diff options
Diffstat (limited to '401/CH14')
-rwxr-xr-x | 401/CH14/EX14.1/Example14_1.sce | 23 | ||||
-rwxr-xr-x | 401/CH14/EX14.2/Example14_2.sce | 25 | ||||
-rwxr-xr-x | 401/CH14/EX14.3/Example14_3.sce | 17 | ||||
-rwxr-xr-x | 401/CH14/EX14.4/Example14_4.sce | 23 | ||||
-rwxr-xr-x | 401/CH14/EX14.5/Example14_5.sce | 16 | ||||
-rwxr-xr-x | 401/CH14/EX14.6/Example14_6.sce | 17 | ||||
-rwxr-xr-x | 401/CH14/EX14.7/Example14_7.sce | 26 | ||||
-rwxr-xr-x | 401/CH14/EX14.8/Example14_8.sce | 20 |
8 files changed, 167 insertions, 0 deletions
diff --git a/401/CH14/EX14.1/Example14_1.sce b/401/CH14/EX14.1/Example14_1.sce new file mode 100755 index 000000000..b0a1e376f --- /dev/null +++ b/401/CH14/EX14.1/Example14_1.sce @@ -0,0 +1,23 @@ +//Example 14.1
+//Program to determine the attenuation per kilometer for the fiber
+//and estimate the accuracy of the result
+
+clear;
+clc ;
+close ;
+
+//Given data
+L1=2*10^3; //metres - INITIAL LENGTH
+L2=2; //metres - FINAL LENGTH
+V1=2.1; //volts - INITIAL OUTPUT VOLTAGE
+V2=10.7; //volts - FINAL OUTPUT VOLTAGE
+
+//Attenuation per Kilometer
+alpha_dB=10/(L1-L2)*log10(V2/V1);
+
+//Uncertainity in measured attenuation
+Uncertainity=0.2/(L1-L2);
+
+//Displaying the Results in Command Window
+printf("\n\n\t Attenuation is %0.1f dB/km.",alpha_dB*10^3);
+printf("\n\n\t Uncertainity in measured attenuation is +-%0.1f dB.",Uncertainity*10^3);
\ No newline at end of file diff --git a/401/CH14/EX14.2/Example14_2.sce b/401/CH14/EX14.2/Example14_2.sce new file mode 100755 index 000000000..485bd8fe0 --- /dev/null +++ b/401/CH14/EX14.2/Example14_2.sce @@ -0,0 +1,25 @@ +//Example 14.2
+//Program to determine the absorption loss for the fiber under test
+
+clear;
+clc ;
+close ;
+
+//Given data
+t1=10; //s - INITIAL TIME
+t2=100; //s - FINAL TIME
+Tinf_minus_Tt1=0.525;//From Figure 14.6
+Tinf_minus_Tt2=0.021;//From Figure 14.6
+C=1.64*10^4; //J/degree C - THERMAL CAPACITY PER KILOMETER
+Tinf=4.3*10^(-4); //degree C - MAXIMUM THERMAL TEMPERATURE RISE
+Popt=98*10^(-3); //Watt - OPTICAL POWER
+
+//Time constant for the calorimeter
+tc=(t2-t1)/(log(Tinf_minus_Tt1)-log(Tinf_minus_Tt2));
+
+//Absorption loss of the test fiber
+alpha_abs=C*Tinf/(Popt*tc);
+
+//Displaying the Results in Command Window
+printf("\n\n\t Time constant for the calorimeter is %0.1f s.",tc);
+printf("\n\n\t Absorption loss of the test fiber is %0.1f dB/km.",alpha_abs);
\ No newline at end of file diff --git a/401/CH14/EX14.3/Example14_3.sce b/401/CH14/EX14.3/Example14_3.sce new file mode 100755 index 000000000..8d16525bb --- /dev/null +++ b/401/CH14/EX14.3/Example14_3.sce @@ -0,0 +1,17 @@ +//Example 14.3
+//Program to determine the loss due to scattering for the fiber
+
+clear;
+clc ;
+close ;
+
+//Given data
+Vsc=6.14*10^(-9); //V - OPTICAL OUTPUT POWER
+Vopt=153.38*10^(-6); //V - OPTICAL POWER WITHOUT SCATTERING
+l=2.92; //cm - LENGTH OF THE FIBER
+
+//Loss due to scattering for the fiber
+alpha_sc=4.343*10^5/l*Vsc/Vopt;
+
+//Displaying the Result in Command Window
+printf("\n\n\t Loss due to scattering for the fiber is %0.1f dB/km.",alpha_sc);
\ No newline at end of file diff --git a/401/CH14/EX14.4/Example14_4.sce b/401/CH14/EX14.4/Example14_4.sce new file mode 100755 index 000000000..38cac7c7b --- /dev/null +++ b/401/CH14/EX14.4/Example14_4.sce @@ -0,0 +1,23 @@ +//Example 14.4
+//Program to calculate:
+//(a)3 dB Pulse Broadening in ns/km
+//(b)Fiber Bandwidth-Length product
+
+clear;
+clc ;
+close ;
+
+//Given data
+tau_o=12.6; //ns - 3 dB width of Output Pulse
