diff options
Diffstat (limited to '3822')
117 files changed, 1244 insertions, 0 deletions
diff --git a/3822/CH1/EX1.1/Ex1_1.jpg b/3822/CH1/EX1.1/Ex1_1.jpg Binary files differnew file mode 100644 index 000000000..bef3442e5 --- /dev/null +++ b/3822/CH1/EX1.1/Ex1_1.jpg diff --git a/3822/CH1/EX1.1/Ex1_1.sce b/3822/CH1/EX1.1/Ex1_1.sce new file mode 100644 index 000000000..00b7b3888 --- /dev/null +++ b/3822/CH1/EX1.1/Ex1_1.sce @@ -0,0 +1,23 @@ + +//Optoelectronics and Fiber Optics Communication by C.R. Sarkar and D.C. Sarkar
+//Example 1.1
+//OS = Windows 7
+//Scilab version 5.5.2
+
+clc;
+clear;
+
+//given
+n1=1.500;//refractive index of core
+n2=1.450;//refractive index of cladding
+thetac=asind(n2/n1);//critical angle for core-cladding(in degrees)
+phim=90-thetac;//corresponding angle of obliqueness(in degrees)
+mprintf("\n Critical Angle for the core-cladding surface is =%.2f degrees ",thetac);
+mprintf("\n Corresponding Angle of Obliquences is= %.2f degrees",phim);
+Alpham=asind((n1/n2)* sind(phim));//acceptance angle
+mprintf("\n Acceptance Angle is =%.2f ",Alpham);
+NA=(((n1+n2)*(n1-n2))^0.5);//numerical aperture of the fiber
+mprintf("\n Numerical Aperture is =%.2f ",NA);
+p=((NA)^2 )*100;//percentage of light collected
+mprintf("\n Percentage of Light Collected is =%.2f percent",p);
+//the answers vary due to rounding
diff --git a/3822/CH1/EX1.2/Ex1_2.jpg b/3822/CH1/EX1.2/Ex1_2.jpg Binary files differnew file mode 100644 index 000000000..105e7ac74 --- /dev/null +++ b/3822/CH1/EX1.2/Ex1_2.jpg diff --git a/3822/CH1/EX1.2/Ex1_2.sce b/3822/CH1/EX1.2/Ex1_2.sce new file mode 100644 index 000000000..5316b907c --- /dev/null +++ b/3822/CH1/EX1.2/Ex1_2.sce @@ -0,0 +1,18 @@ + +//Optoelectronics and Fiber Optics Communication by C.R. Sarkar and D.C. Sarkar
+//Example 1.2
+//OS = Windows 7
+//Scilab version 5.5.2
+
+clc;
+clear;
+
+//given
+NA=0.3;//numerical aperture of the optical fiber
+na=1;//refractive index of air
+Alpham=(asind(NA));//acceptance angle for the meridional rays
+gamma0=45;//in degrees
+Alphasm=(asind(NA)/cosd(gamma0));//acceptance angle for skew rays
+mprintf("\n Acceptance angle for the meridional rays is= %.2f degrees",Alpham);
+mprintf("\n Acceptance angle for the skew rays is = %.2f degrees",Alphasm);
+//The answer vary due to rounding
diff --git a/3822/CH1/EX1.3/Ex1_3.jpg b/3822/CH1/EX1.3/Ex1_3.jpg Binary files differnew file mode 100644 index 000000000..3ec22cd0d --- /dev/null +++ b/3822/CH1/EX1.3/Ex1_3.jpg diff --git a/3822/CH1/EX1.3/Ex1_3.sce b/3822/CH1/EX1.3/Ex1_3.sce new file mode 100644 index 000000000..43510acb9 --- /dev/null +++ b/3822/CH1/EX1.3/Ex1_3.sce @@ -0,0 +1,20 @@ + +//Optoelectronics and Fiber Optics Communication by C.R. Sarkar and D.C. Sarkar
+//Example 1.3
+//OS = Windows 7
+//Scilab version 5.5.2
+
+clc;
+clear;
+
+//given
+n1=1.46;//refractive index of the core of W-step index fiber
+delta=0.02;//relative refractive index between the core and the cladding
+n2=n1-(delta*n1);//refractive index of the cladding
+NA=(((n1+n2)*(n1-n2))^0.5);//numerical aperture of the fiber
+thetac=asind(n2/n1);//critical angle at the core cladding interface
+phi=%pi*(NA^2);//solid acceptance angle in air for the fiber
+mprintf("\n Numerical Aperture is %.2f",NA);
+mprintf("\n Critical angle at the core-cladding interface is =%.2fdegrees",thetac);
+mprintf("\n Solid acceptance angle in air for the fiber is =%.2fradians",phi);
+//the answer vary due to rounding
diff --git a/3822/CH11/EX11.1/Ex11_1.jpg b/3822/CH11/EX11.1/Ex11_1.jpg Binary files differnew file mode 100644 index 000000000..b7fbb8b96 --- /dev/null +++ b/3822/CH11/EX11.1/Ex11_1.jpg diff --git a/3822/CH11/EX11.1/Ex11_1.sce b/3822/CH11/EX11.1/Ex11_1.sce new file mode 100644 index 000000000..f668ca8ca --- /dev/null +++ b/3822/CH11/EX11.1/Ex11_1.sce @@ -0,0 +1,19 @@ + +//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 11.1
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+L=1.25e3;//length of the link in m
+delta_lamda=45;//change in wavelength in nanometers
+lamda=850;//perating wavelength of fibre in nanometer
+C=3e8;//velocity of light in m/s
+M=0.023;//value of material dispersion parameter
+
+u=L/C;
+v=delta_lamda/lamda;
+delta_t_mat=u*v*0.023;//dispersion delay when length is 1.25 km
+mprintf("The dispersion delay when length is 1.25 km=%.2f ns",delta_t_mat*1e9);
diff --git a/3822/CH11/EX11.2/Ex11_2.jpg b/3822/CH11/EX11.2/Ex11_2.jpg Binary files differnew file mode 100644 index 000000000..bc151cb4d --- /dev/null +++ b/3822/CH11/EX11.2/Ex11_2.jpg diff --git a/3822/CH11/EX11.2/Ex11_2.sce b/3822/CH11/EX11.2/Ex11_2.sce new file mode 100644 index 000000000..e0d4b582b --- /dev/null +++ b/3822/CH11/EX11.2/Ex11_2.sce @@ -0,0 +1,20 @@ + +//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 11.1
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+L=1.25e3;//length of the link in m
+delta_lamda=45;//change in wavelength in nanometers
+lamda=850;//perating wavelength of fibre in nanometer
+C=3e8;//velocity of light in m/s
+M=0.023;//value of material dispersion parameter
+BR=1e7//bitate in bps
+TB=1/BR//bit period in s
+v=delta_lamda/lamda;
+Lmax=0.35*TB*C/(M*v)//The material dispersion limited transmission distance
+
+mprintf("The material dispersion limited transmission distance=%.2f Km",Lmax/1e3);
diff --git a/3822/CH11/EX11.3/Ex11_3.jpg b/3822/CH11/EX11.3/Ex11_3.jpg Binary files differnew file mode 100644 index 000000000..555e59777 --- /dev/null +++ b/3822/CH11/EX11.3/Ex11_3.jpg diff --git a/3822/CH11/EX11.3/Ex11_3.sce b/3822/CH11/EX11.3/Ex11_3.sce new file mode 100644 index 000000000..dbdbe0ee9 --- /dev/null +++ b/3822/CH11/EX11.3/Ex11_3.sce @@ -0,0 +1,20 @@ + +//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 11.3
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+n1=1.45//refractive index of core
+delta=0.01;//relative refractive index difference
+Br=50e6;//data rate in bps
+C=3e8// velocity of light in m/s
+//for step index fibre
+Lmaxs1=0.35*C/(delta*n1*Br);//modal dispersion limited transmission distance in meter for step index fiber
+mprintf("\n The modal dispersion limited transmission distance for step index fiber is=%.2f m",Lmaxs1);
+//for graded index fibre
+
+Lmaxc1=1.4*C*n1/(delta*n1*Br);;//modal dispersion limited transmission distance in meter for graded index fiber
+mprintf("\n The modal dispersion limited transmission distance for graded index fiber is=%.2f m",Lmaxc1);
diff --git a/3822/CH11/EX11.4/Ex11_4.jpg b/3822/CH11/EX11.4/Ex11_4.jpg Binary files differnew file mode 100644 index 000000000..ca9999452 --- /dev/null +++ b/3822/CH11/EX11.4/Ex11_4.jpg diff --git a/3822/CH11/EX11.4/Ex11_4.sce b/3822/CH11/EX11.4/Ex11_4.sce new file mode 100644 index 000000000..9fa7e203a --- /dev/null +++ b/3822/CH11/EX11.4/Ex11_4.sce @@ -0,0 +1,23 @@ + +//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 11.4
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+
+BR=[0.5e6 10e6 100e6 1000e6]//data rate in bps
+
+for i=1:4
+Lmax1(i)=6.757e10/BR(i)//Material dispersion limited distance in m
+Lmax2(i)=4.2e10./BR(i)//modal limited distance in m
+Lmax3(i)=(55-20*log10(BR(i)))//attenuation limited distance in m
+end
+BR=[0 1 2 3]
+plot((BR)/1e6,Lmax1/1e4,'--')
+plot((BR)/1e6,Lmax2/1e4)
+//plot(log10(BR),(10^(Lmax3)/1e6)'-.-.')
