diff options
Diffstat (limited to '3802')
329 files changed, 4997 insertions, 0 deletions
diff --git a/3802/CH1/EX1.1/Ex1_1.jpg b/3802/CH1/EX1.1/Ex1_1.jpg Binary files differnew file mode 100644 index 000000000..4350d9f02 --- /dev/null +++ b/3802/CH1/EX1.1/Ex1_1.jpg diff --git a/3802/CH1/EX1.1/Ex1_1.sce b/3802/CH1/EX1.1/Ex1_1.sce new file mode 100644 index 000000000..6ea01ce44 --- /dev/null +++ b/3802/CH1/EX1.1/Ex1_1.sce @@ -0,0 +1,35 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex1_1.sce.
+
+clc;
+clear;
+P=200; //power rating of lamp in watts
+V=110; //voltage rating of lamp in volts
+
+//case1
+printf("\n(a)")
+I=(P/V);
+printf("\nCurrent in the lamp=%f A",I)
+
+//case2
+printf("\n(b)")
+T=1; //time in hour for electric charge flow through the lamp
+t=T*60*60; //time in seconds for electric charge flow through the lamp
+q=I*t;
+printf("\nElectric charge flowing through the lamp for one hour=%f coloumb",q)
+
+//case3
+printf("\n(c)")
+Numberofdaysinmay=31;
+time=10; //on time of lamp in hour per day
+unitcharge=1.20; //electricity charge in rupees (1kwhr = 1unit)
+t1=time*Numberofdaysinmay; //on time of lamp in hour per month
+Energyconsumed=P*t1; //consumption of energy in watt-hour
+Energyconsumedinkwhr=Energyconsumed/(1e3);//consumption of energy in kilowatt-hour
+charges=Energyconsumedinkwhr*unitcharge;
+printf("\nCharge for electricity=%f rupees",charges)
+
diff --git a/3802/CH1/EX1.10/Ex1_10.jpg b/3802/CH1/EX1.10/Ex1_10.jpg Binary files differnew file mode 100644 index 000000000..73db358b8 --- /dev/null +++ b/3802/CH1/EX1.10/Ex1_10.jpg diff --git a/3802/CH1/EX1.10/Ex1_10.sce b/3802/CH1/EX1.10/Ex1_10.sce new file mode 100644 index 000000000..49d7070a2 --- /dev/null +++ b/3802/CH1/EX1.10/Ex1_10.sce @@ -0,0 +1,75 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex1_10.sce.
+
+clc;
+clear;
+subplot(2,2,1)
+t=[0:0.001:8];
+x=length(t);
+v=ones(1,x);
+for n=1:x;
+ L=5;
+ if t(n)<=2
+ v(n)=6.25;
+ else if t(n)>=6 & t(n)<8
+ v(n)=-6.25;
+ else
+ v(n)=0;
+ end
+ end
+ end
+xlabel("Time in seconds")
+ylabel("voltage in volts")
+title("voltage waveform")
+plot(t,v)
+subplot(2,2,2)
+t=[0:0.001:8];
+x=length(t);
+p=ones(1,x);
+for n=1:x;
+ if t(n)<=2
+ v(n)=6.25;
+ i(n)=1.25;
+ p(n)=v(n)*t(n)*i(n);
+ else if t(n)>=6 & t(n)<8
+ v(n)=-6.25;
+ i(n)=10;
+ p(n)=(i(n)-(1.25*t(n)))*v(n);
+ else
+ v(n)=0;
+ i(n)=2.5;
+ p(n)=v(n)*t(n)*i(n);
+ end
+ end
+ end
+xlabel("Time in seconds")
+ylabel("power in watts")
+title("power waveform")
+plot(t,p)
+subplot(2,2,3)
+t=[0:0.001:8];
+x=length(t);
+e=ones(1,x);
+L=5;
+for n=1:x;
+ if t(n)<=2
+ i(n)=1.25;
+ e(n)=(1/2)*L*(t(n)*i(n))^2;
+ else if t(n)>=6 & t(n)<8
+ i(n)=10;
+ e(n)=(1/2)*L*(i(n)-(1.25*t(n)))^2;
+ else
+ i(n)=2.5;
+ e(n)=(1/2)*L*(i(n))^2;
+ end
+ end
+ end
+xlabel("Time in seconds")
+ylabel("Energy in joules")
+title("Energy waveform")
+plot(t,e)
+
diff --git a/3802/CH1/EX1.11/Ex1_11.jpg b/3802/CH1/EX1.11/Ex1_11.jpg Binary files differnew file mode 100644 index 000000000..6e63d80fe --- /dev/null +++ b/3802/CH1/EX1.11/Ex1_11.jpg diff --git a/3802/CH1/EX1.11/Ex1_11.sce b/3802/CH1/EX1.11/Ex1_11.sce new file mode 100644 index 000000000..46838ac0e --- /dev/null +++ b/3802/CH1/EX1.11/Ex1_11.sce @@ -0,0 +1,40 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex1_11.sce.
+clc;
+clear;
+R=10; //resistance in ohms
+L=5; //inductance in henry
+V=100; //supply voltage in volts
+t1=2; //time at which k1 switch opened in seconds
+//CASE1
+printf("\n (a)")
+i=(V*(1-exp(-((R*t1)/L))))/R;
+printf("\n The inductive current at the time k1 is opened=%1.2f A",i)
+
+//CASE2
+printf("\n (b)")
+v1=V*exp(-((R*t1))/L);
+printf("\n The voltage across the inductor at t=2second=%1.2f V",v1)
+
+//CASE3
+printf("\n (c)")
+t2=3; //time in seconds
+Imax=(V/R);
+v2=Imax*R*(exp(-((R*t2))/L));
+printf("\n The voltage across the inductor at t=3 second=%1.4f V",v2)
+//For v2 calculation ,the answer in the book is wrong
+
+//CASE4
+printf("\n (d)")
+t3=0; //initial time in seconds
+it=(-R*(-Imax)*exp(-(R*t3)/L))/L; //rate of decay of inductor current in amphere per seconds
+printf("\n The initial value of rate of decay of inductor current=%d A/s",it)
+
+//CASE5
+printf("\n (e)")
+Energy=(1/2)*L*Imax^2;
+printf("\n The energy dissipated in the resistor=%d J",Energy)
diff --git a/3802/CH1/EX1.2/Ex1_2.jpg b/3802/CH1/EX1.2/Ex1_2.jpg Binary files differnew file mode 100644 index 000000000..71f2ef76b --- /dev/null +++ b/3802/CH1/EX1.2/Ex1_2.jpg diff --git a/3802/CH1/EX1.2/Ex1_2.sce b/3802/CH1/EX1.2/Ex1_2.sce new file mode 100644 index 000000000..b5435d336 --- /dev/null +++ b/3802/CH1/EX1.2/Ex1_2.sce @@ -0,0 +1,15 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex1_2.sce.
+
+clc;
+clear;
+R25=120; //resistance of copper wire at 25 degree celsius
+T1=25; //temperature1 in degree celsius
+T2=55; //temperature in degree celsius
+alphazero=4.2e-3; //temperature coefficient
+R55=(R25*(1+(T2*alphazero)))/(1+(T1*alphazero)); //resistance of the copper wire at a temperature of 55 degree celsius
+printf("The resistance value for the resitor(copper wire)=%3.3f ohms",R55)
diff --git a/3802/CH1/EX1.3/Ex1_3.png b/3802/CH1/EX1.3/Ex1_3.png Binary files differnew file mode 100644 index 000000000..83b16d7c9 --- /dev/null +++ b/3802/CH1/EX1.3/Ex1_3.png diff --git a/3802/CH1/EX1.3/Ex1_3.sce b/3802/CH1/EX1.3/Ex1_3.sce new file mode 100644 index 000000000..c2bf5fcc1 --- /dev/null +++ b/3802/CH1/EX1.3/Ex1_3.sce @@ -0,0 +1,15 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex1_3.sce.
+
+clc;
+clear;
+V=20; //voltage rating of the battery in volts
+I=0.2; //current rating of the battery in amphere
+R=V/I; //from ohm's law
+P=(I^2)*R;
+printf("\nThe value of resistance=%d ohms",R)
+printf("\nPower rating or heat dissipated=%d watts",P)
diff --git a/3802/CH1/EX1.4/Ex1_4.jpg b/3802/CH1/EX1.4/Ex1_4.jpg Binary files differnew file mode 100644 index 000000000..8a890a898 --- /dev/null +++ b/3802/CH1/EX1.4/Ex1_4.jpg diff --git a/3802/CH1/EX1.4/Ex1_4.sce b/3802/CH1/EX1.4/Ex1_4.sce new file mode 100644 index 000000000..9d4ede65a --- /dev/null +++ b/3802/CH1/EX1.4/Ex1_4.sce @@ -0,0 +1,21 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex1_4.sce.
+
+clc;
+clear;
+R1=10; //resistance value in ohms
+R2=15; //resistance value in ohms
+R3=20; //resistance value in ohms
+V=15; //supply voltage in volts
+Rs=R1+R2+R3;
+Rp=(R1*R2*R3)/((R2*R3)+(R3*R1)+(R1*R2));
+printf("\nThe series equivalent resistance=%2.0f ohms \n",Rs)
+printf("\nThe parallel equivalent resistance=%1.3f ohms \n ",Rp)
+Ps=(V^2)/Rs;
+Pp=(V^2)/Rp;
+printf("\nPower dissipated in series connection=%1.0f watts \n",Ps)
+printf("\nPower dissipated in parallel connection=%2.2f watts \n",Pp)
diff --git a/3802/CH1/EX1.5/Ex1_5.jpg b/3802/CH1/EX1.5/Ex1_5.jpg Binary files differnew file mode 100644 index 000000000..84a7b6bce --- /dev/null +++ b/3802/CH1/EX1.5/Ex1_5.jpg diff --git a/3802/CH1/EX1.5/Ex1_5.sce b/3802/CH1/EX1.5/Ex1_5.sce new file mode 100644 index 000000000..6eb2baacc --- /dev/null +++ b/3802/CH1/EX1.5/Ex1_5.sce @@ -0,0 +1,96 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex1_5.sce.
