diff options
Diffstat (limited to '3862/CH8')
-rw-r--r-- | 3862/CH8/EX8.1/Ex8_1.sce | 19 | ||||
-rw-r--r-- | 3862/CH8/EX8.11/Ex8_11.sce | 26 | ||||
-rw-r--r-- | 3862/CH8/EX8.13/Ex8_13.sce | 30 | ||||
-rw-r--r-- | 3862/CH8/EX8.14/Ex8_14.sce | 37 | ||||
-rw-r--r-- | 3862/CH8/EX8.15/Ex8_15.sce | 35 | ||||
-rw-r--r-- | 3862/CH8/EX8.17/Ex8_17.sce | 13 | ||||
-rw-r--r-- | 3862/CH8/EX8.18/Ex8_18.sce | 14 | ||||
-rw-r--r-- | 3862/CH8/EX8.19/Ex8_19.sce | 26 | ||||
-rw-r--r-- | 3862/CH8/EX8.2/Ex8_2.sce | 18 | ||||
-rw-r--r-- | 3862/CH8/EX8.20/Ex8_20.sce | 25 | ||||
-rw-r--r-- | 3862/CH8/EX8.21/Ex8_21.sce | 23 | ||||
-rw-r--r-- | 3862/CH8/EX8.22/Ex8_22.sce | 21 | ||||
-rw-r--r-- | 3862/CH8/EX8.23/Ex8_23.sce | 28 | ||||
-rw-r--r-- | 3862/CH8/EX8.24/Ex8_24.sce | 32 | ||||
-rw-r--r-- | 3862/CH8/EX8.26/Ex8_26.sce | 20 | ||||
-rw-r--r-- | 3862/CH8/EX8.27/Ex8_27.sce | 21 | ||||
-rw-r--r-- | 3862/CH8/EX8.28/Ex8_28.sce | 32 | ||||
-rw-r--r-- | 3862/CH8/EX8.29/Ex8_29.sce | 22 | ||||
-rw-r--r-- | 3862/CH8/EX8.3/Ex8_3.sce | 34 | ||||
-rw-r--r-- | 3862/CH8/EX8.30/Ex8_30.sce | 10 | ||||
-rw-r--r-- | 3862/CH8/EX8.4/Ex8_4.sce | 36 | ||||
-rw-r--r-- | 3862/CH8/EX8.5/Ex8_5.sce | 22 | ||||
-rw-r--r-- | 3862/CH8/EX8.6/Ex8_6.sce | 23 |
23 files changed, 567 insertions, 0 deletions
diff --git a/3862/CH8/EX8.1/Ex8_1.sce b/3862/CH8/EX8.1/Ex8_1.sce new file mode 100644 index 000000000..b5268249f --- /dev/null +++ b/3862/CH8/EX8.1/Ex8_1.sce @@ -0,0 +1,19 @@ +clear +// + +//variable declaration + +P=(40000) //Load,N +E=(200000) //Modulus of elasticity for steel,N/mm^2 +L=500 //length of circular rod,mm +d=(16) //diameter of rod,mm + +A=(%pi*((d**2)))/4 //sectional area** mm^2 +p=P/A //stress, N/mm^2 +e=p/E //strain +delta=(P*L)/(A*E) //Elongation,mm + +printf("\n sectional area= %0.2f mm^2",A) +printf("\n stress= %0.2f N/mm^2",p) +printf("\n strain= %0.10f ",e) +printf("\n Elongation= %0.3f mm",delta) diff --git a/3862/CH8/EX8.11/Ex8_11.sce b/3862/CH8/EX8.11/Ex8_11.sce new file mode 100644 index 000000000..f97272901 --- /dev/null +++ b/3862/CH8/EX8.11/Ex8_11.sce @@ -0,0 +1,26 @@ +clear +// + +//variable declaration + +P=(200) //loading,KN +E=200*1000 +d1=40 //Young's modulus,N/mm^2 +A= %pi*(d1**2)/4 //Area of uniform portion**mm^2 +L1=1500 //length of uniform portion,mm +d2=60 //diameter of tapered section,mm +L2=500 //length of tapered section,mm +//Extensions of uniform portion and tapering portion are worked out separately and then added to get extension of the given bar. + +//Extension of uniform portion + +delta1=(P*1000*L1)/(A*E) + +printf("\n delta1= %0.3f mm",delta1) + +delta2=(P*1000*4*L2)/(E*%pi*d1*d2) + +printf("\n delta2= %0.3f mm",delta2) + +T=delta1 + delta2 +printf("\n Total extension %0.3f mm",T) diff --git a/3862/CH8/EX8.13/Ex8_13.sce b/3862/CH8/EX8.13/Ex8_13.sce new file mode 100644 index 000000000..64318da59 --- /dev/null +++ b/3862/CH8/EX8.13/Ex8_13.sce @@ -0,0 +1,30 @@ +clear +// + +//variable declaration + +P=(60) //load,KN +d=(25) //diameter,mm +A=%pi*(d**2)/4 //Area**mm^2 +L=(200) //gauge length,mm + +delta=0.12 //extension,mm +deltad=0.0045 //contraction in diameter,mm +Linearstrain=delta/L +Lateralstrain=deltad/d + +Pr=Lateralstrain/Linearstrain + +printf("\n Poissons ratio= %0.1f ",Pr) + +E=(P*1000*L)/(A*delta) + +printf("\n E= %0.2f N/mm^2",E) + +G=E/(2*(1+Pr)) //Rigidity modulus + +printf("\n G= %0.1f N/mm^2",G) + +K=E/(3*(1-(2*Pr))) //bulk modulus + +printf("\n K= %0.2f N/mm^2",K) diff --git a/3862/CH8/EX8.14/Ex8_14.sce b/3862/CH8/EX8.14/Ex8_14.sce new file mode 100644 index 000000000..2cd35001f --- /dev/null +++ b/3862/CH8/EX8.14/Ex8_14.sce @@ -0,0 +1,37 @@ +clear +// + +//variable declaration + +E=(2*100000) //Young's modulus,N/mm^2 +Pr=(0.3) //poisson's ratio + +G=E/(2*(1+Pr)) //Rigidity modulus + +K=E/(3*(1-2*(Pr))) //Bulk modulus + +printf("\n G= %0.1f N/mm^2",G) + +printf("\n K= %0.2f N/mm^2 ", K) + +P=60 //Load,kN +A=%pi*(25**2)/4 //Area**mm^2 + +Stress=P*1000/A //N/mm^2 +//Linear strain,ex + +ex=Stress/E + +//Lateralstrain,ey,ez + +ey=-1*Pr*ex +ez=-1*Pr*ex + +//volumetric strain,ev=ex+ey+ez + +ev=ex+ey+ez + +v=%pi*(25**2)*500/4 +Changeinvolume=ev*v + +printf("\n change in volume %0.2f mm^3",Changeinvolume) diff --git a/3862/CH8/EX8.15/Ex8_15.sce b/3862/CH8/EX8.15/Ex8_15.sce new file mode 100644 index 000000000..4f49987ab --- /dev/null +++ b/3862/CH8/EX8.15/Ex8_15.sce @@ -0,0 +1,35 @@ +clear +//variable declaration +// Let the x, y, z be the mutually perpendicular directions + +pr=(0.3) +PX=(15) //Loading in x-direction,KN +PY=(80) //Loading in Y-direction(compressive),KN +PZ=(180) //Loading in Z-direction,KN + +//Area in X-,Y-,Z-Direction is AX,AY,AZ respectively,mm^2 + +AX=(10*30) +AY=(10*400) +AZ=(30*400) + +//stress devoloped in X-,Y-,Z- direction as px,py,pz respectively,N/mm^2 + +px=PX*1000/AX +py=PY*1000/AY +pz=PZ*1000/AZ + +//Noting that a stress produces a strain of p/E in its own direction, the nature being same as that of stress and µ p E in lateral direction of opposite nature, and taking tensile stress as +ve, we can write expression for strains ex, ey, ez. +E=2*100000 //young's modulus,N/mm^2 + +ex=(px/E)+(pr*py/E)-(pr*pz/E) +ey=(-pr*px/E)-(py/E)-(pr*pz/E) +ez=(-pr*px/E)+(pr*py/E)+(pz/E) + +ev=ex+ey+ez //Volumetric strain + +volume=10*30*400 + +Changeinvolume=ev*volume + +printf("\n Change in volume= %0.2f mm^3",Changeinvolume) diff --git a/3862/CH8/EX8.17/Ex8_17.sce b/3862/CH8/EX8.17/Ex8_17.sce new file mode 100644 index 000000000..a444c31bc --- /dev/null +++ b/3862/CH8/EX8.17/Ex8_17.sce @@ -0,0 +1,13 @@ +clear +//variable declaration + +E=(2.1*100000) //Young’s modulus of the material,N/mm^2 +G=(0.78*100000) //modulus of rigidity,N/mm^2 + +pr=(E/(2*G))-1 + +printf("\n poissons Ratio= %0.3f ",pr) + +K=E/(3*(1-2*pr)) + +printf("\n Bulk modulus= %0.3f N/mm^2",K) diff --git a/3862/CH8/EX8.18/Ex8_18.sce b/3862/CH8/EX8.18/Ex8_18.sce new file mode 100644 index 000000000..2be3a616a --- /dev/null +++ b/3862/CH8/EX8.18/Ex8_18.sce @@ -0,0 +1,14 @@ +clear +//variable declaration + +G=(0.4*100000) //modulus of rigidity of material,N/mm^2 +K=(0.8*100000) //bulk modulus,N/mm^2 + +E=(9*G*K)/(3*K+G) + + +printf("\n Youngs modulus= %0.3f N",E) + +pr=(E/(2*G))-1 + +printf("\n Poissons Ratio %0.4f ",pr) diff --git a/3862/CH8/EX8.19/Ex8_19.sce b/3862/CH8/EX8.19/Ex8_19.sce new file mode 100644 index 000000000..506660ea3 --- /dev/null +++ b/3862/CH8/EX8.19/Ex8_19.sce @@ -0,0 +1,26 @@ +clear +//variable declaration + +L=(600) //compound bar of length,mm +P=(60) //compound bar when axial tensile force ,KN + +Aa=(40*20) //area of aluminium strip,mm^2 +As=(60*15) //area of steel strip,mm^2 + +Ea=1*100000 // elastic modulus of aluminium,N/mm^2 +Es=2*100000 // elastic modulus of steel,N/mm^2 + +//load shared by aluminium strip be Pa and that shared by steel be Ps. Then from equilibrium condition Pa+Ps=P +//From compatibility condition, deltaAL=deltaS +Pa=(P*1000)/(1+((As*Es)/(Aa*Ea))) +Ps=Pa*((As*Es)/(Aa*Ea)) + +Sias=Pa/Aa +printf("\n Stress in aluminium strip= %0.2f N/mm^2",Sias) +Siss=Ps/As +printf("\n Stress in steel strip= %0.2f N/mm^2",Siss) + +L=600 +//Extension of the compound bar +deltal=(Pa*L)/(Aa*Ea) +printf("\n Extension of the compound bar= %0.3f mm",deltal) diff --git a/3862/CH8/EX8.2/Ex8_2.sce b/3862/CH8/EX8.2/Ex8_2.sce new file mode 100644 index 000000000..5f8d1fb8a --- /dev/null +++ b/3862/CH8/EX8.2/Ex8_2.sce @@ -0,0 +1,18 @@ +clear +//variable declaration + +P=(120) // force applied during measurement,N +E=(200000) //Modulus of elasticity for steel,N/mm^2 +L=(30) //length of Surveyor’s steel tape,mm + + +A=15*0.75 //area, mm^2 +delta=((P*L*1000)/(A*E)) //Elongation,mm + +printf("\n area= %0.2f mm^2",A) +printf("\n Elongation= %0.3f mm",delta) + +printf("\n Hence, if measured length is %0.3f m.", L) +printf("\n Actual length is %0.6f m",(L+(delta/1000))) + +printf("\n Actual length of line AB= %0.3f m.",(150*(L+(delta/1000))/30)) diff --git a/3862/CH8/EX8.20/Ex8_20.sce b/3862/CH8/EX8.20/Ex8_20.sce new file mode 100644 index 000000000..8800b01b4 --- /dev/null +++ b/3862/CH8/EX8.20/Ex8_20.sce @@ -0,0 +1,25 @@ +clear +// + +//variable declaration + +Es=(2*100000) //Young's modulus of steel rod ,N/mm^2 +Ec=(1.2*100000) //Young's modulus of copper tube,N/mm^2 + +di=(25) //internal diameter,mm +de=(40) //external diameter,mm + +As=%pi*(di**2)/4 //Area of steel rod**mm^2 +Ac=%pi*((de**2)-(di**2))/4 //Area of copper tube**mm^2 +P=120 //load, KN +//From equation of equilibrium, Ps+Pc=P,where Ps is the load shared by steel rod and Pc is the load shared by the copper tube. +//From compatibility condition,deltaS=deltaC + +Pc=(P*1000)/(1+((As*Es)/(Ac*Ec))) +Ps=Pc*((As*Es)/(Ac*Ec)) + +SIC=Pc/Ac //stress in copper, N/mm^2 +SIS=Ps/As //stress in steel,N/mm^2 + +printf("\n stress in Copper= %0.2f N/mm^2",SIC) +printf("\n stress in Steel= %0.2f N/mm^2",SIS) diff --git a/3862/CH8/EX8.21/Ex8_21.sce