+xtitle( 'Link Length Versus Data Rate', 'Data Rate (Mb/s)', 'Link Length(Km)', boxed = %t );
+hl=legend(['Lmax1';'Lmax2']);
diff --git a/3822/CH11/EX11.5/Ex11_5.jpg b/3822/CH11/EX11.5/Ex11_5.jpg Binary files differnew file mode 100644 index 000000000..a909c5907 --- /dev/null +++ b/3822/CH11/EX11.5/Ex11_5.jpg diff --git a/3822/CH11/EX11.5/Ex11_5.sce b/3822/CH11/EX11.5/Ex11_5.sce new file mode 100644 index 000000000..1c27852de --- /dev/null +++ b/3822/CH11/EX11.5/Ex11_5.sce @@ -0,0 +1,27 @@ + +//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 11.5
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+n1=1.45//refractive index of core
+delta=0.01;//relative refractive index difference
+Br=100e6;//data rate in bps
+C=3e8// velocity of light in m/s
+delta_ts=8e-9//silica fiber link rise time in s
+lambda=830e-9//wavelength in m
+delta_lambda=40e-9//spectral width in m
+delta_tr=10e-9//rise time in 10ns
+M=0.024//silica fiber parameter
+L=2.5e3//length of link in m
+delta_tmodal=3.5e-9*L/1e3//intermodal dispersion delay in s
+delta_tmat=(-L/C)*(delta_lambda/lambda)*(M)//material dispersion in s
+delta_tsys=1.1*sqrt(delta_ts^2+delta_tr^2+delta_tmat^2+delta_tmodal^2)//system delay in s
+BT=0.7/delta_tsys//Max bit rate for RZformat
+mprintf("\n Max bit rate for RZ format is=%.2fx10^6 bps",BT/1e6);//division by1e6 to convert the unit from bps to *10^6
+BT=0.35/delta_tsys//Max bit rate for NRZformat
+mprintf("\n Max bit rate for NRZ format is=%.2fx10^6 bps",BT/1e6);
+// the answer differ because of roundoff
diff --git a/3822/CH2/EX2.1/Ex2_1.jpg b/3822/CH2/EX2.1/Ex2_1.jpg Binary files differnew file mode 100644 index 000000000..c82f2a7f0 --- /dev/null +++ b/3822/CH2/EX2.1/Ex2_1.jpg diff --git a/3822/CH2/EX2.1/Ex2_1.sce b/3822/CH2/EX2.1/Ex2_1.sce new file mode 100644 index 000000000..7480a2ff8 --- /dev/null +++ b/3822/CH2/EX2.1/Ex2_1.sce @@ -0,0 +1,23 @@ + +//Optoelectronics and Fiber Optics Communication by C.R. Sarkar and D.C. Sarkar
+//Example 2.1
+//OS = Windows 7
+//Scilab version 5.5.2
+
+clc;
+clear;
+
+//given
+lamda=85*10^-8;//wavelength of multimode fiber m
+d=70e-6;//core diameter of the multimode fiber in m
+n1=1.46;//refractive index of the fiber
+delta=0.015;//relative refractive index difference
+a=d/2;//radius=d/2 of core in m
+n2=n1-(delta*n1);//refractive index of cladding
+c=2*%pi*a/lamda;//constant part of the V-Number formula
+V=c*((n1^2-n2^2))^0.5;// V-number
+M=V^2/2;//total number of guided modes in the stepindex fiber
+mprintf("\n Refractive Index of the cladding is=%.2f ",n2);
+mprintf("\n Normalized frequency V-number of the fiber is =%.2f ",V);
+mprintf("\n Total number of guided modes in the fiber is= %.0f ",M);
+//The answers vary due to rounding
diff --git a/3822/CH2/EX2.2/Ex2_2.sce b/3822/CH2/EX2.2/Ex2_2.sce new file mode 100644 index 000000000..16be51b40 --- /dev/null +++ b/3822/CH2/EX2.2/Ex2_2.sce @@ -0,0 +1,24 @@ + +//Optoelectronics and Fiber Optics Communication by C.R. Sarkar and D.C. Sarkar
+//Example 2.2
+//OS = Windows 7
+//Scilab version 5.5.2
+
+clc;
+clear;
+
+//given
+n1=1.48;//core refractive index of a step-index fiber
+delta=0.015;//relative index difference between the core and cladding
+lamda=85*10^-8;//wavelength of the fiber in m
+V=2.405;//value of V-number for single mode
+c=(2*delta)^0.5;//constant value
+a=(V*lamda)/(2*%pi*n1*c);//value of radius of core diameter in m
+d=2*a;//diameter of core diameter in m
+mprintf("\n Core diameter of the step index fiber is =%.2f um ",d*1e6);
+delta1=0.0015;//relative index difference between the core and the cladding
+c1=(2*delta1)^0.5;//constant value
+a1=(V*lamda)/(2*%pi*n1*c1);//value of radius of core diameter in m
+d1=2*a1;//diameter of core diameter in m
+mprintf("\n Core diameter of the step index fiber is= %.2f um ",d1*1e6);//multiplication by 1e6 to convert the unit from m to um
+//the answer vary due to rounding
diff --git a/3822/CH2/EX2.3/Ex2_3.jpg b/3822/CH2/EX2.3/Ex2_3.jpg Binary files differnew file mode 100644 index 000000000..c457dd98d --- /dev/null +++ b/3822/CH2/EX2.3/Ex2_3.jpg diff --git a/3822/CH2/EX2.3/Ex2_3.sce b/3822/CH2/EX2.3/Ex2_3.sce new file mode 100644 index 000000000..29afd54e4 --- /dev/null +++ b/3822/CH2/EX2.3/Ex2_3.sce @@ -0,0 +1,19 @@ + +//Optoelectronics and Fiber Optics Communication by C.R. Sarkar and D.C. Sarkar
+//Example 2.3
+//OS = Windows 7
+//Scilab version 5.5.2
+
+clc;
+clear;
+
+//given
+n1=1.6;//core and cladding refractive index of first fiber
+n2=1.44;//core and cladding refractive index of second fiber
+lamda=0.8;//wavelength of the electromagnetic wave in um
+c=(2*%pi)/lamda;//constant value propagation constant
+betamax=c*n1;//maximum value of maximum value of beta
+betamin=c*n2;//minimum value of minimum value of beta
+mprintf("\n Maximum value of Beta is= %.2f rad/um ",betamax);
+mprintf("\n Minimum value of Beta is= %.2f rad/um",betamin);
+//The answer vary due to rounding
diff --git a/3822/CH2/EX2.4/Ex2_4.jpg b/3822/CH2/EX2.4/Ex2_4.jpg Binary files differnew file mode 100644 index 000000000..617b36bad --- /dev/null +++ b/3822/CH2/EX2.4/Ex2_4.jpg diff --git a/3822/CH2/EX2.4/Ex2_4.sce b/3822/CH2/EX2.4/Ex2_4.sce new file mode 100644 index 000000000..223adb135 --- /dev/null +++ b/3822/CH2/EX2.4/Ex2_4.sce @@ -0,0 +1,19 @@ + +//Optoelectronics and Fiber Optics Communication by C.R. Sarkar and D.C. Sarkar
+//Example 2.4
+//OS = Windows 7
+//Scilab version 5.5.2
+
+clc;
+clear;
+
+//given
+a=5*10^-6;//radius in m
+Vc=2.405;//cut off value of V-parameter for single mode
+n1=1.46;//refractive index of the core
+delta=0.0025;//refractive index difference between the core and cladding
+c1=(2*delta)^0.5;//constant value
+c2=(2*%pi*a)/Vc;//constant value
+lamdac=c2*n1*c1;//cut off wavelength in m
+mprintf("\n Cut-off Wavelength is = %.2f um ",lamdac*1e6);//multiplication by 1e6 to convert the unit from m to um
+//The answer vary due to rounding
diff --git a/3822/CH2/EX2.5/Ex2_5.jpg b/3822/CH2/EX2.5/Ex2_5.jpg Binary files differnew file mode 100644 index 000000000..cacc7066c --- /dev/null +++ b/3822/CH2/EX2.5/Ex2_5.jpg diff --git a/3822/CH2/EX2.5/Ex2_5.sce b/3822/CH2/EX2.5/Ex2_5.sce new file mode 100644 index 000000000..bdf310075 --- /dev/null +++ b/3822/CH2/EX2.5/Ex2_5.sce @@ -0,0 +1,22 @@ + +//Optoelectronics and Fiber Optics Communication by C.R. Sarkar and D.C. Sarkar
+//Example 2.5
+//OS = Windows 7
+//Scilab version 5.5.2
+
+clc;
+clear;
+
+//given
+a=30*10^-6;//radius in m
+n1=1.50;//refractive index of the core
+n2=1.49;//refractive index of the cladding
+lamda=0.85e-6//operating wavelength in m
+V=((2*%pi*a/lamda))*sqrt(n1^2-n2^2)//V number
+M=(1/2)*V^2//no. of guided modes in fiber
+mprintf("\n No. of Guided modes is = %.0f ",M);
+PcladbyP=(4/3)*M^-0.5//power in cladding to total power
+PcorebyP=1-PcladbyP//power in core to total power
+PcorebyPclad=PcorebyP/PcladbyP//power in core to power in cladding
+mprintf("\n ratio of power in core to power in cladding is = %.0f ",PcorebyPclad);
+//The answer vary due to rounding
diff --git a/3822/CH3/EX3.1/Ex3_1.jpg b/3822/CH3/EX3.1/Ex3_1.jpg Binary files differnew file mode 100644 index 000000000..d3250f781 --- /dev/null +++ b/3822/CH3/EX3.1/Ex3_1.jpg diff --git a/3822/CH3/EX3.1/Ex3_1.sce b/3822/CH3/EX3.1/Ex3_1.sce new file mode 100644 index 000000000..b34db6048 --- /dev/null +++ b/3822/CH3/EX3.1/Ex3_1.sce @@ -0,0 +1,27 @@ + +//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 3.1
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+Pin=100;//average optical power in microwatts
+Pout=2.5;//average output power in microwatts
+L=10;//length of fiber in Km
+L1=11//Length of fiber in Km
+Ls=0.8//attenuation per splice in dB
+ns=3//no of splices