+
+clc;
+clear;
+subplot(2,2,1)
+t=[0:0.00001:2];
+x=length(t);
+i=ones(1,x);
+for n=1:x;
+if t(n)<=1
+ i(n)=2
+else
+ i(n)=0
+end
+end
+xlabel("Time in seconds")
+ylabel("Current in amphere")
+title("current wavefrom")
+plot(t,i)
+subplot(2,2,2)
+t=[0:0.00001:2];
+x=length(t);
+v=ones(1,x);
+c=0.1;
+for n=1:x;
+ i(n)=2;
+if t(n)<=1
+ v(n)=i(n)*t(n)/c;
+else
+ v(n)=i(n)/c;
+end
+end
+xlabel("Time in seconds")
+ylabel("voltaget in volts")
+title("voltage wavefrom")
+plot(t,v)
+subplot(2,3,4)
+t=[0:0.00001:2];
+x=length(t);
+q=ones(1,x);
+c=0.1;
+for n=1:x;
+ v(n)=20;
+if t(n)<=1
+ q(n)=v(n)*t(n)*c;
+else
+ q(n)=v(n)*c;
+end
+end
+xlabel("Time in seconds")
+ylabel("capacitance in coloumbs")
+title("charge waveform")
+plot(t,q)
+subplot(2,3,5)
+t=[0:0.00001:2];
+x=length(t);
+p=ones(1,x);
+for n=1:x;
+ v(n)=20;
+if t(n)<=1
+ i(n)=2;
+ p(n)=v(n)*t(n)*i(n);
+else
+ i(n)=0;
+ p(n)=v(n)*i(n);
+end
+end
+xlabel("Time in seconds")
+ylabel("power in watts")
+title("power waveform")
+plot(t,p)
+subplot(2,3,6)
+t=[0:0.00001:2];
+x=length(t);
+e=ones(1,x);
+c=0.1;
+for n=1:x;
+ v(n)=20;
+if t(n)<=1
+ e(n)=((v(n)*t(n))^2*c)/2;
+else
+ e(n)=((v(n)^2)*c)/2;
+end
+end
+xlabel("Time in seconds")
+ylabel("Energy in joules")
+title("Energy waveform")
+plot(t,e)
+
+
+
diff --git a/3802/CH1/EX1.6/Ex1_6.sce b/3802/CH1/EX1.6/Ex1_6.sce new file mode 100644 index 000000000..b1eb7ae8c --- /dev/null +++ b/3802/CH1/EX1.6/Ex1_6.sce @@ -0,0 +1,42 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex1_6.sce.
+
+clc;
+clear;
+t=[0:0.0001:4];
+x=length(t);
+p=ones(1,x);
+for n=1:x;
+ if t(n)<=2
+ v(n)=3;
+ i(n)=10;
+ p(n)=v(n)*t(n)*i(n);
+ else if t(n)>2
+ v(n)=12;
+ i(n)=-5;
+ p(n)=(v(n)-(3*t(n)))*i(n);
+ else
+ p(n)=0;
+ end
+ end
+ end
+xlabel("Time in seconds")
+ylabel("Power in watts")
+title("Power waveform")
+plot(t,p)
+
+
+//Case(b)
+printf("\n (b)")
+area_OAB=(1/2)*max(p)*max(t)/2;
+area_BCD=(1/2)*abs(min(p))*max(t)/2;
+energy=area_OAB-area_BCD;
+avg_power=energy/max(t);
+printf("\n The average power=%1.1f W \n",avg_power)
+
+
+
diff --git a/3802/CH1/EX1.6/Ex1_6_a.jpg b/3802/CH1/EX1.6/Ex1_6_a.jpg Binary files differnew file mode 100644 index 000000000..def8ae34a --- /dev/null +++ b/3802/CH1/EX1.6/Ex1_6_a.jpg diff --git a/3802/CH1/EX1.6/Ex1_6_b.jpg b/3802/CH1/EX1.6/Ex1_6_b.jpg Binary files differnew file mode 100644 index 000000000..d402afcd7 --- /dev/null +++ b/3802/CH1/EX1.6/Ex1_6_b.jpg diff --git a/3802/CH1/EX1.7/Ex1_7.jpg b/3802/CH1/EX1.7/Ex1_7.jpg Binary files differnew file mode 100644 index 000000000..758625ca7 --- /dev/null +++ b/3802/CH1/EX1.7/Ex1_7.jpg diff --git a/3802/CH1/EX1.7/Ex1_7.sce b/3802/CH1/EX1.7/Ex1_7.sce new file mode 100644 index 000000000..fb1278418 --- /dev/null +++ b/3802/CH1/EX1.7/Ex1_7.sce @@ -0,0 +1,16 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex1_7.sce
+
+clc;
+clear;
+printf("\n From the given plots the waveform of voltage is the time integral of the current wave.So the electric device must be capacitor\n")
+
+t=2; //time in seconds
+V=100; //voltage of elecric device(capacitor) in volts
+I=5; //capacitance (electric devce) current in amphere
+C=(I*t)/V;
+printf("\n So the value of capacitance=%1.1f farads",C)
diff --git a/3802/CH1/EX1.8/Ex1_8.jpg b/3802/CH1/EX1.8/Ex1_8.jpg Binary files differnew file mode 100644 index 000000000..9950b106c --- /dev/null +++ b/3802/CH1/EX1.8/Ex1_8.jpg diff --git a/3802/CH1/EX1.8/Ex1_8.sce b/3802/CH1/EX1.8/Ex1_8.sce new file mode 100644 index 000000000..8aedf0f5d --- /dev/null +++ b/3802/CH1/EX1.8/Ex1_8.sce @@ -0,0 +1,36 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex1_8.sce.
+
+clc;
+clear;
+V=200; //suply voltage in volts
+R1=0.3e6; //resistance value in ohms
+R2=0.5e6; //resistance value in ohms
+C=10e-6; //capacitance value in farad
+t1=5; //time seconds
+t2=2.5; //time in seconds
+
+//case1
+printf("\n (a)")
+v=V*(1-exp(-(t1/(R1*C))));
+printf("\n The voltage across capacitor when k1 is opened=%3.3f V",v)
+//case2
+printf("\n (b)")
+Im=(v/R2);
+printf("\n Initial value of discharge current=%1.5f mA",Im*1e3)
+//case3
+printf("\n (c)")
+i=-Im*exp(-(t2/(R2*C)));
+printf("\n The value of discharge current at 2.5 seconds=%1.3f mA",i*1e3)
+//case4
+printf("\n (d)")
+Vc=v/(R2*C);
+printf("\n Initial rate of decay of capacitor voltage=%2.3f V/s",Vc)
+//case5
+printf("\n (e)")
+E=(1/2)*(C*v^2);
+printf("\n The energy dissipated in resistor=%1.4f J",E)
diff --git a/3802/CH1/EX1.9/Ex1_9.jpg b/3802/CH1/EX1.9/Ex1_9.jpg Binary files differnew file mode 100644 index 000000000..ff89337f4 --- /dev/null +++ b/3802/CH1/EX1.9/Ex1_9.jpg diff --git a/3802/CH1/EX1.9/Ex1_9.sce b/3802/CH1/EX1.9/Ex1_9.sce new file mode 100644 index 000000000..85d64f6a2 --- /dev/null +++ b/3802/CH1/EX1.9/Ex1_9.sce @@ -0,0 +1,22 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex1_9.sce.
+
+clc;
+clear;
+C1=100; //capacitance value in microfarad
+C2=150; //capacitance value in microfarad
+C3=200; //capacitance value in microfarad
+
+//CASE1
+printf("\n (a)")
+Cs=(C1*C2*C3)/((C2*C3)+(C1*C2)+(C3*C1));
+printf("\n The equivalent capacitance in series connection=%2.3f microfarad",Cs)
+
+//CASE2
+printf("\n (b)")
+Cp=C1+C2+C3;
+printf("\n The equivalent capacitance in parallel connection=%3.0f microfarad",Cp)
diff --git a/3802/CH10/EX10.1/Ex10_1.jpg b/3802/CH10/EX10.1/Ex10_1.jpg Binary files differnew file mode 100644 index 000000000..0c5ad6ab9 --- /dev/null +++ b/3802/CH10/EX10.1/Ex10_1.jpg diff --git a/3802/CH10/EX10.1/Ex10_1.sce b/3802/CH10/EX10.1/Ex10_1.sce new file mode 100644 index 000000000..607f85489 --- /dev/null +++ b/3802/CH10/EX10.1/Ex10_1.sce @@ -0,0 +1,26 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex10_1.sce
+
+clc;
+clear;
+f=50;
+p=4;
+
+printf("\n (a)")
+Ns=(120*f)/p;
+printf("\n Synchronous speed=%d r.p.m \n",Ns)
+
+printf("\n (b)")
+s=0.04;
+N=Ns-(s*Ns);
+printf("\n The rotor speed=%d r.p.m \n",N)
+
+printf("\n (c)")
+N=600;
+s=(Ns-N)/Ns;
+fs=s*f;
+printf("\n The rotor frequency=%d Hz",fs)
diff --git a/3802/CH10/EX10.10/Ex10_10.jpg b/3802/CH10/EX10.10/Ex10_10.jpg Binary files differnew file mode 100644 index 000000000..d328dd451 --- /dev/null +++ b/3802/CH10/EX10.10/Ex10_10.jpg diff --git a/3802/CH10/EX10.10/Ex10_10.sce b/3802/CH10/EX10.10/Ex10_10.sce new file mode 100644 index 000000000..1d9d2e551 --- /dev/null +++ b/3802/CH10/EX10.10/Ex10_10.sce @@ -0,0 +1,40 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//EX10_10.sce.