b/3862/CH8/EX8.21/Ex8_21.sce new file mode 100644 index 000000000..5c7a1f805 --- /dev/null +++ b/3862/CH8/EX8.21/Ex8_21.sce @@ -0,0 +1,23 @@ +clear +// + +//variable declaration +//Es/Ec=18(given) +Er=(18) //young modulus ratio Er=Es/Ec +d=(16) //steel bar diameter,mm +//8 steel bars +As=8*%pi*(d**2)/4 //Area of steel bar**mm^2 +Ac=(300*500)-As //Area of concrete,mm^2 + +P=800 //Compressive force, KN +//From equation of equilibrium, Ps+Pc=P,where Ps is the load shared by steel bar and Pc is the load shared by the Concrete +//From compatibility condition,deltaS=deltaC + +Pc=(P*1000)/(1+((As*Er)/(Ac))) +Ps=Pc*((As*Er)/(Ac)) + +SIC=Pc/Ac //stress in Concrete, N/mm^2 +SIS=Ps/As //stress in steel,N/mm^2 + +printf("\n stress in Concrete= %0.2f N/mm^2",SIC) +printf("\n stress in Steel= %0.2f N/mm^2",SIS) diff --git a/3862/CH8/EX8.22/Ex8_22.sce b/3862/CH8/EX8.22/Ex8_22.sce new file mode 100644 index 000000000..9c4014752 --- /dev/null +++ b/3862/CH8/EX8.22/Ex8_22.sce @@ -0,0 +1,21 @@ +clear +//variable declaration + +Es=(2*100000) //Young's modulus of steel ,N/mm^2 +Ea=(1*100000) //Young's modulus of aluminium,N/mm^2 +Ls=240 //length of steel,mm +La=160 //length of aluminium,mm +Aa=1200 //Area of aluminium,mm^2 +As=1000 //Area of steel,mm^2 +P=250 //load, KN +//From equation of equilibrium, Ps+2Pa=P,et force shared by each aluminium pillar be Pa and that shared by steel pillar be Ps. +//From compatibility condition,deltaS=deltaC + +Pa=(P*1000)/(2+((As*Es*La)/(Aa*Ea*Ls))) +Ps=Pa*((As*Es*La)/(Aa*Ea*Ls)) + +SIA=Pa/Aa //stress in aluminium, N/mm^2 +SIS=Ps/As //stress in steel,N/mm^2 + +printf("\n stress in Aluminium= %0.2f N/mm^2",SIA) +printf("\n stress in Steel= %0.2f N/mm^2",SIS) diff --git a/3862/CH8/EX8.23/Ex8_23.sce b/3862/CH8/EX8.23/Ex8_23.sce new file mode 100644 index 000000000..2911ca612 --- /dev/null +++ b/3862/CH8/EX8.23/Ex8_23.sce @@ -0,0 +1,28 @@ +clear +// + +//variable declaration + +// Let the force shared by bolt be Ps and that by tube be Pc. Since there is no external force, static equilibrium condition gives Ps + Pc = 0 or Ps = – Pc i.e., the two forces are equal in magnitude but opposite in nature. Obviously bolt is in tension and tube is in compression. +//Let the magnitude of force be P. Due to quarter turn of the nut + +//[Note. Pitch means advancement of nut in one full turn] + +Ls=(600) //length of whole assembly,mm +Lc=(600) //length of whole assembly,mm +delta=(0.5) +ds=(20) //diameter,mm +di=(28) //internal diameter,mm +de=(40) //external diameter,mm +Es=(2*100000) //Young's modulus, N/mm^2 +Ec=(1.2*100000) +As=%pi*(ds**2)/4 //area of steel bolt**mm^2 +Ac=%pi*((de**2)-(di**2))/4 //area of copper tube**mm^2 + +P= (delta*(1/Ls))/((1/(As*Es))+(1/(Ac*Ec))) //Load,N + +ps=P/As //stress,N/mm^2 +pc=P/Ac //copper,N/mm^2 + +printf("\n ps= %0.2f N/mm^2",ps) +printf("\n pc= %0.2f N/mm^2",pc) diff --git a/3862/CH8/EX8.24/Ex8_24.sce b/3862/CH8/EX8.24/Ex8_24.sce new file mode 