+tau_i=0.3; //ns - 3 dB width of Input Pulse
+L=1.2; //km - LENGTH
+
+//(a)3 dB Pulse Broadening in ns/km
+tau=sqrt(tau_o^2-tau_i^2)/L;
+
+//(b)Fiber Bandwidth-Length product
+Bopt=0.44/tau;
+
+//Displaying the Results in Command Window
+printf("\n\n\t (a)3 dB Pulse Broadening is %0.1f ns/km.",tau);
+printf("\n\n\t (b)Fiber Bandwidth-Length product is %0.1f MHz km.",Bopt*10^3);
\ No newline at end of file diff --git a/401/CH14/EX14.5/Example14_5.sce b/401/CH14/EX14.5/Example14_5.sce new file mode 100755 index 000000000..2e1552d91 --- /dev/null +++ b/401/CH14/EX14.5/Example14_5.sce @@ -0,0 +1,16 @@ +//Example 14.5
+//Program to calculate the Numerical Aperture(NA) of the fiber
+
+clear;
+clc ;
+close ;
+
+//Given data
+D=10; //cm - SCREEN POSITION
+A=6.2; //cm - OUTPUT PATTERN SIZE
+
+// Numerical Aperture(NA) of the fiber
+NA=A/sqrt(A^2+4*D^2);
+
+//Displaying The Results in Command Window
+printf("\n\n\t The Numerical Aperture(NA) of the fiber is %0.2f .",NA);
\ No newline at end of file diff --git a/401/CH14/EX14.6/Example14_6.sce b/401/CH14/EX14.6/Example14_6.sce new file mode 100755 index 000000000..65eb2a02c --- /dev/null +++ b/401/CH14/EX14.6/Example14_6.sce @@ -0,0 +1,17 @@ +//Example 14.6
+//Program to determine outer diameter of the optical fiber in micrometer
+
+clear;
+clc ;
+close ;
+
+//Given data
+l=0.1; //m - MIRROR POSITION
+d_PHI_by_dt=4; //rad/s - ANGULAR VELOCITY
+We=300*10^(-6); //us - WIDTH OF SHADOW PULSE
+
+//Outer diameter of the optical fiber
+d0=We*l*d_PHI_by_dt;
+
+//Displaying the Result in Command Window
+printf("\n\n\t The Outer diameter of the optical fiber is %1.0f um.",d0*10^6);
\ No newline at end of file diff --git a/401/CH14/EX14.7/Example14_7.sce b/401/CH14/EX14.7/Example14_7.sce new file mode 100755 index 000000000..684d249e7 --- /dev/null +++ b/401/CH14/EX14.7/Example14_7.sce @@ -0,0 +1,26 @@ +//Example 14.7
+//Program to:
+//(a) Convert optical signal powers to dBm
+//(b) Convert optical signal powers to dBu
+
+clear;
+clc ;
+close ;
+
+//(a)Convert optical signal powers to dBm
+Po=5*10^(-3); //Watt - GIVEN OPTICAL POWER
+dBm=10*log10(Po/1*10^3);
+printf("\n\n\t (a)The %1.0f mW of optical power is equivalent to %0.2f dBm.",Po/10^(-3), dBm);
+
+Po=20*10^(-6); //Watt - GIVEN OPTICAL POWER
+dBm=10*log10(Po/1*10^3);
+printf("\n\n\t The %1.0f uW of optical power is equivalent to %0.2f dBm.",Po/10^(-6), dBm);
+
+//(b)Convert optical signal powers to dBu
+Po=0.03*10^(-3); //Watt - GIVEN OPTICAL POWER
+dBm=10*log10(Po/1*10^6);
+printf("\n\n\t (b)The %0.2f mW of optical power is equivalent to %0.2f dBu.",Po/10^(-3), dBm);
+
+Po=800*10^(-9); //Watt - GIVEN OPTICAL POWER
+dBm=10*log10(Po/1*10^6);
+printf("\n\n\t The %1.0f nW of optical power is equivalent to %0.2f dBu.",Po/10^(-9), dBm);
diff --git a/401/CH14/EX14.8/Example14_8.sce b/401/CH14/EX14.8/Example14_8.sce new file mode 100755 index 000000000..0de638921 --- /dev/null +++ b/401/CH14/EX14.8/Example14_8.sce @@ -0,0 +1,20 @@ +//Example 14.8
+//Program to calculate the ratio in dB of back scattered optical
+//power to the forward optical power at the fiber input
+
+clear;
+clc ;
+close ;
+
+//Given data
+NA=0.2; //NUMERICAL APERTURE
+gamma_r=0.7*10^-3; //per m - RAYLEIGH SCATTERING COEFFICIENT
+Wo=50*10^(-9); //s - PULSE DURATION
+c=2.998*10^8; //m/s - VELOCITY OF LIGHT IN VACCUM
+n1=1.5; //CORE REFRACTIVE INDEX
+
+//Calculated Ratio Pra(0)/Pi
+Pra0_by_Pi=0.5*NA^2*gamma_r*Wo*c/(4*n1^3);
+
+//Displaying the Result in command window
+printf("\n\n\t Pra(0)/Pi = %0.1f dB.",10*log10(Pra0_by_Pi));
|