+clc;
+clear;
+sf=0.04;
+If=37.5;
+f=50;
+p=4;
+V=400;
+P_in_HP=25;
+z=2.8;
+P_in_watt=P_in_HP*735.5;
+Nf=((120*f)/p)*(1-sf);
+nf=Nf/60;
+Tf=P_in_watt/(2*%pi*nf);
+Isc_phase=V/z;
+Isc=sqrt(3)*Isc_phase;
+
+printf("\n (i) Using Direct switching")
+Ist=Isc;
+printf("\n \t The starting current=%3.2f A",Ist)
+Tst=(Isc/If)^2*sf*Tf;
+printf("\n \t The starting torque=%3.1f Nm \n",Tst)
+
+printf("\n (ii) Using Star delta connector")
+Ist=(1/3)*Isc;
+printf("\n \t The starting current=%3.2f A",Ist)
+Tst=(1/3)*(Isc/If)^2*sf*Tf;
+printf("\n \t The starting torque=%3.1f Nm \n",Tst)
+
+printf("\n (iii) Using auto transformer")
+k=0.7;
+Ist=k^2*Isc;
+printf("\n \t The starting current=%3.2f A",Ist)
+Tst=k^2*(Isc/If)^2*sf*Tf;
+printf("\n \t The starting torque=%3.1f Nm \n",Tst)
diff --git a/3802/CH10/EX10.11/Ex10_11.jpg b/3802/CH10/EX10.11/Ex10_11.jpg Binary files differnew file mode 100644 index 000000000..f56d5db18 --- /dev/null +++ b/3802/CH10/EX10.11/Ex10_11.jpg diff --git a/3802/CH10/EX10.11/Ex10_11.sce b/3802/CH10/EX10.11/Ex10_11.sce new file mode 100644 index 000000000..e8d974b7d --- /dev/null +++ b/3802/CH10/EX10.11/Ex10_11.sce @@ -0,0 +1,26 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex10_11.sce
+
+clc;
+clear;
+
+
+P_in_HP=25;
+s=0.04;
+p=4;
+f=50;
+Ns=(120*f)/p;
+ns=Ns/60;
+nf=(1-s)*ns;
+P_in_watt=P_in_HP*735.5;
+Tf=P_in_watt/(2*%pi*nf);
+sf=s;
+sp=2-s; //At the time of plugging the slip is 200%
+a=4;
+X2_by_R2=a;
+Tp=(sp/sf)*((1+(sf^2*X2_by_R2^2))/(1+(sp^2*X2_by_R2^2)))*Tf;
+printf("\n Plugging torque at full load=%2.1f Nm",Tp)
diff --git a/3802/CH10/EX10.12/Ex10_12.jpg b/3802/CH10/EX10.12/Ex10_12.jpg Binary files differnew file mode 100644 index 000000000..c7e6efb34 --- /dev/null +++ b/3802/CH10/EX10.12/Ex10_12.jpg diff --git a/3802/CH10/EX10.12/Ex10_12.sce b/3802/CH10/EX10.12/Ex10_12.sce new file mode 100644 index 000000000..fd13ff34c --- /dev/null +++ b/3802/CH10/EX10.12/Ex10_12.sce @@ -0,0 +1,20 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex10_12.sce
+
+clc;
+clear;
+p=4;
+f=50;
+R2=0.25;
+N1=1425;
+N2=1275;
+
+Ns=(120*f)/p;
+s1=(Ns-N1)/Ns;
+s2=(Ns-N2)/Ns;
+R=(R2*(s2/s1))-R2;
+printf("\n External resistance per phase=%1.1f ohm per phase",R)
diff --git a/3802/CH10/EX10.13/Ex10_13.jpg b/3802/CH10/EX10.13/Ex10_13.jpg Binary files differnew file mode 100644 index 000000000..a999cda1e --- /dev/null +++ b/3802/CH10/EX10.13/Ex10_13.jpg diff --git a/3802/CH10/EX10.13/Ex10_13.sce b/3802/CH10/EX10.13/Ex10_13.sce new file mode 100644 index 000000000..f8a14a9a6 --- /dev/null +++ b/3802/CH10/EX10.13/Ex10_13.sce @@ -0,0 +1,38 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex10_13.sce
+
+clc;
+clear;
+p1=12;
+p2=8;
+f=50;
+printf("\n (a)")
+printf("\n \t (i)Speed when cumulatively cascaded:")
+N1=(120*f)/(p1+p2);
+printf("\n \t N=%d r.p.m",N1)
+printf("\n \t (ii)Speed when differentially cascaded:")
+N2=(120*f)/(p1-p2);
+printf("\n \t N=%d r.p.m \n",N2)
+
+printf("\n (b)")
+printf("\n The ratio of power shared by the two motors=%d/%d \n",p1,p2)
+
+printf("\n (c)")
+printf("\n \t(i)First motor:")
+Ns1=(120*f)/p1;
+s1=(Ns1-N1)/Ns1;
+sf1=s1*f;
+printf("\n Required frequency of voltage to be injected in rotor of first motor=%d Hz",sf1)
+printf("\n \t(ii)Second motor:")
+Ns2=(120*f)/p2;
+s2=(Ns2-N1)/Ns2;
+sf2=s2*f;
+printf("\n Required frequency of voltage to be injected in rotor of second motor=%d Hz",sf2)
+
+
+
+
diff --git a/3802/CH10/EX10.2/Ex10_2.jpg b/3802/CH10/EX10.2/Ex10_2.jpg Binary files differnew file mode 100644 index 000000000..de0ebf793 --- /dev/null +++ b/3802/CH10/EX10.2/Ex10_2.jpg diff --git a/3802/CH10/EX10.2/Ex10_2.sce b/3802/CH10/EX10.2/Ex10_2.sce new file mode 100644 index 000000000..d2933f79c --- /dev/null +++ b/3802/CH10/EX10.2/Ex10_2.sce @@ -0,0 +1,41 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex10_2.sce
+
+clc;
+clear;
+T1=120;
+T2=24;
+R2=0.013;
+X2=0.048;
+V=400;
+kd=0.96;
+kp=1.0;
+f=50;
+
+printf("\n (a)")
+phi=V/(4.44*kd*kp*f*T1);
+printf("\n The flux per pole=%1.6f Wb \n",phi)
+
+printf("\n (b)")
+E2=4.44*kd*kp*phi*f*T2;
+printf("\n The rotor emf induced at standstill on open circuit=%d V \n",E2)
+
+printf("\n (c)")
+s=0.04;
+Er=s*E2;
+printf("\n Rotor emf at a slip=%1.1f V",Er)
+Ir=Er/sqrt(R2^2+(s*X2)^2);
+printf("\n The rotor current=%3.2f A \n",Ir)
+
+printf("\n (d)\t(i)")
+s=0.04;
+phir=atand(s*(X2/R2));
+printf("\n The phase difference between rotor emf and current for 4 percentage slip=%2.2f degree",phir)
+printf("\n\t(ii)")
+s=1;
+phir=atand(s*(X2/R2));
+printf("\n The phase difference between rotor emf and current for 100 percentage slip=%2.2f degree",phir)
diff --git a/3802/CH10/EX10.3/Ex10_3.jpg b/3802/CH10/EX10.3/Ex10_3.jpg Binary files differnew file mode 100644 index 000000000..da1c7eda4 --- /dev/null +++ b/3802/CH10/EX10.3/Ex10_3.jpg diff --git a/3802/CH10/EX10.3/Ex10_3.sce b/3802/CH10/EX10.3/Ex10_3.sce new file mode 100644 index 000000000..42c1ca674 --- /dev/null +++ b/3802/CH10/EX10.3/Ex10_3.sce @@ -0,0 +1,41 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex10_3.sce
+
+clc;
+clear;
+Pin=40; // power in kW
+Ps=1.5; // power in kW
+Ns=100; //speed percentage value
+N=40; //speed percentage value
+power_loss=0.8; // power in kW
+
+printf("\n (a)")
+rotor_input_power=Pin-Ps;
+s=0.04;
+rotor_copper_loss=s*rotor_input_power;
+mec_power_developed=rotor_input_power-rotor_copper_loss;
+printf("\n Mechanical power developed by the rotor=%2.2f kW",mec_power_developed)
+printf("\n Rotor copper loss=%2.2f kW \n",rotor_copper_loss)
+
+printf("\n (b)")
+motor_output_power=mec_power_developed-power_loss;
+printf("\n Output of the motor=%2.2f kW \n",motor_output_power)
+
+printf("\n (c)")
+motor_efficiency=(motor_output_power/Pin)*100;
+printf("\n The motor efficiency=%2.1f percentage \n",motor_efficiency)
+
+printf("\n (d)")
+new_slip=(Ns-N)/Ns;
+total_rotor_copper_loss=new_slip*rotor_input_power;
+printf("\n Total rotor copper loss when speed reduced to 40percentage of synchronous speed=%2.1f kW \n",total_rotor_copper_loss)
+
+printf("\n (e)")
+total_rotor_loss=total_rotor_copper_loss+power_loss;
+motor_output_power=rotor_input_power-total_rotor_loss;
+motor_efficiency=(motor_output_power/Pin)*100;
+printf("\n Efficiency of motor when speed reduced to 40percentage of synchronous speed=%2.1f percentage",motor_efficiency)
diff --git a/3802/CH10/EX10.4/Ex10_4.jpg b/3802/CH10/EX10.4/Ex10_4.jpg Binary files differnew file mode 100644 index 000000000..12923d51b --- /dev/null +++ b/3802/CH10/EX10.4/Ex10_4.jpg diff --git a/3802/CH10/EX10.4/Ex10_4.sce b/3802/CH10/EX10.4/Ex10_4.sce new file mode 100644 index 000000000..4d1282ce1 --- /dev/null +++ b/3802/CH10/EX10.4/Ex10_4.sce @@ -0,0 +1,56 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex10_4.sce