+u=1/L;
+v=log10(Pin/Pout);
+alphadB=u*10*v;//total attenuation per Km
+TA=alphadB*L;
+mprintf("\n Total Attenuation=%.2f dB",TA);
+TA11=alphadB*L1;//total attenuation for 11 Km
+mprintf("\n Total Attenuation for 11 Km=%.2f dB",TA11);
+OA=TA11+ns*Ls;//overall attenuation in the link
+mprintf("\n The overall attenuation in the link=%.2f dB",OA);
+PinbyPout=10^(OA/10);//the value of Pin/Pout for 11Km line with splices
+mprintf("\n The value of Pin/Pout for 11Km line with splices=%.2f",PinbyPout);
+//the answer vary due to rounding
diff --git a/3822/CH3/EX3.2/Ex3_2.jpg b/3822/CH3/EX3.2/Ex3_2.jpg Binary files differnew file mode 100644 index 000000000..416f58f6c --- /dev/null +++ b/3822/CH3/EX3.2/Ex3_2.jpg diff --git a/3822/CH3/EX3.2/Ex3_2.sce b/3822/CH3/EX3.2/Ex3_2.sce new file mode 100644 index 000000000..473dec64f --- /dev/null +++ b/3822/CH3/EX3.2/Ex3_2.sce @@ -0,0 +1,24 @@ + +//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 3.2
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+n1=1.46;//refractive inde for the silica
+p=0.286;//photo elastic coefficient for the silica
+Bc=7e-11;//isothermal compressibility in m^2/N
+lambda=1e-6;//wavelength in meters
+KB=1.38e-23;//Boltzman constant in J/K
+TF=1400//fictive temperature in K
+u=8*(%pi^3)*KB*Bc*TF*p^2;// partial product
+v=(n1)^8;//partial product
+z=(lambda)^4;//partial product
+taur=[(u*v)/(z*3)];//Rayleigh scattering coefficient in per Km
+mprintf("\n Rayleigh scattering coefficient=%.3f*10^-4 per meter",taur*10^4);//multiplication by 1e4 to convert the unit to !0^-4 per Km
+LKM=exp(-taur*1e3);//transmission loss factor of fiber per m
+AdB=10*log10(1/LKM);//Attenuation in dB
+mprintf("\n Attenuation in dB=%.2fdB per Km",AdB);
+//the answer vary due to rounding
diff --git a/3822/CH3/EX3.3/Ex3_3.jpg b/3822/CH3/EX3.3/Ex3_3.jpg Binary files differnew file mode 100644 index 000000000..3c2507fd6 --- /dev/null +++ b/3822/CH3/EX3.3/Ex3_3.jpg diff --git a/3822/CH3/EX3.3/Ex3_3.sce b/3822/CH3/EX3.3/Ex3_3.sce new file mode 100644 index 000000000..c444e5271 --- /dev/null +++ b/3822/CH3/EX3.3/Ex3_3.sce @@ -0,0 +1,22 @@ + + + +//Optoelectronics and Fiber Optics Communication by C.R. Sarkar and D.C. Sarkar
+//Example 3.3
+//OS = Windows 7
+//Scilab version 5.5.2
+
+clc;
+clear;
+
+//given
+
+lamda=1.3;//wavelength in mm
+d=6;//diameter of the fiber in um
+alphadb=0.5//attenuation in dB
+deltatau=0.6;//laser source bandwidth in GHz
+Pb=(4.4*10^-3)*(d*d)*(lamda*lamda)*(alphadb)*(deltatau);//threshold optical power level for Brillouin scattering in watts
+Pr=(5.9*10^-2)*(d*d)*(lamda)*(alphadb);//threshold optical power level for Raman Scattering in watts
+mprintf("\n Threshold optical power level for Brillouin scattering is =%.2f mW",Pb*1e3);//multiplication by 1e3 to convert unit from w to mW
+mprintf("\n Threshold optical power level for Raman scattering is= %.2f W",Pr);
+
diff --git a/3822/CH3/EX3.4/Ex3_4.jpg b/3822/CH3/EX3.4/Ex3_4.jpg Binary files differnew file mode 100644 index 000000000..fb190968d --- /dev/null +++ b/3822/CH3/EX3.4/Ex3_4.jpg diff --git a/3822/CH3/EX3.4/Ex3_4.sce b/3822/CH3/EX3.4/Ex3_4.sce new file mode 100644 index 000000000..eb66f500d --- /dev/null +++ b/3822/CH3/EX3.4/Ex3_4.sce @@ -0,0 +1,20 @@ + + +//Optoelectronics and Fiber Optics Communication by C.R. Sarkar and D.C. Sarkar
+//Example 3.4
+//OS = Windows 7
+//Scilab version 5.5.2
+
+clc;
+clear;
+
+//given
+a=4*10^-6;//radius in m
+n1=1.5;//core refractive index
+lamda=1.55*10^-6;//operating wavelength in m
+delta=0.003;//relative refractive index difference between core and cladding
+c=(2*delta)^0.5;//constant value
+lamdac=(c*2*%pi*a*n1)/2.405;//cut off wavelength for mono mode
+Rcs=(20*lamda)/((delta)^1.5)*((2.748-((0.996)*(lamda/lamdac)))^-3);//critical radius of curvature
+mprintf("\n Critical radius of curvature is= %.2fmm",Rcs*1e3);//multiplication by 1e3 to convert unit to mm//the answer given in textbook is wrong
+
diff --git a/3822/CH3/EX3.5/Ex3_5.jpg b/3822/CH3/EX3.5/Ex3_5.jpg Binary files differnew file mode 100644 index 000000000..c3444c3e6 --- /dev/null +++ b/3822/CH3/EX3.5/Ex3_5.jpg diff --git a/3822/CH3/EX3.5/Ex3_5.sce b/3822/CH3/EX3.5/Ex3_5.sce new file mode 100644 index 000000000..d004ae7c5 --- /dev/null +++ b/3822/CH3/EX3.5/Ex3_5.sce @@ -0,0 +1,21 @@ + + + +//Optoelectronics and Fiber Optics Communication by C.R. Sarkar and D.C. Sarkar
+//Example 3.5
+//OS = Windows 7
+//Scilab version 5.5.2
+
+clc;
+clear;
+
+//given
+a=4*10^-6;//radius in m
+n1=1.5;//core refractive index
+delta=0.03;//delta
+lamda=0.80*10^-6;//wavelength in m
+c=(2*delta)^0.5;//constant value
+n2=sqrt((n1^2)-(2*delta*n1^2));
+c5=((n1^2)-(n2^2))^1.5;
+Rcs=(3*n1^2*lamda)/(4*%pi*c5);//critical radius
+mprintf("\n Critical radius is =%.2f um",Rcs*1e6);//multiplication by 1e6 to convert unit to um//the answer vary due to rounding
diff --git a/3822/CH3/EX3.6/Ex3_6.jpg b/3822/CH3/EX3.6/Ex3_6.jpg Binary files differnew file mode 100644 index 000000000..77fa6443c --- /dev/null +++ b/3822/CH3/EX3.6/Ex3_6.jpg diff --git a/3822/CH3/EX3.6/Ex3_6.sce b/3822/CH3/EX3.6/Ex3_6.sce new file mode 100644 index 000000000..414a778dc --- /dev/null +++ b/3822/CH3/EX3.6/Ex3_6.sce @@ -0,0 +1,24 @@ + + +//Optoelectronics and Fiber Optics Communication by C.R. Sarkar and D.C. Sarkar
+//Example 3.6
+//OS = Windows 7
+//Scilab version 5.5.2
+
+clc;
+clear;
+
+//given
+
+n1=1.55;//refractive index of core
+n2=1.51//refractive index of cladding
+no=1//refractive index of air
+C=3e8//velocity of light in m/s
+deltan=n1-n2;//relative refractive index
+NA=((n1+n2)*deltan)^0.5;//Numerical aperture
+alpham=asind(NA)//acceptance angle in degrees
+deltatbyZ=(n1/n2)*deltan/C//multiple time dispersionin s/m
+mprintf("Numerical Aperture is=%.2f",NA);
+mprintf("\nAcceptance angle is=%.2f degree",alpham)
+mprintf("\nMultiple time dispersion is=%.2f ns/Km",deltatbyZ*1e12)//multiplication by 1e12 to convert unit from s/m to ns/Km
+//the answer vary slightly due to rounding
diff --git a/3822/CH3/EX3.7/Ex3_7.jpg b/3822/CH3/EX3.7/Ex3_7.jpg Binary files differnew file mode 100644 index 000000000..2347d649c --- /dev/null +++ b/3822/CH3/EX3.7/Ex3_7.jpg diff --git a/3822/CH3/EX3.7/Ex3_7.sce b/3822/CH3/EX3.7/Ex3_7.sce new file mode 100644 index 000000000..60b41bf5e --- /dev/null +++ b/3822/CH3/EX3.7/Ex3_7.sce @@ -0,0 +1,20 @@ + + + +//Optoelectronics and Fiber Optics Communication by C.R. Sarkar and D.C. Sarkar
+//Example 3.7
+//OS = Windows 7
+//Scilab version 5.5.2
+
+clc;
+clear;
+
+//given
+C=3*10^8;//speed of light in m/s
+lamda=0.85*10^-6;//wavelength in m
+SW=0.003*10^-6;//spectrum width in m
+Ym=0.021;//material dispersion parameter (ps/Km.nm)
+Gamma=SW/lamda;
+taubyZ=(Gamma/C)*(Ym)//in ns/Km
+deltafZ=(C)/(4*Gamma*Ym);//Bandwidth distance product in GHz.Km
+mprintf("\n Bandwidth distance product is =%.0fGHz.Km",deltafZ/1e12);//division by 1e9 to convert unit to GHz.Km from Hz.m
diff --git a/3822/CH3/EX3.8/Ex3_8.jpg b/3822/CH3/EX3.8/Ex3_8.jpg Binary files differnew file mode 100644 index 000000000..08ec360fe --- /dev/null +++ b/3822/CH3/EX3.8/Ex3_8.jpg diff --git a/3822/CH3/EX3.8/Ex3_8.sce b/3822/CH3/EX3.8/Ex3_8.sce new file mode 100644 index 000000000..ad8badba2 --- /dev/null +++ b/3822/CH3/EX3.8/Ex3_8.sce @@ -0,0 +1,23 @@ + + +//Optoelectronics and Fiber Optics Communication by C.R. Sarkar and D.C. Sarkar
+//Example 3.8
+//OS = Windows 7
+//Scilab version 5.5.2
+
+clc;
+clear;
+
+//given
+n1=1.48;//refractive index of core
+delta=0.0022;//relative refractive index difference
+a=4.5*10^-6;//core radius
+lamda=1.3*10^-6;//wavelength in m
+cod=9*10^-3;//core diameter
+cad=125*10^-3;//cladding diameter
+C=3e8;//velocity of light in m/s
