summaryrefslogtreecommitdiff
path: root/3856/CH9/EX9.5/Ex9_5.sce
diff options
context:
space:
mode:
Diffstat (limited to '3856/CH9/EX9.5/Ex9_5.sce')
-rw-r--r--3856/CH9/EX9.5/Ex9_5.sce41
1 files changed, 41 insertions, 0 deletions
diff --git a/3856/CH9/EX9.5/Ex9_5.sce b/3856/CH9/EX9.5/Ex9_5.sce
new file mode 100644
index 000000000..f2767ee81
--- /dev/null
+++ b/3856/CH9/EX9.5/Ex9_5.sce
@@ -0,0 +1,41 @@
+//Calculate the values of change in Gibbs energy and Equilibrium constant in biocchemical processes, Equilibrium constant for standard state .Also calculate the Gibbs energy change using both physical chemical standard state and biochemical standard state
+
+//Example 9.5
+
+clc;
+
+clear;
+
+R=8.314; //Gas constant in J K^-1 mol^-1
+
+T=298; //Temperature in K
+
+delG1=-21.8; //Change in Gibbs energy in standard state in kJ mol^-1
+
+K=exp((-delG1*1000)/(R*T)); //Equilibrium constant for standard state
+
+printf("Equilibrium constant for standard = %.1f*10^3",K*10^-3);
+
+delG2=delG1+39.93; //Change in Gibbs energy in biocchemical processes in kJ mol^-1
+
+printf("\n Change in Gibbs energy in biocchemical processes =%.2f kJ mol^-1 ",delG2);
+
+Kdes=exp(-(delG2*1000)/(R*T)); //Equilibrium constant in biocchemical processes
+
+printf("\n Equilibrium constant in biocchemical processes = %.1f*10^-4",Kdes*10^4);
+
+C1=4.6*10^-3; //Concentration of NAD+ ion in M
+
+C2=1.5*10^-2; //Concentration of NADH in M
+
+C3=3.0*10^-5; //Concentration of H+ ion in M
+
+PH2=0.010; //Standard pressure of H2 gas in bar
+
+DelG1=((delG1*1000)+(R*T)*(log((C1*PH2)/(C2*C3))))/1000; //Gibbs energy change for Physical Chemical standard state in kJ mol^-1
+
+printf("\n Gibbs energy change for Physical Chemical standard state = %.1f kJ mol^-1 ",DelG1);
+
+DelG2=((delG2*1000)+(R*T)*(log((C1*PH2)/(C2*C3/10^-7))))/1000; //Gibbs energy change for Biochemists's Standard state in kJ mol^-1
+
+printf("\n Gibbs energy change for Biochemists Standard state = %.1f kJ mol^-1",DelG2);