+
+clc;
+clear;
+
+f=50;
+p=4;
+V=400;
+E2=190;
+R1=0.5;
+X1=2.5;
+R2=0.06;
+X2=0.3;
+
+printf("\n (a)")
+Ns=(120*f)/p;
+printf("\n Synchronous speed=%d r.p.m \n",Ns)
+
+printf("\n (b)")
+s=(R2/X2)*100;
+printf("\n Slip at which maximum torque occurs=%d percentage \n",s)
+
+printf("\n (c)")
+E=E2/sqrt(3);
+Ir=(s*E)/(sqrt(2)*R2*100);
+pf=1/sqrt(2);
+Pi=sqrt(3)*E2*Ir*pf;
+P0=(1-s/100)*Pi;
+Tm=Pi/(2*%pi*Ns/60);
+printf("\n Maximum Torque=%3.2f synchronous watt \n",Tm)
+
+printf("\n (d)")
+Tfl=(1/2)*Tm;
+//(2/1)=(R2^2+sf^2*X2^2)/(2*X2*R2*sf)
+//From this equation we get sf^2-0.8*sf+0.04=0;
+a=1;
+b=-0.8;//a,b,c are coefficient values taken from the above second order equation
+c=0.04;
+sf=(-b-sqrt(b^2-(4*a*c)))/(2*a);
+sf_percentage=sf*100;
+Nf=Ns*(1-sf);
+Pf=2*%pi*(Nf/60)*Tfl;
+printf("\n Full load torque=%3.2f synchronous watt",Tfl)
+printf("\n Full load slip=%1.1f percentage",sf_percentage)
+printf("\n Speed at full load=%d r.p.m",Nf)
+printf("\n Power output=%2.2f kW \n",Pf/1000)
+//Answer vary dueto round off error
+
+printf("\n (e)")
+f_at_fullload=sf*f;
+printf("\n The rotor frequency at full load=%1.1f Hz",f_at_fullload)
diff --git a/3802/CH10/EX10.5/Ex10_5.jpg b/3802/CH10/EX10.5/Ex10_5.jpg Binary files differnew file mode 100644 index 000000000..6d182aa5f --- /dev/null +++ b/3802/CH10/EX10.5/Ex10_5.jpg diff --git a/3802/CH10/EX10.5/Ex10_5.sce b/3802/CH10/EX10.5/Ex10_5.sce new file mode 100644 index 000000000..509b16d7f --- /dev/null +++ b/3802/CH10/EX10.5/Ex10_5.sce @@ -0,0 +1,32 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex10_5.sce
+
+clc;
+clear;
+f=50;
+N=285;
+Ns=300; //which is near the value of N as slip lies b/w 0.03 to 0.05
+
+printf("\n (a)")
+p=(120*f)/Ns;
+printf("\n Number of poles=%d \n",p)
+
+printf("\n (b)")
+s=(Ns-N)/Ns;
+s_percentage=s*100;
+printf("\n Slip at full load=%d percentage \n",s_percentage)
+
+printf("\n (c)")
+//slip is proportional to rotor resistance
+s=2*s_percentage;
+printf("\n Slip at full load if rotor resistance is doubled=%d percentage \n",s)
+
+printf("\n (d)")
+//copper loss=I^2*R; so copper loss doubles if rotor resistance doubles
+Pcu=280;
+Pcu_new=2*Pcu;
+printf("\n The new value of rotor copper loss=%d watt \n",Pcu_new)
diff --git a/3802/CH10/EX10.6/Ex10_6.jpg b/3802/CH10/EX10.6/Ex10_6.jpg Binary files differnew file mode 100644 index 000000000..27b9192b3 --- /dev/null +++ b/3802/CH10/EX10.6/Ex10_6.jpg diff --git a/3802/CH10/EX10.6/Ex10_6.sce b/3802/CH10/EX10.6/Ex10_6.sce new file mode 100644 index 000000000..46b910f7c --- /dev/null +++ b/3802/CH10/EX10.6/Ex10_6.sce @@ -0,0 +1,13 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex10_6.sce
+
+clc;
+clear;
+s=0.05; //Full load slip of 5 percentage
+Iss_by_Isf=5; //Taken from question statement
+Ts_by_Tf=s*(Iss_by_Isf)^2;
+printf("\n Starting torque interms of full load torque=%1.2f*Tf",Ts_by_Tf)
diff --git a/3802/CH10/EX10.7/Ex10_7.jpg b/3802/CH10/EX10.7/Ex10_7.jpg Binary files differnew file mode 100644 index 000000000..f304d104f --- /dev/null +++ b/3802/CH10/EX10.7/Ex10_7.jpg diff --git a/3802/CH10/EX10.7/Ex10_7.sce b/3802/CH10/EX10.7/Ex10_7.sce new file mode 100644 index 000000000..43d348166 --- /dev/null +++ b/3802/CH10/EX10.7/Ex10_7.sce @@ -0,0 +1,54 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex10_7.sce
+
+clc;
+clear;
+Vl_not=400; //No load voltage in volt
+Vl_sc=50; //Blocked rotor voltage in volt
+I_not=20; //No load current in Ampere
+Isc=60; //Blocked rotor currnet in Ampere
+W1_not=5e3; //watt meter readings for no load test in watt
+W2_not=-3.2e3; //watt meter readings for no load test in watt
+Wsc1=2.3e3; //watt meter readings for blocked rotor test in watt
+Wsc2=0.75e3; //watt meter readings for blocked rotor test in watt
+Vdc=18; //dc voltage in volt
+Idc=60; //dc line current in Ampere
+
+printf("\n (a)")
+R1=(Vdc/Idc)/2;
+printf("\n R1=%1.2f ohm",R1)
+P_not=W1_not+W2_not;
+V_not=Vl_not/sqrt(3);
+cos_phi_not=P_not/(3*V_not*I_not);
+R_not=V_not/(I_not*cos_phi_not);
+printf("\n R0=%2.3f ohm",R_not)
+//R_not answer vary dueto round off error in v_not and cos_phi_not
+X_not=V_not/(I_not*sqrt(1-cos_phi_not^2));
+printf("\n X0=%2.3f ohm",X_not)
+Psc=Wsc1+Wsc2;
+Vsc=Vl_sc/sqrt(3);
+cos_phi_sc=Psc/(3*Vsc*Isc);
+R2_dash=((Vsc/Isc)*cos_phi_sc)-R1;
+printf("\n R2dash=%1.3f ohm",R2_dash)
+X1=((Vsc/Isc)*sqrt(1-cos_phi_sc^2))/2;
+printf("\n X1=%1.3f ohm",X1)
+X2_dash=X1;
+printf("\n X2dash=%1.3f ohm \n",X2_dash)
+
+printf("\n (b)")
+ns=25;
+s=R2_dash/X2_dash; //Slip for maximum torque
+pf_max=1/sqrt(2);
+Ps=(3*V_not^2)/sqrt((R1+R2_dash/s)^2+(2*X1)^2);
+Pc=(3*V_not^2*(R1+R2_dash))/((R1+R2_dash/s)^2+(2*X1)^2); //Stator copper loss in kw
+Pin=Ps-Pc;
+T=Pin/(2*%pi*ns);
+printf("\n Slip for pullout torque=%g",s)
+printf("\n Magnitude of pullout torque=%3.2f Nm",T)
+//There is a mistake in the book solution in part (b)
+//The calculated Ps value is wrong
+//Hence T answer vary
diff --git a/3802/CH10/EX10.9/Ex10_9.jpg b/3802/CH10/EX10.9/Ex10_9.jpg Binary files differnew file mode 100644 index 000000000..df3599beb --- /dev/null +++ b/3802/CH10/EX10.9/Ex10_9.jpg diff --git a/3802/CH10/EX10.9/Ex10_9.sce b/3802/CH10/EX10.9/Ex10_9.sce new file mode 100644 index 000000000..a604c24a4 --- /dev/null +++ b/3802/CH10/EX10.9/Ex10_9.sce @@ -0,0 +1,21 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex10_9.sce
+
+clc;
+clear;
+P_in_HP=10;
+eta=0.9;
+pf=0.8;
+Vl=400;
+Vsc=160;
+Isc=7.2;
+P_in_watt=P_in_HP*735.5;
+If=P_in_watt/(sqrt(3)*Vl*pf*eta);
+Isc_400=Isc*Vl/Vsc;
+Ist=Isc_400/3;
+Ist_by_If=Ist/If;
+printf("\n The ratio value of starting current to full load current=%1.3f",Ist_by_If)
diff --git a/3802/CH11/EX11.1/Ex11_1.jpg b/3802/CH11/EX11.1/Ex11_1.jpg Binary files differnew file mode 100644 index 000000000..94cfdaa0f --- /dev/null +++ b/3802/CH11/EX11.1/Ex11_1.jpg diff --git a/3802/CH11/EX11.1/Ex11_1.sce b/3802/CH11/EX11.1/Ex11_1.sce new file mode 100644 index 000000000..5c1e618ea --- /dev/null +++ b/3802/CH11/EX11.1/Ex11_1.sce @@ -0,0 +1,59 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex11_1.sce
+
+clc;
+clear;
+V_not=220;
+I_not=4;
+W_not=100;
+Vsc=110;
+Isc=10;
+Wsc=400;
+p=6;
+V=220;
+f=50;
+
+printf("\n (a)")
+r1=(Wsc/Isc^2)/2;
+x1=sqrt((Vsc/Isc)^2-(2*r1)^2)/2;
+r2_dash=r1;
+x2_dash=x1;
+phi_not=acosd(W_not/(V_not*I_not));
+V_not_dash=V_not-((I_not*(cosd(phi_not)-%i*sind(phi_not)))*((r1+r2_dash/4)+%i*(x1+x2_dash/2)));
+Wi=W_not-(I_not^2*(r1+r2_dash/4));
+R_not_by_2=(V_not_dash^2)/Wi;
+Y_not=(I_not)/(V_not_dash*2);
+B_not=sqrt((2*Y_not)^2-(1/R_not_by_2)^2)/2;
+X_not_by_2=1/(2*B_not);
+printf("\n Parameters of the motor:")
+printf("\n \t r1=r2dash=%d ohm",r1)
+printf("\n \t x1=x2dash=%1.3f ohm",x1)