100644 index 000000000..16fa6bc55 --- /dev/null +++ b/3862/CH8/EX8.24/Ex8_24.sce @@ -0,0 +1,32 @@ +clear +//variable declaration +E=(2*100000) //Young's modulus,N/mm^2 +alpha=(0.000012) //expansion coeffecient,/°c +L=(12) //length,m +t=(40-18) //temperature difference,°c + +delta=alpha*t*L*1000 //free expansion of the rails,mm +// Provide a minimum gap of 3.168 mm between the rails, so that temperature stresses do not develop + +// a) If no expansion joint is provided, free expansion prevented is equal to 3.168 mm + +//delta=(P*L)/(A*E) & p=P/A where p is stress, P,A is load,area + +p1=(delta*E)/(L*1000) //stress developed , N/mm^2 + +printf("\n (a) p= %0.1f N/mm^2",p1) + +//(b) If a gap of 1.5 mm is provided, free expansion prevented delta2 = 3.168 – 1.5 = 1.668 mm. + +delta2=1.668 //mm +//delta2=(P*L)/(A*E) & p=P/A where p is stress, P,A is load,area + +p2=(delta2*E)/(L*1000) //stress developed , N/mm^2 + +printf("\n (b) p= %0.1f N/mm^2",p2) + +// If the stress developed is 20 N/mm2, then p = P/ A +p3=20 //stress developed,N/mm^2 +delta3=delta-(p3*L*1000/E) + +printf("\n (iii) delta= %0.3f mm",delta3) diff --git a/3862/CH8/EX8.26/Ex8_26.sce b/3862/CH8/EX8.26/Ex8_26.sce new file mode 100644 index 000000000..56ebcca94 --- /dev/null +++ b/3862/CH8/EX8.26/Ex8_26.sce @@ -0,0 +1,20 @@ +clear +//variable declaration + +Ea=70*1000 //Young's modulus of aluminium,N/mm^2 +Es=200*1000 //Young's modulus of steel,N/mm^2 + +alphaa=(0.000011) //expansion coefficient,/°C +alphas=(0.000012) //expansion coefficient,/°C + +Aa=600 //Area of aluminium portion,mm^2 +As=400 //Area of steel, mm^2 +La=(1.5) //length of aluminium portion,m +Ls=(3.0) //length of steel portion,m +t=18 //temperature,°C + +delta=(alphaa*t*La*1000)+(alphas*t*Ls*1000) //mm + +P=(delta)/(((La*1000)/(Aa*Ea))+((Ls*1000)/(As*Es))) + +printf("\n P= %0.1f N",P) diff --git a/3862/CH8/EX8.27/Ex8_27.sce b/3862/CH8/EX8.27/Ex8_27.sce new file mode 100644 index 000000000..a119b6d77 --- /dev/null +++ b/3862/CH8/EX8.27/Ex8_27.sce @@ -0,0 +1,21 @@ +clear +// + +//variable declaration + +d1=(25) // variation linearly in diameter from 25 mm to 50 mm +d2=(50) +L=(500) //length,mm +alpha=(0.000012) //expansion coeffecient,/°C +t=25 //rise in temperture,°C +E=2*100000 //Young's modulus,N/mm^2 + +delta=alpha*t*L + +//If P is the force developed by supports, then it can cause a contraction of 4*P*L/(%pi*d1*d2*E) + +P=(delta*%pi*d1*d2*E)/(4*L) +Am=%pi*(d1**2)/4 +Ms=P/Am + +printf("\n Corresponding maximum stress = %0.1f N/mm^2",Ms) diff --git a/3862/CH8/EX8.28/Ex8_28.sce b/3862/CH8/EX8.28/Ex8_28.sce new file mode 100644 index 000000000..c9511fb9d --- /dev/null +++ b/3862/CH8/EX8.28/Ex8_28.sce @@ -0,0 +1,32 @@ +clear +// + +//variable declaration + +Db=(20) //diameter of brass rod,mm +Dse=(40) //external diameter of steel tube,mm +Dsi=(20) //internal diameter of steel tube,mm +Es=(2*100000 ) //Young's modulus steel, N/mm^2 +Eb=(1*100000 ) //Young's modulus brass, N/mm^2 +alphas=(0.0000116) //coeffcient of expansion of steel,/°C +alphab=(0.0000187) //coeffcient of expansion of brass,/°C +t=60 //raise in temperature, °C +As=%pi*((Dse**2)-(Dsi**2))/4 //Area of steel tube** mm^2 +Ab=%pi*((Db**2))/4 //Area of brass rod**mm^2 +L=1200 //length,mm +//Since free expansion of brass is more than free expansion of steel , compressive force Pb develops in brass and tensile force Ps develops in steel to keep the final position at CC + +//Horizontal equilibrium condition gives Pb = Ps, say P. + +P=((alphab-alphas)*t*L)/((L/(As*Es))+(L/(Ab*Eb))) + +ps=P/As +pb=P/Ab + +printf("\n stress in steel= %0.2f N/mm^2",ps) +printf("\n Stress in brass= %0.2f N/mm^2",pb) + +//the pin resist the force P at the two cross- sections at junction of two bars. + +Shearstress=P/(2*Ab) +printf("\n Shear stress in pin %0.2f N/mm^2",Shearstress) diff --git a/3862/CH8/EX8.29/Ex8_29.sce b/3862/CH8/EX8.29/Ex8_29.sce new file mode 100644 index 000000000..5e832dde3 --- /dev/null +++ b/3862/CH8/EX8.29/Ex8_29.sce @@ -0,0 +1,22 @@ +clear +//variable declaration + +L=(1000) //length of the bar at normal temperature,mm +As=(50*10) //Area of steel,mm^2 +Ac=(40*5) //Area of copper,mm^2 +//Ac = Free expansion of copper is greater than free expansion of steel . To bring them to the same position, tensile force Ps acts on steel plate and compressive force Pc acts on each copper plate. +alphas=(0.000012) //Expansion of coeffcient of steel,/°C +alphac=(0.000017 ) //Expansion of coeffcient of copper,/°C +t=80 //raise by temperature, °C +Es=2*100000 //Young's modulus of steel,N/mm^2 +Ec=1*100000 //Young's modulus of copper,N/mm^2 +Pc=((alphac-alphas)*t*L)/((2*L/(As*Es)) +(L/(Ac*Ec))) +Ps=2*Pc + +pc=Pc/Ac //Stress in copper,N/mm^2 +ps=Ps/As //Stress in steel, N/mm^2 + +Changeinlength=alphas*t*L+(Ps*L/(As*Es)) + + +printf("\n Change in length= %0.2f mm",Changeinlength) diff --git a/3862/CH8/EX8.3/Ex8_3.sce b/3862/CH8/EX8.3/Ex8_3.sce new file mode 100644 index 000000000..a33b10123 --- /dev/null +++ b/3862/CH8/EX8.3/Ex8_3.sce @@ -0,0 +1,34 @@ +clear +// + +//variable declaration + +Y=(250) //Yield stress, N/mm^2 +FOS=(1.75) //Factor of safety +P=(160) //Load,KN + +p=Y/FOS + +printf("\n Therefore, permissible stress") + +printf("\n p= %0.3f N/mm^2 ",p) +printf("\n Load P= %0.3f N",P*1000) + +//p=P/A + +A=P*1000/p //area,mm^2 + +printf("\n A= %0.0f mm^2",A) + +//For hollow section of outer diameter ‘D’ and inner diameter ‘d’ A=%pi*(D^2-d^2)/4 +D=(101.6) //outer diameter,mm + +d=sqrt((D**2)-(4*A/%pi)) + +printf("\n d= %0.2f mm",d) + +t=(D-d)/2 +printf("\n t= %0.2f mm",t) + +printf("\n Hence, use of light section is recommended.") + diff --git a/3862/CH8/EX8.30/Ex8_30.sce b/3862/CH8/EX8.30/Ex8_30.sce new file mode 100644 index 000000000..23541ca6b --- /dev/null +++ b/3862/CH8/EX8.30/Ex8_30.sce @@ -0,0 +1,10 @@ +clear +//variable declaration + +p=(2) //internal pressure, N/mm^2 +t=12 //thickness of thin cylinder,mm +D=(1000) //internal diameter,mm + +f=(p*D)/(2*t) //Hoop stress,N/mm^2 + +printf("\n Hoop stress f= %0.2f N/mm^2",f) diff --git a/3862/CH8/EX8.4/Ex8_4.sce b/3862/CH8/EX8.4/Ex8_4.sce new file mode 100644 index 000000000..7b85cefc2 --- /dev/null +++ b/3862/CH8/EX8.4/Ex8_4.sce @@ -0,0 +1,36 @@ +clear +// + +//variable declaration + +d=(20) //Diameter ,mm +Loadatelasticlimit=(102) //Load at elastic limit,KN +P=80 //Load for extension of o.25mm , KN +delta=(0.25) //extension in specimen of steel,mm +L=200 //gauge length of specimen of steel,mm +Finalextension=(56) //total extension at fracture,mm + + +A=(%pi*(d**2))/4 //Area**mm^2 +printf("\n Area= %0.2f mm^2",A) + +Stressatelasticlimit=Loadatelasticlimit*1000/A //Stress at elastic limit,N/mm^2 +printf("\n Stress at elastic limit= %0.2f N/mm^2",Stressatelasticlimit) + +E=(P*1000/A)/(delta/L) //Young’s modulus ,N/mm^2 +printf("\n Youngs modulus E= %0.2f N/mm^22",E) + +Percentageelongation=Finalextension*100/L //percentage elongation,% +printf("\n Percentage elongation= %0.3f percentage",Percentageelongation ) + +Initialarea=(%pi*(d**2))/4 + +Finalarea=(%pi*(15**2))/4 // total extension at fracture is 56 mm and diameter at neck is 15 mm. +Percentagereductionina=(Initialarea-Finalarea)*100/Initialarea + +printf("\n Percentage reduction in area= %0.3f percentage",Percentagereductionina ) + +UltimateLoad=130 //Maximum Load=130,kN +UltimateTensileStress=UltimateLoad*1000/A + +printf("\n Ultimate Tensile Stress= %0.2f N/mm^2",UltimateTensileStress) diff --git a/3862/CH8/EX8.5/Ex8_5.sce b/3862/CH8/EX8.5/Ex8_5.sce new file mode 100644 index 000000000..cd677a9cc --- /dev/null +++ b/3862/CH8/EX8.5/Ex8_5.sce @@ -0,0 +1,22 @@ +clear +// + +//variable declaration + +P=(40) //Load,KN +L1=150 //length of 1st portion,mm +A1=%pi*(25**2)/4 //Area of 1st portion**mm^2 +L2=250 //length of 2nd portion,mm +A2=%pi*(20**2)/4 //Area of 2nd portion**mm^2 +L3=150 //length of 3rd portion,mm +A3=%pi*(25**2)/4 //Area of 3rd portion**mm^2 + +//E,Young's modulus ,N/mm^2 + +//Total extension= Extension of portion 1+Extension of portion 2+Extension of portion 3 + +//Extension=(P*1000*L)/(A*E) + +E=((P*1000*L1/A1)+(P*1000*L2/A2)+(P*1000*L3/A3))/0.28 + +printf("\n E= %0.2f N/mm^2",E) diff --git a/3862/CH8/EX8.6/Ex8_6.sce b/3862/CH8/EX8.6/Ex8_6.sce new file mode 100644 index 000000000..12c961f0b --- /dev/null +++ b/3862/CH8/EX8.6/Ex8_6.sce @@ -0,0 +1,23 @@ +clear +// + +//variable declaration + +P=(30) //Load,KN +L1=600 //length of 1st portion,mm +A1=40*20 //Area of 1st portion,mm^2 + +E1=200000 // material 1 Young’s modulus,N/mm^2 + +E2=100000 // material 2 Young’s modulus,N/mm^2 + + +L2=800 //length of 2nd portion,mm +A2=30*20 //Area of 2nd portion,mm^2 + +Extensionofportion1=(P*1000*L1)/(A1*E1) //mm +Extensionofportion2=(P*1000*L2)/(A2*E2) //mm + +Totalextensionofthebar= Extensionofportion1 + Extensionofportion2 + +printf("\n Total extension of the bar= %0.4f mm",Totalextensionofthebar) |