+Vd2VbbydV2=0.48//waveguide dispersion constant at V=2.14
+V=((2*%pi*a)/lamda)*n1*((2*delta)^0.5);//V-number
+n2=n1*(1-delta);
+DelGbyZdelL=(-n2*delta)*Vd2VbbydV2/(C*lamda);//waveguide dispersion in ps/Km?nm
+mprintf("waveguide dispersion =%.2f ps/Km/nm",DelGbyZdelL*1e6)//multiplication by 1e6 to convert unit ps/Km/nm
diff --git a/3822/CH3/EX3.9/Ex3_9.jpg b/3822/CH3/EX3.9/Ex3_9.jpg Binary files differnew file mode 100644 index 000000000..f55ff4dd4 --- /dev/null +++ b/3822/CH3/EX3.9/Ex3_9.jpg diff --git a/3822/CH3/EX3.9/Ex3_9.sce b/3822/CH3/EX3.9/Ex3_9.sce new file mode 100644 index 000000000..5c2497fd9 --- /dev/null +++ b/3822/CH3/EX3.9/Ex3_9.sce @@ -0,0 +1,21 @@ + + +//Optoelectronics and Fiber Optics Communication by C.R. Sarkar and D.C. Sarkar
+//Example 3.9
+//OS = Windows 7
+//Scilab version 5.5.2
+
+clc;
+clear;
+
+//given
+Gama0=0.5;//transmitted pulse width in ns
+delta_timd=0;//total intermodulation dispersion in ns
+delta_tmd=2.81;//total material dispersion in ns
+delta_twgd=0.495;//total waveguide dispersion in ns
+delta_ttotal=((delta_timd^2)+(delta_tmd^2)+(delta_twgd^2))^0.5;//Total dispersion in ns
+Gama=Gama0+delta_ttotal;// width of received pulse in ns
+Bmax=1/(5*Gama*1e-9);//bitrate in Hz
+mprintf("Total dispersion is= %.2f ns",delta_ttotal)
+mprintf("\n Width of the received pulse is= %.2f ns",Gama);
+mprintf("\n Approximate Bit rate is=%.2f MHz",Bmax/1e6);//division by 1e6 to convert unit into MHz from Hz
diff --git a/3822/CH4/EX4.1/Ex4_1.jpg b/3822/CH4/EX4.1/Ex4_1.jpg Binary files differnew file mode 100644 index 000000000..846a79597 --- /dev/null +++ b/3822/CH4/EX4.1/Ex4_1.jpg diff --git a/3822/CH4/EX4.1/Ex4_1.sce b/3822/CH4/EX4.1/Ex4_1.sce new file mode 100644 index 000000000..fd48bb46a --- /dev/null +++ b/3822/CH4/EX4.1/Ex4_1.sce @@ -0,0 +1,23 @@ + +//Optoelectronics and Fiber Optics Communication by C.R. Sarkar and D.C. Sarkar
+//Example 4.1
+//OS = Windows 7
+//Scilab version 5.5.2
+
+clc;
+clear;
+
+//given
+h=6.62*10^-34;//Plank's constant in SI units
+c=3*10^8;//speed of the light in m/s
+e=1.9*10^-19;//electric charge in columb
+I=50*10^-3;//drive current in A
+lamda=0.85*10^-6;//peak emission wavelength in m
+taur=50*10^-9;//radiative carrier life time in s
+taunr=100*10^-9;//nonradiative carrier life time in s
+Tp=(taur*taunr)/(taur+taunr);///total carrier life time in s
+etaint=Tp/taur;//equation of internal efficiency
+c1=(I*h*c)/(e*lamda);//constant value
+Pint=(etaint)*c1;//internal optical power generated in W
+mprintf("\n Total carrier life time is =%.2fns ",Tp*1e9);//multiplication by 1e9 for conversion of unit from s to ns
+mprintf("\n Optical power generated internally is= %.2f mW ",Pint*1e3);//multiplication by 1e3 for conversion of unit from W to mW//the answer vary due to rounding
diff --git a/3822/CH4/EX4.2/Ex4_2.jpg b/3822/CH4/EX4.2/Ex4_2.jpg Binary files differnew file mode 100644 index 000000000..f1ccdd18d --- /dev/null +++ b/3822/CH4/EX4.2/Ex4_2.jpg diff --git a/3822/CH4/EX4.2/Ex4_2.sce b/3822/CH4/EX4.2/Ex4_2.sce new file mode 100644 index 000000000..e86755675 --- /dev/null +++ b/3822/CH4/EX4.2/Ex4_2.sce @@ -0,0 +1,18 @@ + +//Optoelectronics and Fiber Optics Communication by C.R. Sarkar and D.C. Sarkar
+//Example 4.2
+//OS = Windows 7
+//Scilab version 5.5.2
+
+clc;
+clear;
+
+//given
+NA=0.18;//numerical aperture
+RD=30;//radiance of the source in W/Sr/cm^2
+d=50*10^-4;//core diameter in cm
+R=0.01;//Fresnel reflection coefficient
+a=d/2;//radius of the core in cm
+A=%pi*((a)^2);//emission area of the source in cm^2
+Pc=%pi*(1-R)*A*RD*((NA)^2);//optical power coupled to the fiber in W
+mprintf("\n Optical power coupled to the fiber is =%.0f uW",Pc*1e6);//multiplication by 1e6 for conversion of unit from W to uW//the answer given in textbook is wrong
diff --git a/3822/CH5/EX5.1/Ex5_1.jpg b/3822/CH5/EX5.1/Ex5_1.jpg Binary files differnew file mode 100644 index 000000000..36c48b52f --- /dev/null +++ b/3822/CH5/EX5.1/Ex5_1.jpg diff --git a/3822/CH5/EX5.1/Ex5_1.sce b/3822/CH5/EX5.1/Ex5_1.sce new file mode 100644 index 000000000..d808eae32 --- /dev/null +++ b/3822/CH5/EX5.1/Ex5_1.sce @@ -0,0 +1,20 @@ + + +//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 5.1
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+Tc=727;//temperature in celcius
+lamda=0.5*10^-6;//wavength of emitting radiation in M
+h=6.626*10^-34;//Plank's constant in SI units
+KB=1.38*10^-23;//boltzman constant in SI units
+c=3*10^8;//speed of light in m/s
+f=c/lamda;//frequency in Hz
+T=Tc+273;//temperature in kelvin
+c1=(h*f)/(KB*T);//constant value
+B21byA21Pf=1/(exp(c1)-1);//ratio of stimulated and spontaneous emission rate
+mprintf("\n Ratio between stimulated and spontaneous emission is =%.1fx10^-13",B21byA21Pf*1e13); //multiplication by 1e13 to convert the ratio to 10^-13
diff --git a/3822/CH5/EX5.2/Ex5_2.jpg b/3822/CH5/EX5.2/Ex5_2.jpg Binary files differnew file mode 100644 index 000000000..5621edd77 --- /dev/null +++ b/3822/CH5/EX5.2/Ex5_2.jpg diff --git a/3822/CH5/EX5.2/Ex5_2.sce b/3822/CH5/EX5.2/Ex5_2.sce new file mode 100644 index 000000000..6dd24e9ce --- /dev/null +++ b/3822/CH5/EX5.2/Ex5_2.sce @@ -0,0 +1,21 @@ + + +//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 5.2
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+n=3.8;//refractive index
+L=200*10^-4;//length in cm
+W=100*10^-4;//width in cm
+Beta=20*10^-3;//gain factor in A/cm^3
+alpha=10;//loss coefficient per cm
+R1=((n-1)/(n+1))^2;//reflectivity
+c1=((alpha+((1/L)*(log(1/R1)))))//constant value
+Jth=(1/Beta)*c1;//threshold current density in A/cm^2
+mprintf("\n Threshold current density is= %.2f x10^3 A/cm^2",Jth*1e-3);//multiplication by 1e-3 to convert the ratio to 10^-3
+Ith=Jth*L*W;//threshold current in A
+mprintf("\n Threshold current is =%.2f mA",Ith*1e3);//the answer vary due to rouding
diff --git a/3822/CH5/EX5.3/Ex5_3.jpg b/3822/CH5/EX5.3/Ex5_3.jpg Binary files differnew file mode 100644 index 000000000..db85d1cb7 --- /dev/null +++ b/3822/CH5/EX5.3/Ex5_3.jpg diff --git a/3822/CH5/EX5.3/Ex5_3.sce b/3822/CH5/EX5.3/Ex5_3.sce new file mode 100644 index 000000000..e871b82a0 --- /dev/null +++ b/3822/CH5/EX5.3/Ex5_3.sce @@ -0,0 +1,14 @@ + +//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 5.3
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+Br=7.21*10^-10;//injected electron density
+Pn=10^18;//majority carrier hole density in/cm^3
+Gamar=1/(Br*Pn);//minority carrier life time
+mprintf("\n Minority carrier life time is =%.2f ns ",Gamar*1e9);// the answer vary due to roundingoff
+//multiplication by 1e9 to convert the unit to nm
diff --git a/3822/CH5/EX5.4/Ex5_4.jpg b/3822/CH5/EX5.4/Ex5_4.jpg Binary files differnew file mode 100644 index 000000000..f72dafd2f --- /dev/null +++ b/3822/CH5/EX5.4/Ex5_4.jpg diff --git a/3822/CH5/EX5.4/Ex5_4.sce b/3822/CH5/EX5.4/Ex5_4.sce new file mode 100644 index 000000000..679f6485a --- /dev/null +++ b/3822/CH5/EX5.4/Ex5_4.sce @@ -0,0 +1,18 @@ + +//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 5.5
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+lamda=0.85*1e-6;//wavelength of GaAs in m
+n1=3.6;//refractive index
+L=200e-6//length of the cavity in m
+K=L*(2*n1)/lamda;//number of modes
+mprintf("\n Number of modes=%.0f ",K);//the answer vary due to rounding//multiplication by 1e6 to convert the unit to um
+u=2*n1*L;//partial product
+v=(lamda)^2;//partial product
+dellamda=v/u;//separation wavelength between the two mode in m
+mprintf("\nThe separation wavelength between the two mode=%.2f nm",dellamda*1e9);//multiplication by 1e9 to convert the unit to nm// the answer given in textbook is wrong the unit is nm but the textbook gives it as um