+printf("\n \t R0/2=%3.2f ohm",sqrt(real(R_not_by_2)^2+imag(R_not_by_2)^2))
+printf("\n \t X0/2=%2.2f ohm",sqrt(real(X_not_by_2)^2+imag(X_not_by_2)^2))
+
+printf("\n (b)")
+//From the applied parameters of equivalent circuit of the motor stator current is simplified
+I1=complex(1.096,-0.526)*complex(6.36,-1.92);
+I1_mag=sqrt(real(I1)^2+imag(I1)^2);
+I1_angle=atand(imag(I1)/real(I1));
+pf=cosd(I1_angle);
+P_input=1075;
+P_loss=102.87;
+P_not=P_input-P_loss;
+Ns=1000;
+s=0.04;
+Nfl=(1-s)*Ns;
+T_net=P_not/(2*%pi*Nfl/60);
+motor_input=V*I1_mag*pf;
+efficiency=(P_not/motor_input)*100;
+printf("\n Stator current: \n\t magnitude=%1.2f V,\n\t angle=%2.2f degree",I1_mag,I1_angle)
+printf("\n Power factor=%0.3f lagging",pf)
+printf("\n Power output=%3.2f watt",P_not)
+printf("\n Speed=%d r.p.m",Nfl)
+printf("\n Torque=%1.2f Nm",T_net)
+printf("\n Efficiency=%d percentage",efficiency)
+//Answer vary dueto roundoff error
diff --git a/3802/CH11/EX11.2/Ex11_2.jpg b/3802/CH11/EX11.2/Ex11_2.jpg Binary files differnew file mode 100644 index 000000000..2359d72ba --- /dev/null +++ b/3802/CH11/EX11.2/Ex11_2.jpg diff --git a/3802/CH11/EX11.2/Ex11_2.sce b/3802/CH11/EX11.2/Ex11_2.sce new file mode 100644 index 000000000..12f2b680b --- /dev/null +++ b/3802/CH11/EX11.2/Ex11_2.sce @@ -0,0 +1,20 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex11_2.sce
+
+clc;
+clear;
+t=0.5; //pole pitch
+f=50;
+vmp=162;
+fd=100e3;
+vm=vmp*1e3/(60*60);
+pd=fd*vm;
+vs=2*t*f;
+s=(vs-vm)/vs;
+pcu=s*fd*vs;
+printf("\n The developed power by the motor=%d kw \n",pd/1000)
+printf("\n Secondary copper loss=%d kw \n",pcu/1000)
diff --git a/3802/CH11/EX11.3/Ex11_3.jpg b/3802/CH11/EX11.3/Ex11_3.jpg Binary files differnew file mode 100644 index 000000000..df4d5adcb --- /dev/null +++ b/3802/CH11/EX11.3/Ex11_3.jpg diff --git a/3802/CH11/EX11.3/Ex11_3.sce b/3802/CH11/EX11.3/Ex11_3.sce new file mode 100644 index 000000000..cfd423c73 --- /dev/null +++ b/3802/CH11/EX11.3/Ex11_3.sce @@ -0,0 +1,25 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex11_3.sce
+
+clc;
+clear;
+Ra=0.8;
+Va=40;
+Td=1.2;
+Ka=600;
+phi_p=0.004;
+
+printf("\n (a)")
+n=(Va/(Ka*phi_p))-(2*%pi*Ra*Td/(Ka*phi_p)^2);
+N=n*60;
+printf("\n The speed of the motor=%d r.p.m \n",N)
+//The book answer for part(a) is wrong value
+
+printf("\n (b)")
+n=0;
+Td=(Va*Ka*phi_p)/(2*%pi*Ra);
+printf("\n The blocked rotor torque=%d Nm \n",Td)
diff --git a/3802/CH11/EX11.4/Ex11_4.jpg b/3802/CH11/EX11.4/Ex11_4.jpg Binary files differnew file mode 100644 index 000000000..e3d8885cb --- /dev/null +++ b/3802/CH11/EX11.4/Ex11_4.jpg diff --git a/3802/CH11/EX11.4/Ex11_4.sce b/3802/CH11/EX11.4/Ex11_4.sce new file mode 100644 index 000000000..5257c1654 --- /dev/null +++ b/3802/CH11/EX11.4/Ex11_4.sce @@ -0,0 +1,26 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex11_4.sce
+
+clc;
+clear;
+P=200;
+V=100;
+N=1500;
+Ka=525;
+Ra=2;
+Pl=15;
+
+Pd=P+Pl;
+n=N/60;
+Td=Pd/(2*%pi*n);
+//n=(Va/(Ka*phi_p))-(2*%pi*Ra*Td/(Ka*phi_p)^2);
+//from this equation we get phi^2-o-0.0076*phi+2.5e-6=0;
+a=1;
+b=-0.0076;//a,b,c are coefficient values taken from the above second order equation
+c=2.5e-6;
+phi_p=(-b+sqrt(b^2-(4*a*c)))/(2*a);
+printf("\n The magnetic flux=%1.3f mWb \n",phi_p*1000)
diff --git a/3802/CH12/EX12.1/Ex12_1.jpg b/3802/CH12/EX12.1/Ex12_1.jpg Binary files differnew file mode 100644 index 000000000..9b2756c85 --- /dev/null +++ b/3802/CH12/EX12.1/Ex12_1.jpg diff --git a/3802/CH12/EX12.1/Ex12_1.sce b/3802/CH12/EX12.1/Ex12_1.sce new file mode 100644 index 000000000..e84bfca9f --- /dev/null +++ b/3802/CH12/EX12.1/Ex12_1.sce @@ -0,0 +1,39 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex12_1.sce
+
+clc;
+clear;
+z=complex(3,4);
+Vl=120;
+printf("\n Line current of load: Magnitude \t Angle(deg) \n")
+I_R=complex(Vl*cosd(0),Vl*sind(0))/(sqrt(3)*z);
+I_Y=complex(Vl*cosd(-120),Vl*sind(-120))/(sqrt(3)*z);
+I_B=complex(Vl*cosd(120),Vl*sind(120))/(sqrt(3)*z);
+I_R_mag=sqrt(real(I_R)^2+imag(I_R)^2);
+I_Y_mag=sqrt(real(I_Y)^2+imag(I_Y)^2);
+I_B_mag=sqrt(real(I_B)^2+imag(I_B)^2);
+I_R_angle=atand(imag(I_R)/real(I_R));
+I_Y_angle=atand(imag(I_Y)/real(I_Y))-180;
+I_B_angle=atand(imag(I_B)/real(I_B));
+printf("\n\t Ir in A:\t %2.2f \t %2.2f",I_R_mag,I_R_angle)
+printf("\n\t Iy in A:\t %2.2f \t %2.2f",I_Y_mag,I_Y_angle)
+printf("\n\t Ib in A:\t %2.2f \t %2.2f",I_B_mag,I_B_angle)
+//The line current of alternator is same as the line or phase current of load
+
+printf("\n Line current of alternator: Magnitude Angle(deg) \n")
+I_R=complex(Vl*cosd(0),Vl*sind(0))/(sqrt(3)*z);
+I_Y=complex(Vl*cosd(-120),Vl*sind(-120))/(sqrt(3)*z);
+I_B=complex(Vl*cosd(120),Vl*sind(120))/(sqrt(3)*z);
+I_R_mag=sqrt(real(I_R)^2+imag(I_R)^2);
+I_Y_mag=sqrt(real(I_Y)^2+imag(I_Y)^2);
+I_B_mag=sqrt(real(I_B)^2+imag(I_B)^2);
+I_R_angle=atand(imag(I_R)/real(I_R));
+I_Y_angle=atand(imag(I_Y)/real(I_Y))-180;
+I_B_angle=atand(imag(I_B)/real(I_B));
+printf("\n\t Ir in A: \t %2.2f \t %2.2f",I_R_mag,I_R_angle)
+printf("\n\t Iy in A: \t %2.2f \t %2.2f",I_Y_mag,I_Y_angle)
+printf("\n\t Ib in A: \t %2.2f \t %2.2f",I_B_mag,I_B_angle)
diff --git a/3802/CH12/EX12.10/Ex12_10.jpg b/3802/CH12/EX12.10/Ex12_10.jpg Binary files differnew file mode 100644 index 000000000..a7a9c9627 --- /dev/null +++ b/3802/CH12/EX12.10/Ex12_10.jpg diff --git a/3802/CH12/EX12.10/Ex12_10.sce b/3802/CH12/EX12.10/Ex12_10.sce new file mode 100644 index 000000000..4396af82b --- /dev/null +++ b/3802/CH12/EX12.10/Ex12_10.sce @@ -0,0 +1,62 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex12_10.sce
+
+clc;
+clear;
+Z_R=complex(8,6);
+Z_Y=complex(8,-6);
+Z_B=complex(5,0);
+Z_N=complex(0.5,1);
+Y_R=1/Z_R;
+Y_Y=1/Z_Y;
+Y_B=1/Z_B;
+Y_N=1/Z_N;
+E_R=220;
+E_Y=220;
+E_B=220;
+theta1=0;
+theta2=-120;
+theta3=120;
+V_R=complex(E_R*cosd(theta1),E_R*sind(theta1));
+V_Y=complex(E_Y*cosd(theta2),E_Y*sind(theta2));
+V_B=complex(E_B*cosd(theta3),E_B*sind(theta3));
+V_NN_dash=((V_R*Y_R)+(V_Y*Y_Y)+(V_B*Y_B))/(Y_R+Y_Y+Y_B+Y_N);
+
+V_R_dash=V_R-V_NN_dash;
+V_Y_dash=V_Y-V_NN_dash;
+V_B_dash=V_B-V_NN_dash;
+V_R_dash_mag=sqrt(real(V_R_dash)^2+imag(V_R_dash)^2);
+V_Y_dash_mag=sqrt(real(V_Y_dash)^2+imag(V_Y_dash)^2);
+V_B_dash_mag=sqrt(real(V_B_dash)^2+imag(V_B_dash)^2);
+V_R_dash_angle=atand(imag(V_R_dash)/real(V_R_dash));
+V_Y_dash_angle=atand(imag(V_Y_dash)/real(V_Y_dash))+180;
+V_B_dash_angle=atand(imag(V_B_dash)/real(V_B_dash))+180;
+printf("\n Load phase voltages: Magnitude\tAngle(deg)")
+printf("\n For R phase\t%3.2f\t%0.3f",V_R_dash_mag,V_R_dash_angle)
+printf("\n For Y phase\t%3.2f\t%3.2f",V_Y_dash_mag,V_Y_dash_angle)
+printf("\n For B phase\t%3.2f\t%3.2f",V_B_dash_mag,V_B_dash_angle)
+//For V_NN_dash value , the answer given in the book is wrong.So load phase voltage vary from the book answer.
