.sce b/431/CH2/EX2.9/EX2_9.sce
new file mode 100755
index 000000000..9dbabe53b
--- /dev/null
+++ b/431/CH2/EX2.9/EX2_9.sce
@@ -0,0 +1,14 @@
+//Calculating electromagnetic torque
+//Chapter 2
+//Example 2.9
+//page 98
+clear;
+clc;
+disp("example 2.9")
+E=200 //emf induced
+I=15 //armature current
+n=1200 //speed in rpm
+omega=(2*3.14*n)/60;
+printf("omega=%f \n",omega)
+T=(E*I)/omega;
+printf("electromagnetic torque=%f Nm",T) \ No newline at end of file
diff --git a/431/CH2/EX2.9/resultEX2_9.txt b/431/CH2/EX2.9/resultEX2_9.txt
new file mode 100755
index 000000000..03afa462f
--- /dev/null
+++ b/431/CH2/EX2.9/resultEX2_9.txt
@@ -0,0 +1,3 @@
+ example 2.9
+omega=125.600000
+electromagnetic torque=23.885350 Nm \ No newline at end of file