diff --git a/3822/CH5/EX5.5.A/Ex5_5_A.jpg b/3822/CH5/EX5.5.A/Ex5_5_A.jpg Binary files differnew file mode 100644 index 000000000..abaaeddbe --- /dev/null +++ b/3822/CH5/EX5.5.A/Ex5_5_A.jpg diff --git a/3822/CH5/EX5.5.A/Ex5_5_A.sce b/3822/CH5/EX5.5.A/Ex5_5_A.sce new file mode 100644 index 000000000..61bd16e5b --- /dev/null +++ b/3822/CH5/EX5.5.A/Ex5_5_A.sce @@ -0,0 +1,14 @@ + +//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 5.5(A)
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+etaT=0.20//total efficiency
+Eg=1.43//bandgap energy in eV
+V=2.5//applied voltage in V
+etae=etaT*Eg*100/V//external power efficiency
+mprintf("\n External power efficiency =%.2f percent ",etae);
diff --git a/3822/CH5/EX5.5/Ex5_5.jpg b/3822/CH5/EX5.5/Ex5_5.jpg Binary files differnew file mode 100644 index 000000000..dd82085a9 --- /dev/null +++ b/3822/CH5/EX5.5/Ex5_5.jpg diff --git a/3822/CH5/EX5.5/Ex5_5.sce b/3822/CH5/EX5.5/Ex5_5.sce new file mode 100644 index 000000000..bc201eb1d --- /dev/null +++ b/3822/CH5/EX5.5/Ex5_5.sce @@ -0,0 +1,14 @@ + +//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 5.5
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+etaT=0.18//total efficiency
+Eg=1.43//bandgap energy in eV
+V=2.5//applied voltage in V
+etae=etaT*Eg*100/V//external power efficiency
+mprintf("\n External power efficiency =%.0f percent ",etae);
diff --git a/3822/CH5/EX5.6/Ex5_6.jpg b/3822/CH5/EX5.6/Ex5_6.jpg Binary files differnew file mode 100644 index 000000000..b0eb1c285 --- /dev/null +++ b/3822/CH5/EX5.6/Ex5_6.jpg diff --git a/3822/CH5/EX5.6/Ex5_6.sce b/3822/CH5/EX5.6/Ex5_6.sce new file mode 100644 index 000000000..023e2df79 --- /dev/null +++ b/3822/CH5/EX5.6/Ex5_6.sce @@ -0,0 +1,25 @@ + +//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 5.6
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+T1=273+20;//first temperature for an AlGaAs injection laser diode in kelvin
+T2=273+80;//second temperature for an AlGaAs injection laser diode in kelvin
+T01=160;//first thershold temperature in kelvin
+T02=55;//second thershold temperature in kelvin;
+
+//case 1:
+Jth120C=exp(T1/T01);
+Jth180C=exp(T2/T01);
+Jth1=Jth180C/Jth120C;
+mprintf("\n The ratio of threshold current densities for AlGaAs=%.2f",Jth1);//the answer vary due to rounding
+
+//case 2:
+Jth220C=exp(T1/T02);
+Jth280C=exp(T2/T02);
+Jth2=Jth280C/Jth220C;
+mprintf("\n The ratio threshold current densities for InGaAs=%.2f",Jth2);
diff --git a/3822/CH5/EX5.7/Ex5_7.jpg b/3822/CH5/EX5.7/Ex5_7.jpg Binary files differnew file mode 100644 index 000000000..c224f45c0 --- /dev/null +++ b/3822/CH5/EX5.7/Ex5_7.jpg diff --git a/3822/CH5/EX5.7/Ex5_7.sce b/3822/CH5/EX5.7/Ex5_7.sce new file mode 100644 index 000000000..f21c2d09c --- /dev/null +++ b/3822/CH5/EX5.7/Ex5_7.sce @@ -0,0 +1,19 @@ + +//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 5.7
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+lamda=0.85*1e-6;//wavelength of GaAs in m
+n1=3.6;//refractive index
+K=1700//number of modes
+L=K*lamda/(2*n1);//length of the cavity in m
+mprintf("\n Length of cavity in the laser=%.0f um",L*1e6);//the answer vary due to rounding//multiplication by 1e6 to convert the unit to um
+u=2*n1*L;//partial product
+v=(lamda)^2;//partial product
+dellamda=v/u;//separation wavelength between the two mode in m
+mprintf("\nThe separation wavelength between the two mode=%.2f nm",dellamda*1e9);//multiplication by 1e9 to convert the unit to nm// the answer given in textbook is wrong the unit is nm but the textbook gives it as um
+
diff --git a/3822/CH6/EX6.1/Ex6_1.jpg b/3822/CH6/EX6.1/Ex6_1.jpg Binary files differnew file mode 100644 index 000000000..2da67a647 --- /dev/null +++ b/3822/CH6/EX6.1/Ex6_1.jpg diff --git a/3822/CH6/EX6.1/Ex6_1.sce b/3822/CH6/EX6.1/Ex6_1.sce new file mode 100644 index 000000000..2793b9b5a --- /dev/null +++ b/3822/CH6/EX6.1/Ex6_1.sce @@ -0,0 +1,22 @@ + +//Optoelectronics and Fiber Optics Communication by C.R. Sarkar and D.C. Sarkar
+//Example 6.1
+//OS = Windows 7
+//Scilab version 5.5.2
+
+clc;
+clear;
+
+//given
+eta=0.70;//quantum efficiency
+E=2.2*10^-19;//energy of the photons in Joule
+Ip=2*10^-6;//photocurrent in A //the value in question is different from that used in solution in question it is mA and in solution it is uA
+h=6.62*10^-34;//Planck's constant in SI units
+c=3*10^8;//speed of the light in m/s
+e=1.9*10^-19;//electric charge in coulomb
+lamda=(h*c)/E;//operating wavelength of the photodiode in m
+f=c/lamda;//frequency in Hz
+R=(eta*e)/(h*f);//Responsivity in A/W
+Po=Ip/R;//incident power in W
+mprintf("\n Operating wavelength of the photodiode is= %.2f um",lamda*1e6);//multiplication by 1e6 for conversion of unit from m to um
+mprintf("\n Incident power is =%.2f uW",Po*1e6);//multiplication by 1e6 for conversion of unit from W to uW
diff --git a/3822/CH6/EX6.10/Ex6_10.jpg b/3822/CH6/EX6.10/Ex6_10.jpg Binary files differnew file mode 100644 index 000000000..4ef918f34 --- /dev/null +++ b/3822/CH6/EX6.10/Ex6_10.jpg diff --git a/3822/CH6/EX6.10/Ex6_10.sce b/3822/CH6/EX6.10/Ex6_10.sce new file mode 100644 index 000000000..2c4e1e919 --- /dev/null +++ b/3822/CH6/EX6.10/Ex6_10.sce @@ -0,0 +1,17 @@ + +//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 6.10
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+E=1.15*(1.6e-19);//band gap energy in V
+h=6.62e-34;//plank's constant in S.I units
+c=3e8;//velocity of light in m/s
+
+
+lamda_c=(h*c)/(E);//critical wavelength in meter
+mprintf("The critical wavelength is=%.2f um",lamda_c*1e6);//multiplication by 1e6 to convert unit from m to um
+//the answer vary due to roundingoff
diff --git a/3822/CH6/EX6.11/Ex6_11.jpg b/3822/CH6/EX6.11/Ex6_11.jpg Binary files differnew file mode 100644 index 000000000..aabaa0734 --- /dev/null +++ b/3822/CH6/EX6.11/Ex6_11.jpg diff --git a/3822/CH6/EX6.11/Ex6_11.sce b/3822/CH6/EX6.11/Ex6_11.sce new file mode 100644 index 000000000..8f6afe5a4 --- /dev/null +++ b/3822/CH6/EX6.11/Ex6_11.sce @@ -0,0 +1,17 @@ + +//Optoelectronics and Fiber Optics Communication by C.R. Sarkar and D.C. Sarkar
+//Example 6.11
+//OS = Windows 7
+//Scilab version 5.5.2
+
+clc;
+clear;
+
+//given
+Pin=900*10^-3;// Input Power in W
+Voc=600*10^-3;// Open circuit voltage in V
+Isc=240*10^-3;//Short circuit current in A
+FF=0.75;//Fill factor
+Pmax=(Voc*Isc*FF);// Maximum Power in W
+eta=(Pmax/Pin);// Conversion Efficiency
+mprintf("\n Conversion Efficiency is =%.2f Percent",eta*100);//multiplication by 100 to convert into percentage
diff --git a/3822/CH6/EX6.12/Ex6_12.jpg b/3822/CH6/EX6.12/Ex6_12.jpg Binary files differnew file mode 100644 index 000000000..a4155a21d --- /dev/null +++ b/3822/CH6/EX6.12/Ex6_12.jpg diff --git a/3822/CH6/EX6.12/Ex6_12.sce b/3822/CH6/EX6.12/Ex6_12.sce new file mode 100644 index 000000000..e2adb6c22 --- /dev/null +++ b/3822/CH6/EX6.12/Ex6_12.sce @@ -0,0 +1,21 @@ + +//Optoelectronics and Fiber Optics Communication by C.R. Sarkar and D.C. Sarkar
+//Example 6.12
+//OS = Windows 7
+//Scilab version 5.5.2
+
+clc;
+clear;
+
+//given
+Area_Cell=4;// Area of each cell in cm^2
+eta=0.12;// Conversion Efficiency
+V=0.5;// Voltage generated in V
+Pt=12;// Total output Power in W
+IR=100*10^-3;// Solar Constant or Input Radiation in mW/cm^2
+Active_area_Panel=(Pt/(IR*eta));// Active area of the Panel in cm^2
+Number_Cells=(Active_area_Panel/Area_Cell);// Number of cells
+I=(eta*IR*Area_Cell/V);// Current capacity in A
+mprintf("\n Number of Cells are =%.2f",Number_Cells);
+mprintf("\n Active area of the Panel is= %.2fcm^2",Active_area_Panel);
+mprintf("\n Current capacity of each cell is =%.2fmA",I*1e3);//Multiplication by 1e3 to convert unit to mA from A