+//Also V_R_dash angle is not 0.168. It is negative angle that is -0.193
+I_R=V_R_dash*Y_R;
+I_Y=V_Y_dash*Y_Y;
+I_B=V_B_dash*Y_B;
+I_N=V_NN_dash*Y_N;
+I_R_mag=sqrt(real(I_R)^2+imag(I_R)^2);
+I_Y_mag=sqrt(real(I_Y)^2+imag(I_Y)^2);
+I_B_mag=sqrt(real(I_B)^2+imag(I_B)^2);
+I_N_mag=sqrt(real(I_N)^2+imag(I_N)^2);
+I_R_angle=atand(imag(I_R)/real(I_R));
+I_Y_angle=atand(imag(I_Y)/real(I_Y))+360;
+I_B_angle=atand(imag(I_B)/real(I_B))+180;
+I_N_angle=atand(imag(I_N)/real(I_N))+180;
+printf("\n\n Load phase current: Magnitude\tAngle(deg)")
+printf("\n For R phase\t%3.2f\t%0.3f",I_R_mag,I_R_angle)
+printf("\n For Y phase\t%3.2f\t%3.2f",I_Y_mag,I_Y_angle)
+printf("\n For B phase\t%3.2f\t%3.2f",I_B_mag,I_B_angle)
+printf("\n For Neutral\t%3.2f\t%3.2f",I_N_mag,I_N_angle)
+
+
diff --git a/3802/CH12/EX12.11/Ex12_11.jpg b/3802/CH12/EX12.11/Ex12_11.jpg Binary files differnew file mode 100644 index 000000000..fe84ee2e7 --- /dev/null +++ b/3802/CH12/EX12.11/Ex12_11.jpg diff --git a/3802/CH12/EX12.11/Ex12_11.sce b/3802/CH12/EX12.11/Ex12_11.sce new file mode 100644 index 000000000..4b20258ac --- /dev/null +++ b/3802/CH12/EX12.11/Ex12_11.sce @@ -0,0 +1,56 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex12_11.sce
+
+clc;
+clear;
+Vl=400;
+V=Vl/sqrt(3);
+Z_R=complex(20*cosd(30),20*sind(30));
+Z_Y=complex(40*cosd(60),40*sind(60));
+Z_B=complex(10*cosd(-90),10*sind(-90));
+Y_R=1/Z_R;
+Y_Y=1/Z_Y;
+Y_B=1/Z_B;
+theta1=0;
+theta2=-120;
+theta3=120;
+V_R=complex(V*cosd(theta1),V*sind(theta1));
+V_Y=complex(V*cosd(theta2),V*sind(theta2));
+V_B=complex(V*cosd(theta3),V*sind(theta3));
+V_NN_dash=((V_R*Y_R)+(V_Y*Y_Y)+(V_B*Y_B))/(Y_R+Y_Y+Y_B);
+V_R_dash=V_R-V_NN_dash;
+V_Y_dash=V_Y-V_NN_dash;
+V_B_dash=V_B-V_NN_dash;
+V_R_dash_mag=sqrt(real(V_R_dash)^2+imag(V_R_dash)^2);
+V_Y_dash_mag=sqrt(real(V_Y_dash)^2+imag(V_Y_dash)^2);
+V_B_dash_mag=sqrt(real(V_B_dash)^2+imag(V_B_dash)^2);
+V_R_dash_angle=atand(imag(V_R_dash)/real(V_R_dash));
+V_Y_dash_angle=atand(imag(V_Y_dash)/real(V_Y_dash));
+V_B_dash_angle=atand(imag(V_B_dash)/real(V_B_dash));
+printf("\n\n Phase voltages: Magnitude\tAngle(deg)")
+printf("\n For R phase\t%3.2f\t%0.3f",V_R_dash_mag,V_R_dash_angle)
+printf("\n For Y phase\t%3.2f\t%3.2f",V_Y_dash_mag,V_Y_dash_angle)
+printf("\n For B phase\t%3.0f\t%3.2f",V_B_dash_mag,V_B_dash_angle)
+
+I_R=V_R_dash*Y_R;
+I_Y=V_Y_dash*Y_Y;
+I_B=V_B_dash*Y_B;
+I_R_mag=sqrt(real(I_R)^2+imag(I_R)^2);
+I_Y_mag=sqrt(real(I_Y)^2+imag(I_Y)^2);
+I_B_mag=sqrt(real(I_B)^2+imag(I_B)^2);
+I_R_angle=atand(imag(I_R)/real(I_R));
+I_Y_angle=atand(imag(I_Y)/real(I_Y))-180;
+I_B_angle=atand(imag(I_B)/real(I_B))+180;
+printf("\n Phase current: Magnitude\tAngle(deg)")
+printf("\n For R phase\t%2.2f\t%0.3f",I_R_mag,I_R_angle)
+printf("\n For Y phase\t%1.2f\t%3.2f",I_Y_mag,I_Y_angle)
+printf("\n For B phase\t%2.0f\t%3.2f",I_B_mag,I_B_angle)
+
+//Answer vary due to roundoff error
+
+
+
diff --git a/3802/CH12/EX12.12/Ex12_12.jpg b/3802/CH12/EX12.12/Ex12_12.jpg Binary files differnew file mode 100644 index 000000000..1575d2d3a --- /dev/null +++ b/3802/CH12/EX12.12/Ex12_12.jpg diff --git a/3802/CH12/EX12.12/Ex12_12.sce b/3802/CH12/EX12.12/Ex12_12.sce new file mode 100644 index 000000000..20cc8070c --- /dev/null +++ b/3802/CH12/EX12.12/Ex12_12.sce @@ -0,0 +1,36 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex12_12.sce
+
+//The input data taken from Example:12.11
+clc;
+clear;
+Vl=400;
+V=Vl/sqrt(3);
+Z_R=complex(20*cosd(30),20*sind(30));
+Z_Y=complex(40*cosd(60),40*sind(60));
+Z_B=complex(10*cosd(-90),10*sind(-90));
+Z_YR=((Z_R*Z_Y)+(Z_Y*Z_B)+(Z_B*Z_R))/Z_B;
+Z_BY=((Z_R*Z_Y)+(Z_Y*Z_B)+(Z_B*Z_R))/Z_R;
+Z_RB=((Z_R*Z_Y)+(Z_Y*Z_B)+(Z_B*Z_R))/Z_Y;
+theta1=30;
+theta2=-90;
+theta3=150;
+V_YR=complex(Vl*cosd(theta1),Vl*sind(theta1));
+V_BY=complex(Vl*cosd(theta2),Vl*sind(theta2));
+V_RB=complex(Vl*cosd(theta3),Vl*sind(theta3));
+I_YR=V_YR/Z_YR;
+I_BY=V_BY/Z_BY;
+I_RB=V_RB/Z_RB;
+I_R=I_YR-I_RB;
+I_Y=I_BY-I_YR;
+I_B=I_RB-I_BY;
+printf("\n Line current I_R,I_Y,I_B values are,\n")
+disp(I_R)
+disp(I_Y)
+disp(I_B)
+
+
diff --git a/3802/CH12/EX12.13/Ex12_13.jpg b/3802/CH12/EX12.13/Ex12_13.jpg Binary files differnew file mode 100644 index 000000000..d7ea434c2 --- /dev/null +++ b/3802/CH12/EX12.13/Ex12_13.jpg diff --git a/3802/CH12/EX12.13/Ex12_13.sce b/3802/CH12/EX12.13/Ex12_13.sce new file mode 100644 index 000000000..10affb757 --- /dev/null +++ b/3802/CH12/EX12.13/Ex12_13.sce @@ -0,0 +1,29 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex12_13.sce
+
+//The input data taken from Example:12.11
+clc;
+clear;
+Vl=400;
+V=Vl/sqrt(3);
+Z_R=complex(20*cosd(30),20*sind(30));
+Z_Y=complex(40*cosd(60),40*sind(60));
+Z_B=complex(10*cosd(-90),10*sind(-90));
+theta1=30;
+theta2=-90;
+theta3=150;
+V_YR=complex(Vl*cosd(theta1),Vl*sind(theta1));
+V_BY=complex(Vl*cosd(theta2),Vl*sind(theta2));
+V_RB=complex(Vl*cosd(theta3),Vl*sind(theta3));
+
+I_R=((V_YR*Z_B)-(V_RB*Z_Y))/((Z_R*Z_Y)+(Z_Y*Z_B)+(Z_B*Z_R));
+I_Y=((V_BY*Z_R)-(V_YR*Z_B))/((Z_R*Z_Y)+(Z_Y*Z_B)+(Z_B*Z_R));
+I_B=((V_RB*Z_Y)-(V_BY*Z_R))/((Z_R*Z_Y)+(Z_Y*Z_B)+(Z_B*Z_R));
+printf("\n Line current I_R , I_Y , I_B values are,\n")
+disp(I_R)
+disp(I_Y)
+disp(I_B)
diff --git a/3802/CH12/EX12.2/Ex12_2.jpg b/3802/CH12/EX12.2/Ex12_2.jpg Binary files differnew file mode 100644 index 000000000..91dd630d3 --- /dev/null +++ b/3802/CH12/EX12.2/Ex12_2.jpg diff --git a/3802/CH12/EX12.2/Ex12_2.sce b/3802/CH12/EX12.2/Ex12_2.sce new file mode 100644 index 000000000..37709dba3 --- /dev/null +++ b/3802/CH12/EX12.2/Ex12_2.sce @@ -0,0 +1,36 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex12_2.sce
+
+clc;
+clear;
+z=complex(6,8);
+Vl=110;
+printf("\nPhase current of the load: Magnitude \t Angle(deg) \n")
+I_YR=complex(Vl*cosd(0),Vl*sind(0))/(z);
+I_BY=complex(Vl*cosd(-120),Vl*sind(-120))/(z);
+I_RB=complex(Vl*cosd(120),Vl*sind(120))/(z);
+I_YR_mag=sqrt(real(I_YR)^2+imag(I_YR)^2);
+I_BY_mag=sqrt(real(I_BY)^2+imag(I_BY)^2);
+I_RB_mag=sqrt(real(I_RB)^2+imag(I_RB)^2);
+I_YR_angle=atand(imag(I_YR)/real(I_YR));
+I_BY_angle=atand(imag(I_BY)/real(I_BY))-180;
+I_RB_angle=atand(imag(I_RB)/real(I_RB));
+printf("\n\t\t Iyr in A \t %d \t %2.2f",I_YR_mag,I_YR_angle)
+printf("\n\t\t Iby in A \t %d \t %2.2f",I_BY_mag,I_BY_angle)
+printf("\n\t\t Irb in A \t %d \t %2.2f",I_RB_mag,I_RB_angle)
+
+printf("\nLine current of the load: Magnitude \t Angle(deg) \n")
+I_LR_mag=sqrt(3)*I_YR_mag;
+I_LY_mag=sqrt(3)*I_BY_mag;
+I_LB_mag=sqrt(3)*I_RB_mag;
+I_LR_angle=I_YR_angle-30;
+I_LY_angle=I_BY_angle-30;
+I_LB_angle=I_RB_angle-30;
+printf("\n\t\t Ilr in A \t %2.2f \t %2.2f",I_LR_mag,I_LR_angle)
+printf("\n\t\t Ily in A \t %2.2f \t %2.2f",I_LY_mag,I_LY_angle)
+printf("\n\t\t Ilb in A \t %2.2f \t %2.2f",I_LB_mag,I_LB_angle)
+
diff --git a/3802/CH12/EX12.3/Ex12_3.jpg b/3802/CH12/EX12.3/Ex12_3.jpg Binary files differnew file mode 100644 index 000000000..d6e35bb90 --- /dev/null +++ b/3802/CH12/EX12.3/Ex12_3.jpg diff --git a/3802/CH12/EX12.3/Ex12_3.sce b/3802/CH12/EX12.3/Ex12_3.sce new file mode 100644 index 000000000..500460b64 --- /dev/null +++ b/3802/CH12/EX12.3/Ex12_3.sce @@ -0,0 +1,33 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex12_3.sce
+
+clc;
+clear;
+P=36; //power in kilowatt
+Vl=440;
+f=50;
+efficiency=0.89;
+pf1=0.85;
+pf2=0.95;
+P_not=P/3;
+P_input=P_not/efficiency;
+Q1=P_input*tand(acosd(pf1));
+Q2=P_input*tand(acosd(pf2));
+Qc=Q1-Q2;
+kVA=3*Qc;
+printf("\n Total kVA of the capacitors for raising power factor to 0.95 is %2.2f kVAR \n",kVA)
+V=Vl/sqrt(3);
+Xc=V^2/(Qc*1e3);
+
+printf("\n(a)")
+C_star=1/(2*%pi*f*Xc);
+printf("\n Required capacitance per phase for star connected capacitors=%3.3f micro-farad \n",C_star/1e-6)
+
+printf("\n(b)")
+C_delta=C_star/3;
+printf("\n Required capacitance per phase for delta connected capacitors=%2.2f micro-farad \n",C_delta/1e-6)
+//Answer vary dueto round off error
diff --git a/3802/CH12/EX12.4/Ex12_4.jpg b/3802/CH12/EX12.4/Ex12_4.jpg Binary files differnew file mode 100644 index 000000000..4c468f63f --- /dev/null +++ b/3802/CH12/EX12.4/Ex12_4.jpg diff --git a/3802/CH12/EX12.4/Ex12_4.sce b/3802/CH12/EX12.4/Ex12_4.sce new file mode 100644 index 000000000..da897f589 --- /dev/null +++ b/3802/CH12/EX12.4/Ex12_4.sce @@ -0,0 +1,37 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex12_4.sce
+
+
+//The input data taken from Example:12.3
+clc;
+clear;
+P=36;
+Vl=440;
+f=50;
+efficiency=0.89;
+pf1=0.85;
+pf2=0.95;
+Pm=P/efficiency;
+Qm=Pm*tand(acosd(pf1));
+Qs=Pm*tand(acosd(pf2));
+Qc=Qm-Qs;
+Qc_phase=Qc/3;
+kVA=Qc_phase;
+printf("\n Total kVA of the capacitors for raising power factor to 0.95 is %2.2f kVAR \n",Qc)
+
+printf("\n(a)")
+Vph=Vl/sqrt(3);
+Iph=kVA*1e3/Vph;
+C=Iph/(2*%pi*f*Vph);
+printf("\n Required capacitance per phase for star connected capacitors=%3.3f micro-farad \n",C/1e-6)
+
+printf("\n(b)")
+Vph=Vl;
+Iph=kVA*1e3/Vph;
+C=Iph/(2*%pi*f*Vph);
+printf("\n Required capacitance per phase for delta connected capacitors=%3.3f micro-farad \n",C/1e-6)
+//Answer vary dueto round off error
diff --git a/3802/CH12/EX12.5/Ex12_5.jpg b/3802/CH12/EX12.5/Ex12_5.jpg Binary files differnew file mode 100644 index 000000000..900f566e1 --- /dev/null +++ b/3802/CH12/EX12.5/Ex12_5.jpg diff --git a/3802/CH12/EX12.5/Ex12_5.sce b/3802/CH12/EX12.5/Ex12_5.sce new file mode 100644 index 000000000..b1fc30050 --- /dev/null +++ b/3802/CH12/EX12.5/Ex12_5.sce @@ -0,0 +1,35 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex12_5.sce
+
+clc;
+clear;
+Vl=440;
+z_mag=40;
+z_angle=-30;
+z=complex(z_mag*cosd(z_angle),z_mag*sind(z_angle));
+Iph=Vl/z;
+Iph_mag=sqrt(real(Iph)^2+imag(Iph)^2);
+Iph_angle=atand(imag(Iph)/real(Iph));
+
+printf("\nLine current of load:\t Magnitude \t Angle(deg) \n")
+I_R_mag=Iph_mag;
+I_Y_mag=Iph_mag;
+I_B_mag=Iph_mag;
+I_R_angle=Iph_angle-0;
+I_Y_angle=Iph_angle-120;
+I_B_angle=Iph_angle+120;
+printf("\n\t\t Ir in A \t%d \t %2.2f",I_R_mag,I_R_angle)
+printf("\n\t\t Iy in A \t%d \t %2.2f",I_Y_mag,I_Y_angle)
+printf("\n\t\t Ib in A \t%d \t %2.2f",I_B_mag,I_B_angle)
+
+I_R=complex(I_R_mag*cosd(I_R_angle),I_R_mag*sind(I_R_angle))
+I_Y=complex(I_Y_mag*cosd(I_Y_angle),I_Y_mag*sind(I_Y_angle))
+I_B=complex(I_B_mag*cosd(I_B_angle),I_B_mag*sind(I_B_angle))
+I_N=I_R+I_Y+I_B;
+printf("\n The neutral current is %d A",I_N)
+
+
diff --git a/3802/CH12/EX12.6/Ex12_6.jpg b/3802/CH12/EX12.6/Ex12_6.jpg Binary files differnew file mode 100644 index 000000000..e343cfe5f --- /dev/null +++ b/3802/CH12/EX12.6/Ex12_6.jpg diff --git a/3802/CH12/EX12.6/Ex12_6.sce b/3802/CH12/EX12.6/Ex12_6.sce new file mode 100644 index 000000000..9a852cfdd --- /dev/null +++ b/3802/CH12/EX12.6/Ex12_6.sce @@ -0,0 +1,29 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex12_6.sce
+
+clc;
+clear;
+printf("\n (a)")
+Pi=8; //power in kilowatt
+pf=0.8;
+Vl=440;
+Qi=Pi*tand(acosd(pf));
+P=complex(Pi,Qi);
+P_mag=sqrt(real(P)^2+imag(P)^2);
+P_angle=atand(imag(P)/real(P));
+Il=(P_mag*1e3)/(sqrt(3)*Vl);
+printf("\n Complex power= magnitude\tangle(deg) \n\t\t %1.0f \t %2.2f",P_mag,P_angle)
+printf("\n Line current=%2.2f A \n",Il)
+
+printf("\n (b)")
+Pl=7.5;
+pf=0.6;
+P=Pi+(Pl*pf);
+Q=Qi-(P*sind(acosd(pf)));
+kVA=P;
+Il=(kVA*1e3)/(sqrt(3)*Vl);
+printf("\n Total line current=%2.1f A \n",Il)
diff --git a/3802/CH12/EX12.7/Ex12_7.jpg b/3802/CH12/EX12.7/Ex12_7.jpg Binary files differnew file mode 100644 index 000000000..a740043be --- /dev/null +++ b/3802/CH12/EX12.7/Ex12_7.jpg diff --git a/3802/CH12/EX12.7/Ex12_7.sce b/3802/CH12/EX12.7/Ex12_7.sce new file mode 100644 index 000000000..7549c79cd --- /dev/null +++ b/3802/CH12/EX12.7/Ex12_7.sce @@ -0,0 +1,103 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex12_7.sce
+
+clc;
+clear;
+z1=complex(8,6);
+z2=complex(6,8);
+z3=complex(4,-3);
+R_YR=z1;
+R_BY=z2;
+R_RB=z3;
+Vl=440;
+
+printf("\n(a)Delta connected load of phase sequence RYB:")
+theta1=0;
+theta2=-120;
+theta3=120;
+V_YR=complex(Vl*cosd(theta1),Vl*sind(theta1));