diff --git a/3822/CH6/EX6.2/Ex6_2.jpg b/3822/CH6/EX6.2/Ex6_2.jpg Binary files differnew file mode 100644 index 000000000..673f826ef --- /dev/null +++ b/3822/CH6/EX6.2/Ex6_2.jpg diff --git a/3822/CH6/EX6.2/Ex6_2.sce b/3822/CH6/EX6.2/Ex6_2.sce new file mode 100644 index 000000000..1e6d980e6 --- /dev/null +++ b/3822/CH6/EX6.2/Ex6_2.sce @@ -0,0 +1,21 @@ + +//Optoelectronics and Fiber Optics Communication by C.R. Sarkar and D.C. Sarkar
+//Example 6.2
+//OS = Windows 7
+//Scilab version 5.5.2
+
+clc;
+clear;
+
+//given
+rp=3*10^11;//number of incident photon
+re=1.5*10^11;//number of hole-pairs generated
+lamda=0.85*10^-6;//wavength in m
+h=6.62*10^-34;//Plank's constant in SI Unit
+c=3*10^8;//speed of the light in m/s
+e=1.9*10^-19;//electric charge in Coulomb
+eta=re/rp;//quantum efficiency
+c1=(e*lamda)/(h*c);//constant value
+R=eta*c1;//responsivity of the photodiode inA/W
+mprintf("\n Quantum efficiency is= %.2f",eta);
+mprintf("\n Responsivity of the photodiode is= %.2f A/W",R);
diff --git a/3822/CH6/EX6.3/Ex6_3.jpg b/3822/CH6/EX6.3/Ex6_3.jpg Binary files differnew file mode 100644 index 000000000..01ceca0e1 --- /dev/null +++ b/3822/CH6/EX6.3/Ex6_3.jpg diff --git a/3822/CH6/EX6.3/Ex6_3.sce b/3822/CH6/EX6.3/Ex6_3.sce new file mode 100644 index 000000000..06a651eb2 --- /dev/null +++ b/3822/CH6/EX6.3/Ex6_3.sce @@ -0,0 +1,22 @@ + +//Optoelectronics and Fiber Optics Communication by C.R. Sarkar and D.C. Sarkar
+//Example 6.3
+//OS = Windows 7
+//Scilab version 5.5.2
+
+clc;
+clear;
+
+//given
+eta=0.65;//quantum efficiency
+E=1.5*10^-19;//energy of the photons in V
+Ip=3*10^-6;//diode current in A
+h=6.62*10^-34;//Plank's constant in SI unit
+c=3*10^8;//speed of the light in m/s
+e=1.9*10^-19;//electric charge in coulomb
+lamda=(h*c)/E;//wavelengthof the operating diode in m
+f=c/lamda;//frequency in Hz
+R=(eta*e)/(h*f);//responsivity in A/W
+Po=Ip/R;//incident optical power in W
+mprintf("\n Operating wavelength is =%.2f um",lamda*1e6);//multiplication by 1e6 for conversion of unit from m to um
+mprintf("\n Incident optical power is =%.2f uW ",Po*1e6);//multiplication by 1e6 for conversion of unit from W to uW//the answer vary due to rounding
diff --git a/3822/CH6/EX6.4/Ex6_4.jpg b/3822/CH6/EX6.4/Ex6_4.jpg Binary files differnew file mode 100644 index 000000000..da53df490 --- /dev/null +++ b/3822/CH6/EX6.4/Ex6_4.jpg diff --git a/3822/CH6/EX6.4/Ex6_4.sce b/3822/CH6/EX6.4/Ex6_4.sce new file mode 100644 index 000000000..4a9030df9 --- /dev/null +++ b/3822/CH6/EX6.4/Ex6_4.sce @@ -0,0 +1,15 @@ + +//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 6.4
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+Eg1=1.43;//Band Gap Energy of photodetector in eV
+Eg2=[(1.43*1.6*10^-19)];//Band Gap Energy in joule
+
+lamdac=[(6.62*10^-34*3*10^8)/Eg2];//Cut-Off wave length in micrometer
+mprintf("\n cut-off wave length is=%.2fum",lamdac*10^6);//multiplication by 10^6 to convert unit into um//the error is due to roundingoff
+
diff --git a/3822/CH6/EX6.5/Ex6_5.jpg b/3822/CH6/EX6.5/Ex6_5.jpg Binary files differnew file mode 100644 index 000000000..67d49d775 --- /dev/null +++ b/3822/CH6/EX6.5/Ex6_5.jpg diff --git a/3822/CH6/EX6.5/Ex6_5.sce b/3822/CH6/EX6.5/Ex6_5.sce new file mode 100644 index 000000000..c955a07fa --- /dev/null +++ b/3822/CH6/EX6.5/Ex6_5.sce @@ -0,0 +1,24 @@ + +//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 6.5
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+//case (1):
+n1=3.5;//refractive index of layer 1
+alpha=1e5;//it is in m^-1
+d=3e-6//depth of planar layer in m
+W=1e-6//width of depletion layer in m
+//case (2):
+alpha2=1e6;//it is in 1/m
+
+Rf=[(n1-1)/(n1+1)]^2;//reflection coefficient
+//case (1):
+PW1byP1=exp(-alpha*(d))*[1-exp(-alpha*W)]*(1-Rf);//fraction of incident power absorbed
+//case (2):
+PW2byP1=[exp(-alpha2*(d))]*[1-exp(-alpha2*W)]*(1-Rf);//fraction of incident power absorbed
+mprintf("Fraction of energy absorbed for case 1 is=%0.2f percentage",PW1byP1*100);
+mprintf("\nFraction of energy absorbed for case 2 is=%0.2f percentage",PW2byP1*100);
diff --git a/3822/CH6/EX6.6/Ex6_6.jpg b/3822/CH6/EX6.6/Ex6_6.jpg Binary files differnew file mode 100644 index 000000000..c22455dc3 --- /dev/null +++ b/3822/CH6/EX6.6/Ex6_6.jpg diff --git a/3822/CH6/EX6.6/Ex6_6.sce b/3822/CH6/EX6.6/Ex6_6.sce new file mode 100644 index 000000000..e177e18bf --- /dev/null +++ b/3822/CH6/EX6.6/Ex6_6.sce @@ -0,0 +1,23 @@ + +//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 6.6
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+lamda=0.8e-6;//wave length of radiation in micrometer
+P=0.60e-6;//optical power in microwatts
+ita=0.7;//quantum efficiency of a silicon RAPD is 70%
+I=10e-6;//Output of device after avalanche gain in microampere
+e=1.6e-19;//
+h=6.62e-34;//plank's constant in S.I units
+c=3e8;//velocity of light in m/s
+
+R=[(ita*e*lamda)]/[h*c];//Responsivity in A/W
+Ip=P*R;//diode current in microampere
+M=I/Ip;//multiplication factor
+mprintf("\n Responsivity is=%.2f A/W",R);
+mprintf("\n Diode current is=%.2f uA",Ip*1e6);//multiplication by 1e6 to convert the unit from ampers to uA
+mprintf("\n Multiplication factor is=%.2f",M);
diff --git a/3822/CH6/EX6.7/Ex6_7.jpg b/3822/CH6/EX6.7/Ex6_7.jpg Binary files differnew file mode 100644 index 000000000..c04a50ef8 --- /dev/null +++ b/3822/CH6/EX6.7/Ex6_7.jpg diff --git a/3822/CH6/EX6.7/Ex6_7.sce b/3822/CH6/EX6.7/Ex6_7.sce new file mode 100644 index 000000000..c4ab4b79a --- /dev/null +++ b/3822/CH6/EX6.7/Ex6_7.sce @@ -0,0 +1,21 @@ + +//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 6.7
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+A=(100)*(50);//area in u-meter^2
+Id=10e-9;//Measured dark current in nanoampere
+eta=0.6;//Quantum efficiency is 60%
+lamda=1.2e-6;//operating wave length in micrometer
+e=1.6e-19;//charge of an electron in columb
+h=6.62e-34;//plank's constant in S.I units
+c=3e8;//velocity of light in m/s
+
+NEP=[h*c*sqrt(2*e*Id)]/(eta*e*lamda);//noise equivalent power in watts
+D=sqrt(A*10^-12)/(NEP);//Specific directivity of the device
+mprintf("\n Noise equivalent power is=%.2f *10^-14 W",NEP*10^14);//multiplication by10^-14 to change the unit 10^-14 W
+mprintf("\n Specific directivity is=%2.f *10^8m Hz^(1/2)/W",D/10^8)//multiplication by10^8 to change the unit 10^8 m Hz^(1/2)/W
diff --git a/3822/CH6/EX6.8/Ex6_8.jpg b/3822/CH6/EX6.8/Ex6_8.jpg Binary files differnew file mode 100644 index 000000000..1c65bc627 --- /dev/null +++ b/3822/CH6/EX6.8/Ex6_8.jpg diff --git a/3822/CH6/EX6.8/Ex6_8.sce b/3822/CH6/EX6.8/Ex6_8.sce new file mode 100644 index 000000000..832393bc4 --- /dev/null +++ b/3822/CH6/EX6.8/Ex6_8.sce @@ -0,0 +1,24 @@ + +//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 6.8
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+Ic=16e-3;//collector current in mA
+P=130e-6;//incident power in microwatts
+lamda=1.25e-6;//wavelength in micrometer
+h=6.62e-34;//plank's constant in S.I units
+c=3e8;//velocity of light in m/s
+
+//case 1:
+u=h*c*Ic;
+v=lamda*P*1.6e-19;
+Go=u/v;//optical gain of the photo transistor
+//case 2:
+hFE=Go/0.45;//common emitter current gain
+mprintf("\n optical gain of phototransistor Go is=%.2f",Go);
+mprintf("\n common emitter current gain hFE is=%.2f",hFE);
+//Answers are different due to roundingoff error
diff --git a/3822/CH6/EX6.9/Ex6_9.jpg b/3822/CH6/EX6.9/Ex6_9.jpg Binary files differnew file mode 100644 index 000000000..d1b82f08e --- /dev/null +++ b/3822/CH6/EX6.9/Ex6_9.jpg diff --git a/3822/CH6/EX6.9/Ex6_9.sce b/3822/CH6/EX6.9/Ex6_9.sce new file mode 100644 index 000000000..60908d7b2 --- /dev/null +++ b/3822/CH6/EX6.9/Ex6_9.sce @@ -0,0 +1,15 @@ + +//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 6.9
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+tf=8e-12;//electron transit time in second
+G=60//photoconductive gain of the device
+
+Bm=1/(2*%pi*tf*G);//the maximum 3dB bandwidth in Hz
+mprintf("The 3dB bandwidth is=%.2f MHz",Bm/1e6);//division by 1e6 to covert unit from Hz to MHz
+//The answer in textbook is wrong
diff --git a/3822/CH7/EX7.1/Ex7_1.jpg b/3822/CH7/EX7.1/Ex7_1.jpg Binary files differnew file mode 100644 index 000000000..3383bb57b --- /dev/null +++ b/3822/CH7/EX7.1/Ex7_1.jpg diff --git a/3822/CH7/EX7.1/Ex7_1.sce b/3822/CH7/EX7.1/Ex7_1.sce new file mode 100644 index 000000000..2e2552ac5 --- /dev/null +++ b/3822/CH7/EX7.1/Ex7_1.sce @@ -0,0 +1,16 @@ + +//Optoelectronics and Fiber Optics Communication by C.R. Sarkar and D.C. Sarkar
+//Example 7.1
+//OS = Windows 7
+//Scilab version 5.5.2
+
+clc;
+clear;
+
+//given
+theta=30;//value of angle of deliverence in degrees
+b=cosd(theta);// cosine value of the theta
+a=log10(b);//constant
+c=log10(1/2);//constant
+n=c/a;// refractive index
+mprintf("The value of refractive index is= %.2f",n);//the answer vary due to rounding
diff --git a/3822/CH7/EX7.2/Ex7_2.jpg b/3822/CH7/EX7.2/Ex7_2.jpg Binary files differnew file mode 100644 index 000000000..e05bb1c4e --- /dev/null +++ b/3822/CH7/EX7.2/Ex7_2.jpg diff --git a/3822/CH7/EX7.2/Ex7_2.sce b/3822/CH7/EX7.2/Ex7_2.sce new file mode 100644 index 000000000..24cc9f87c --- /dev/null +++ b/3822/CH7/EX7.2/Ex7_2.sce @@ -0,0 +1,16 @@ + +//Optoelectronics and Fiber Optics Communication by C.R. Sarkar and D.C. Sarkar
+//Example 7.2
+//OS = Windows 7
+//Scilab version 5.5.2
+
+clc;
+clear;
+
+//given
+theta=10;// value of theta in degrees
+phi=0;// value of phi in degrees
+a=log10(1/2);// value of constant
+c=log10(cosd(theta));// constant
+L=a/c;// lateral power distribution
+mprintf(" The Lateral Power Distribution is= %.2f",L);//the answer vary due to rounding
diff --git a/3822/CH7/EX7.3/Ex7_3.jpg b/3822/CH7/EX7.3/Ex7_3.jpg Binary files differnew file mode 100644 index 000000000..fa41493a4 --- /dev/null +++ b/3822/CH7/EX7.3/Ex7_3.jpg diff --git a/3822/CH7/EX7.3/Ex7_3.sce b/3822/CH7/EX7.3/Ex7_3.sce new file mode 100644 index 000000000..3a93ff6ba --- /dev/null +++ b/3822/CH7/EX7.3/Ex7_3.sce @@ -0,0 +1,19 @@ + +//Optoelectronics and Fiber Optics Communication by C.R. Sarkar and D.C. Sarkar
+//Example 7.3
+//OS = Windows 7
+//Scilab version 5.5.2
+
+clc;
+clear;
+
+//given
+Df=80*10^-6;// diameter of the fiber in m
+Ds=45*10^-6;// diameter of the source in m
+NA=0.15;// numerical aperture of the fiber
+Mmax=(Df/Ds);// maximum magnification
+eta_d=((NA)^2)*100;// coupling efficiency considering direct coupling
+eta_l=((Mmax)*(NA^2))*100;// coupling efficiency considering lens coupling
+mprintf("\nThe Maximum Magnification factor is= %.2f",Mmax);
+mprintf("\nThe coupling efficiency considering direct coupling is= %.2fpercent",eta_d);
+mprintf("\nThe coupling efficiency considering lens coupling is= %.3fpercent",eta_l);//the answer vary due to rounding
diff --git a/3822/CH8/EX8.1/Ex8_1.jpg b/3822/CH8/EX8.1/Ex8_1.jpg Binary files differnew file mode 100644 index 000000000..180cb5ca5 --- /dev/null +++ b/3822/CH8/EX8.1/Ex8_1.jpg diff --git a/3822/CH8/EX8.1/Ex8_1.sce b/3822/CH8/EX8.1/Ex8_1.sce new file mode 100644 index 000000000..8649b4b1f --- /dev/null +++ b/3822/CH8/EX8.1/Ex8_1.sce @@ -0,0 +1,38 @@ + +//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 8.1
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+eta=0.50;//quantum efficiency of optical fibre
+e=1.6e-19;//energy of electron in 1 joules
+Po=250e-9;//incident optical power in watts
+B=8e6;//bandwidth of receiver in Hz
+lamda=0.85e-6;//wavelenth in meter
+Id=4e-9;//dark current in ampere
+t=300;//temperature in kelvin
+c=3e8;// velocity in m/s
+K=1.38e-23;//bolt'zman constant in S.I units
+h=6.62e-34//planck's constant in S.I.Units
+//case 1:
+u=[eta*e*Po*lamda];
+v=[h]*[c];
+Ip=u/v;//photo current in diode in nA
+mprintf("\n Photo current in diode is=%.2f nA",Ip*1e9);
+
+//case 2:
+i1=2*e*B*(Ip+Id);
+ish=sqrt(i1);//total shot noise generated in photo diode
+mprintf("\n Total shot noise generated in photo diode is=%.2f nA",ish*1e9);
+
+//case 3:
+x=4*K*t*B;
+R=6e3;//load resistance in ohms
+i3=x/R;
+ith=sqrt(i3);//total thermal noise generated in load resistance
+mprintf("\n The total thermal noise generated in load resistance is=%.2f nA",ith*1e9);
+ //multiplication by 1e9 to convert the unit from A to nA
+
diff --git a/3822/CH8/EX8.2/Ex8_2.jpg b/3822/CH8/EX8.2/Ex8_2.jpg Binary files differnew file mode 100644 index 000000000..d6f50aef9 --- /dev/null +++ b/3822/CH8/EX8.2/Ex8_2.jpg diff --git a/3822/CH8/EX8.2/Ex8_2.sce b/3822/CH8/EX8.2/Ex8_2.sce new file mode 100644 index 000000000..52dbc2fbb --- /dev/null +++ b/3822/CH8/EX8.2/Ex8_2.sce @@ -0,0 +1,19 @@ + +//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 8.2
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+Cd=5e-12;//capacitance in Farad
+B=10e6;//Bandwidth in Hz
+
+u=2*3.14*B*Cd;
+RL=1/u;//Load resistance in ohms
+mprintf("\n The load resistance is=%.2f *10^3ohms",RL/10^3);//multiplication factor to change unit from ohms to 10^3 ohms
+v=2*3.14*RL*(10e-12);
+B1=1/v;//bandwidth when the system is connected to load resistance
+mprintf("\n Bandwidth when system is connected to load resistance is=%.2f MHz",B1/1e6);
+//multiplcation factor to change unit to MHz from Hz
diff --git a/3822/CH8/EX8.3/Ex8_3.jpg b/3822/CH8/EX8.3/Ex8_3.jpg Binary files differnew file mode 100644 index 000000000..e4d90acd3 --- /dev/null +++ b/3822/CH8/EX8.3/Ex8_3.jpg diff --git a/3822/CH8/EX8.3/Ex8_3.sce b/3822/CH8/EX8.3/Ex8_3.sce new file mode 100644 index 000000000..918305d76 --- /dev/null +++ b/3822/CH8/EX8.3/Ex8_3.sce @@ -0,0 +1,42 @@ + +//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 8.3
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+Cd=6e-12;//capacitance in farad
+Id=0;//dark current in photodiode
+B=40e6;//bandwidth in Hz
+I=2e-7;//photo current before gain in Ampere
+T=300;//temperature in kelvin
+Fn=1;
+KB=1.38*1e-23//boltzman constant in SI units
+e=1.6*10^-19//charge of an electron in columb
+//case 1:
+u=2*3.14*Cd*B;
+RL=1/u;//load resistance in ohms
+mprintf("\n Load resistance is=%.2f ohms",RL);
+
+//case 2:
+i2sh=2*(e)*B*I;// shot noise in A^2
+v=4*(KB)*T*B;
+i2th=v/RL;//thermal noise in A^2
+//if i2>i1 then
+S=I^2;
+N=i2th;
+z=S/N;
+mprintf("\n Signal to noise ratio is=%.2f",z);
+//when M=Mopt and x=0.3
+x=0.3;//lies between 0.3 to 0.5 for silicon and 0.7 to 1 for Ge
+a=4*(KB)*T;
+b=(e)*x*RL*I;
+M1=a/b;
+Mopt=M1^(1/2.3)
+S1=[(Mopt)*I]^2;//signal strength in W
+N1=[2*(e)*B*I*((Mopt)^2.3)]+[(4*(KB)*T*B)/(RL)];//noise power in W
+SbyN=S1/N1;//signal to noise ratio
+mprintf("\n Signal to noise ratio is=%.2f",SbyN);
+//the answer in book is wrong
diff --git a/3822/CH8/EX8.4/Ex8_4.jpg b/3822/CH8/EX8.4/Ex8_4.jpg Binary files differnew file mode 100644 index 000000000..605daabdd --- /dev/null +++ b/3822/CH8/EX8.4/Ex8_4.jpg diff --git a/3822/CH8/EX8.4/Ex8_4.sce b/3822/CH8/EX8.4/Ex8_4.sce new file mode 100644 index 000000000..35a74180e --- /dev/null +++ b/3822/CH8/EX8.4/Ex8_4.sce @@ -0,0 +1,34 @@ + +//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 6.4
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+R=5e6;//effective resistance in ohms
+CT=5e-12;//capacitance in Farads
+T=300;//temperature in kelvin
+Rf=1e5;//resistance in ohms
+A=400;//open loop gain
+KB=1.38e-23//boltzman constant in S.I. unit
+//case 1:
+Rtl=[(R)*(R)]/[(R)+(R)];//total effective load resistance
+u=2*3.14*Rtl*CT;
+B=1/u;//maximum bandwidth in Hz
+mprintf("The maximum bandwidt obtained equalization is=%.2f *10^4Hz",B/1e4);//multiplication factor to change unit
+
+//case 2:
+v=4*(KB)*T;
+i2th=v/Rtl;//thermal energy noise current per bandwidth in A^2/Hz
+mprintf("\nThermal energy noise current per bandwidth is=%.2f *10^-27 A^2/Hz",i2th*1e27);
+
+//case 3:
+x=2*%pi*Rf*CT;
+B=A/x;//maximum bandwidth without equalization for transimpedance
+mprintf("\nMaximum bandwidth without equalization for transimpedance is=%.2f*10^8Hz",B/1e8);
+//Assuming Rf<<Rtl then the thermal energy noise current per bandwidth is given by
+i2th=v/Rf;
+mprintf("\nFor Rf<<Rtl the thermal energy noise current per bandwidth is=%.2f *10^-25 A^2Hz",i2th*1e25);
+// the answer in book is wrong
diff --git a/3822/CH8/EX8.5/Ex8_4_1.jpg b/3822/CH8/EX8.5/Ex8_4_1.jpg Binary files differnew file mode 100644 index 000000000..d7f4618a5 --- /dev/null +++ b/3822/CH8/EX8.5/Ex8_4_1.jpg diff --git a/3822/CH8/EX8.5/Ex8_4_1.sce b/3822/CH8/EX8.5/Ex8_4_1.sce new file mode 100644 index 000000000..69cc6c6d7 --- /dev/null +++ b/3822/CH8/EX8.5/Ex8_4_1.sce @@ -0,0 +1,21 @@ + +//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 6.4
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+BER=1e-6;// a bit error
+T=400;//temperature in kelvin
+Rl=50;//load resistance in ohms
+R=0.4//responsivity in A/W
+K=1.38*1e-23//boltzman constant in SI units
+B=1e7//bandwidth in Hz
+u=4*(K)*T*B;
+is=9.56*sqrt(u/Rl);//current in Ampere
+Pmin=is/R;//minimum power required to maintain a bit error
+mprintf("The minimum power required to maintain a bit error=%.3f uW",Pmin*1e6);
+//The answer vary due to rounding
+// the question no. in book is wrong there is repeat of 8.4
diff --git a/3822/CH9/EX9.1/Ex9_1.jpg b/3822/CH9/EX9.1/Ex9_1.jpg Binary files differnew file mode 100644 index 000000000..76bf3cb2f --- /dev/null +++ b/3822/CH9/EX9.1/Ex9_1.jpg diff --git a/3822/CH9/EX9.1/Ex9_1.sce b/3822/CH9/EX9.1/Ex9_1.sce new file mode 100644 index 000000000..ae12fa6a8 --- /dev/null +++ b/3822/CH9/EX9.1/Ex9_1.sce @@ -0,0 +1,19 @@ + +//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 91
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+L1=2;//length of fiber in m
+L2=0.002;//length of fiber cutback in Km for testing
+VF=2.1;//output voltage of photodetector in volts at lambda = 0.85um
+lamda=0.85e-6//wavelength in m
+VN=10.5;//output voltage for 2m cutback fiber length at wavelength 0.85um in volts
+
+a=10/(L1-L2);
+b=log10(VN/VF);
+alphadB=a*b;//attenuation per Kilometer in dB/km at wavelength 0.85um
+mprintf("The attenuation per Kilometer at wavelength 0.85um is=%.2f dB/Km",alphadB);
diff --git a/3822/CH9/EX9.2/Ex9_2.jpg b/3822/CH9/EX9.2/Ex9_2.jpg Binary files differnew file mode 100644 index 000000000..75d8d398f --- /dev/null +++ b/3822/CH9/EX9.2/Ex9_2.jpg diff --git a/3822/CH9/EX9.2/Ex9_2.sce b/3822/CH9/EX9.2/Ex9_2.sce new file mode 100644 index 000000000..8a0691b88 --- /dev/null +++ b/3822/CH9/EX9.2/Ex9_2.sce @@ -0,0 +1,18 @@ + +//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 9.2
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+L1=1.5;//length of optical fiber in Km
+L2=0.002;//length of fiber cutback in Km
+Pn=50.1;//output power in microwatts for the full link length
+Pf=385.4;//output power in microwatts for fiber cutback
+
+a=10/(L1-L2);
+b=log10(Pf/Pn);
+alphadB=a*b;//attenuation per Kilometer in dB/km at wavelength 1.1um
+mprintf("The attenuation per Kilometer at wavelength 1.1um is=%.2f dB/Km",alphadB);
diff --git a/3822/CH9/EX9.3/Ex9_3.jpg b/3822/CH9/EX9.3/Ex9_3.jpg Binary files differnew file mode 100644 index 000000000..59a80b0b0 --- /dev/null +++ b/3822/CH9/EX9.3/Ex9_3.jpg diff --git a/3822/CH9/EX9.3/Ex9_3.sce b/3822/CH9/EX9.3/Ex9_3.sce new file mode 100644 index 000000000..1f1fd7521 --- /dev/null +++ b/3822/CH9/EX9.3/Ex9_3.sce @@ -0,0 +1,23 @@ + +//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 9.3
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+L=1.2//link length in Km
+Gama_o=12.7;//optical output pulse of 3dB width in nanoseconds
+Gama_i=0.4;//optical input pulse of 3dB width in nanosseconds
+
+q=(Gama_o)^2;
+w=(Gama_i)^2;
+e=q-w;
+u=sqrt(e);
+v=1.2;
+Gama_3dB=u/v;//3dB pulse dispersion for the fibre in ns/Km
+mprintf("\n The 3dB pulse dispersion for the fibre is=%.2f ns/Km",Gama_3dB);
+Bopt=0.44/(Gama_3dB*1e-9);//fibre bandwidth length productmultiplication by 1e-9 as gama is in nsKm
+mprintf("\n The fibre bandwidth length product is=%.2f MHzKm",Bopt/1e6); //multiplication by 1e6 to convert unit from Hz to MHz
+//the answer vary due to rounding
diff --git a/3822/CH9/EX9.4/Ex9_4.jpg b/3822/CH9/EX9.4/Ex9_4.jpg Binary files differnew file mode 100644 index 000000000..3a2ba90c9 --- /dev/null +++ b/3822/CH9/EX9.4/Ex9_4.jpg diff --git a/3822/CH9/EX9.4/Ex9_4.sce b/3822/CH9/EX9.4/Ex9_4.sce new file mode 100644 index 000000000..b15f36903 --- /dev/null +++ b/3822/CH9/EX9.4/Ex9_4.sce @@ -0,0 +1,17 @@ + +//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 9.4
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+alpham=26.1;//angular limit of far field pattern in degrees
+NA=sind(alpham);//numerical aperture
+L=16.7;//length of picture in cm
+
+AB=(L/2)/[tand(alpham)];//distance from the screen in cm
+mprintf("The numerical appertur is=%.2f ",NA);
+mprintf("\nThe distance from the screen is=%.2f cm",AB);
+//th answer vary due to rounding
diff --git a/3822/CH9/EX9.5/Ex9_5.jpg b/3822/CH9/EX9.5/Ex9_5.jpg Binary files differnew file mode 100644 index 000000000..95a73ef83 --- /dev/null +++ b/3822/CH9/EX9.5/Ex9_5.jpg diff --git a/3822/CH9/EX9.5/Ex9_5.sce b/3822/CH9/EX9.5/Ex9_5.sce new file mode 100644 index 000000000..44dca193c --- /dev/null +++ b/3822/CH9/EX9.5/Ex9_5.sce @@ -0,0 +1,17 @@ + +//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 9.5
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+A=6.0;//measured output pattern size in cm
+D=10.0;//distance between the screen and fibre face in cm
+
+q=(A)^2;
+w=4*D^2;
+u=sqrt(q+w);
+NA=A/u;//numerical aperture
+mprintf("The numerical aperture is=%.2f",NA);
diff --git a/3822/CH9/EX9.6/Ex9_4_1.jpg b/3822/CH9/EX9.6/Ex9_4_1.jpg Binary files differnew file mode 100644 index 000000000..626bb1336 --- /dev/null +++ b/3822/CH9/EX9.6/Ex9_4_1.jpg diff --git a/3822/CH9/EX9.6/Ex9_4_1.sce b/3822/CH9/EX9.6/Ex9_4_1.sce new file mode 100644 index 000000000..acb6feacc --- /dev/null +++ b/3822/CH9/EX9.6/Ex9_4_1.sce @@ -0,0 +1,16 @@ + +//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 9.6
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+dphibydt=4;//angula velocity of roatng mirror in rad/sec
+L=0.1;//distance between mirror and the detector in meter
+We=250;//shadow pulse width in micrometer;
+
+dsbydt=L*dphibydt;
+d0=We*[dsbydt];//outer diameter of the fiber in micrometer
+mprintf("The outer diameter of the fiber is=%.2f um",d0);
diff --git a/3822/CH9/EX9.7/Ex9_5_1.jpg b/3822/CH9/EX9.7/Ex9_5_1.jpg Binary files differnew file mode 100644 index 000000000..eef31aaa8 --- /dev/null +++ b/3822/CH9/EX9.7/Ex9_5_1.jpg diff --git a/3822/CH9/EX9.7/Ex9_5_1.sce b/3822/CH9/EX9.7/Ex9_5_1.sce new file mode 100644 index 000000000..4e6359ab8 --- /dev/null +++ b/3822/CH9/EX9.7/Ex9_5_1.sce @@ -0,0 +1,22 @@ + +//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 9.7
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+P1=100;//power at the input in microwatts
+P2=83.2;//power at the output in microwatts
+P3=35.5;//power at the ouput after connector in microwatts
+L=1.8;//length of the added fibre in Km
+alpha=1.5;//fiber attenuation in dB/L;
+
+//case 1:
+Ls=-10*log10(P2/P1);//insertion loss of connector in dB
+mprintf("\n The insertion loss of connector is=%.2f dB",Ls);
+
+//case 2:
+deltaLs=-10*log10(P3/P1)-Ls-alpha*L;//excess loss of the connector
+mprintf("\n The excess loss of connector is=%.2f dB",deltaLs);
|