+V_BY=complex(Vl*cosd(theta2),Vl*sind(theta2));
+V_RB=complex(Vl*cosd(theta3),Vl*sind(theta3));
+I_YR=V_YR/z1;
+I_BY=V_BY/z2;
+I_RB=V_RB/z3;
+I_YR_mag=sqrt(real(I_YR)^2+imag(I_YR)^2);
+I_BY_mag=sqrt(real(I_BY)^2+imag(I_BY)^2);
+I_RB_mag=sqrt(real(I_RB)^2+imag(I_RB)^2);
+I_YR_angle=atand(imag(I_YR)/real(I_YR));
+I_BY_angle=atand(imag(I_BY)/real(I_BY))-180;
+I_RB_angle=atand(imag(I_RB)/real(I_RB))+180;
+printf("\nPhase current= \tMagnitude\tAngle(deg) \n")
+printf("\n\t Iyr in A \t %d \t %2.2f",I_YR_mag,I_YR_angle)
+printf("\n\t Iby in A \t %d \t %2.2f",I_BY_mag,I_BY_angle)
+printf("\n\t Irb in A \t %d \t %2.2f",I_RB_mag,I_RB_angle)
+
+I_R=I_YR-I_RB;
+I_Y=I_BY-I_YR;
+I_B=I_RB-I_BY;
+I_R_mag=sqrt(real(I_R)^2+imag(I_R)^2);
+I_Y_mag=sqrt(real(I_Y)^2+imag(I_Y)^2);
+I_B_mag=sqrt(real(I_B)^2+imag(I_B)^2);
+I_R_angle=atand(imag(I_R)/real(I_R));
+I_Y_angle=atand(imag(I_Y)/real(I_Y))+180;
+I_B_angle=atand(imag(I_B)/real(I_B))+180;
+printf("\nLine current= \tMagnitude\tAngle(deg) ")
+printf("\n\t Ir in A \t %2.2f %2.2f",I_R_mag,I_R_angle)
+printf("\n\t Iy in A \t %2.2f \t %2.2f",I_Y_mag,I_Y_angle)
+printf("\n\t Ib in A \t %2.2f \t %2.2f",I_B_mag,I_B_angle)
+
+W_YR=(I_YR_mag)^2*real(z1);
+W_BY=(I_BY_mag)^2*real(z2);
+W_RB=(I_RB_mag)^2*real(z3);
+printf("\n Toatal power dissipated:\n")
+printf("\n\t W_YR=%d W",W_YR)
+printf("\n\t W_BY=%d W",W_BY)
+printf("\n\t W_RB=%d W",W_RB)
+
+
+printf("\n\n(b)Delta connected load of phase sequence RBY:")
+theta1=0;
+theta2=120;
+theta3=-120;
+V_YR=complex(Vl*cosd(theta1),Vl*sind(theta1));
+V_BY=complex(Vl*cosd(theta2),Vl*sind(theta2));
+V_RB=complex(Vl*cosd(theta3),Vl*sind(theta3));
+I_YR=V_YR/z1;
+I_BY=V_BY/z2;
+I_RB=V_RB/z3;
+I_YR_mag=sqrt(real(I_YR)^2+imag(I_YR)^2);
+I_BY_mag=sqrt(real(I_BY)^2+imag(I_BY)^2);
+I_RB_mag=sqrt(real(I_RB)^2+imag(I_RB)^2);
+I_YR_angle=atand(imag(I_YR)/real(I_YR));
+I_BY_angle=atand(imag(I_BY)/real(I_BY));
+I_RB_angle=atand(imag(I_RB)/real(I_RB));
+printf("\nPhase current= \tMagnitude\tAngle(deg) \n")
+printf("\n\t Iyr in A \t %d \t %2.2f",I_YR_mag,I_YR_angle)
+printf("\n\t Iby in A \t %d \t %2.2f",I_BY_mag,I_BY_angle)
+printf("\n\t Irb in A \t %d \t %2.2f",I_RB_mag,I_RB_angle)
+
+I_R=I_YR-I_RB;
+I_Y=I_BY-I_YR;
+I_B=I_RB-I_BY;
+I_R_mag=sqrt(real(I_R)^2+imag(I_R)^2);
+I_Y_mag=sqrt(real(I_Y)^2+imag(I_Y)^2);
+I_B_mag=sqrt(real(I_B)^2+imag(I_B)^2);
+I_R_angle=atand(imag(I_R)/real(I_R));
+I_Y_angle=atand(imag(I_Y)/real(I_Y))+180;
+I_B_angle=atand(imag(I_B)/real(I_B))-180;
+printf("\nLine current= \tMagnitude\tAngle(deg) ")
+printf("\n\t Ir in A \t %2.2f %2.2f",I_R_mag,I_R_angle)
+printf("\n\t Iy in A \t %2.2f \t %2.2f",I_Y_mag,I_Y_angle)
+printf("\n\t Ib in A \t %2.2f %2.2f",I_B_mag,I_B_angle)
+
+W_YR=(I_YR_mag)^2*real(z1);
+W_BY=(I_BY_mag)^2*real(z2);
+W_RB=(I_RB_mag)^2*real(z3);
+printf("\n Toatal power dissipated:\n")
+printf("\n\t W_YR=%d W",W_YR)
+printf("\n\t W_BY=%d W",W_BY)
+printf("\n\t W_RB=%d W",W_RB)
diff --git a/3802/CH12/EX12.8/Ex12_8.jpg b/3802/CH12/EX12.8/Ex12_8.jpg Binary files differnew file mode 100644 index 000000000..7e7c6e668 --- /dev/null +++ b/3802/CH12/EX12.8/Ex12_8.jpg diff --git a/3802/CH12/EX12.8/Ex12_8.sce b/3802/CH12/EX12.8/Ex12_8.sce new file mode 100644 index 000000000..fb136ed66 --- /dev/null +++ b/3802/CH12/EX12.8/Ex12_8.sce @@ -0,0 +1,31 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex12_8.sce
+
+clc;
+clear;
+Vl=110;
+f=50;
+
+printf("\n (a)")
+R_YR=0;
+R_BY=100;
+R_RB=200;
+W_YR=0; //since R_YR value is zero
+W_BY=Vl^2/R_BY;
+W_RB=Vl^2/R_RB;
+printf("\n Phase power=%3.1f W \n",W_YR+W_BY+W_RB)
+
+
+printf("\n (b)")
+X_YR=95;
+X_BY=0;
+X_RB=0;
+W_YR=Vl^2/X_YR;
+W_BY=0; //since X_BY value is zero
+W_RB=0; //since X_RB value is zero
+printf("\n Reactive power=%3.2f VAR",W_YR+W_BY+W_RB)
+
diff --git a/3802/CH12/EX12.9/Ex12_9.jpg b/3802/CH12/EX12.9/Ex12_9.jpg Binary files differnew file mode 100644 index 000000000..106771358 --- /dev/null +++ b/3802/CH12/EX12.9/Ex12_9.jpg diff --git a/3802/CH12/EX12.9/Ex12_9.sce b/3802/CH12/EX12.9/Ex12_9.sce new file mode 100644 index 000000000..e8f84ce8a --- /dev/null +++ b/3802/CH12/EX12.9/Ex12_9.sce @@ -0,0 +1,72 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex12_9.sce
+
+clc;
+clear;
+z=10;
+ang1=0;
+ang2=37;
+ang3=-53;
+Zr=complex(z*cosd(ang1),z*sind(ang1));
+Zy=complex(z*cosd(ang2),z*sind(ang2));
+Zb=complex(z*cosd(ang3),z*sind(ang3));
+
+printf("\n (a)For phase sequence RYB:\n")
+V=220;
+theta1=0;
+theta2=-120;
+theta3=120;
+Vr=complex(V*cosd(theta1),V*sind(theta1));
+Vy=complex(V*cosd(theta2),V*sind(theta2));
+Vb=complex(V*cosd(theta3),V*sind(theta3));
+
+Ir=Vr/Zr;
+Iy=Vy/Zy;
+Ib=Vb/Zb;
+In=Ir+Iy+Ib;
+In_mag=sqrt(real(In)^2+imag(In)^2);
+In_angle=atand(imag(In)/real(In));
+printf("\n The current through the neutral wire,\n -In=\tMagnitude\tAngle(deg) \n\t %2.2f \t %2.2f \n",In_mag,In_angle)
+
+Ir_mag=sqrt(real(Ir)^2+imag(Ir)^2);
+Iy_mag=sqrt(real(Iy)^2+imag(Iy)^2);
+Ib_mag=sqrt(real(Ib)^2+imag(Ib)^2);
+Pr=(Ir_mag)^2*real(Zr);
+Py=(Iy_mag)^2*real(Zy);
+Pb=(Ib_mag)^2*real(Zb);
+printf("\n Power taken by each load:\n\t Pr=%d W \n\t Py=%4.1f W \n\t Pb=%4.1f W \n", Pr, Py, Pb)
+
+
+
+printf("\n\n (b)For phase sequence RBY:\n")
+V=220;
+theta1=0;
+theta2=120;
+theta3=-120;
+Vr=complex(V*cosd(theta1),V*sind(theta1));
+Vy=complex(V*cosd(theta2),V*sind(theta2));
+Vb=complex(V*cosd(theta3),V*sind(theta3));
+
+Ir=Vr/Zr;
+Iy=Vy/Zy;
+Ib=Vb/Zb;
+In=Ir+Iy+Ib;
+In_mag=sqrt(real(In)^2+imag(In)^2);
+In_angle=atand(imag(In)/real(In));
+printf("\n The current through the neutral wire,\n In=\tMagnitude\tAngle(deg) \n\t %2.2f \t %2.2f \n",In_mag,In_angle)
+
+Ir_mag=sqrt(real(Ir)^2+imag(Ir)^2);
+Iy_mag=sqrt(real(Iy)^2+imag(Iy)^2);
+Ib_mag=sqrt(real(Ib)^2+imag(Ib)^2);
+Pr=(Ir_mag)^2*real(Zr);
+Py=(Iy_mag)^2*real(Zy);
+Pb=(Ib_mag)^2*real(Zb);
+printf("\n Power taken by each load:\n\t Pr=%d W \n\t Py=%4.1f W \n\t Pb=%4.1f W \n", Pr, Py, Pb)
+
+
+
+
diff --git a/3802/CH13/EX13.1/Ex13_1.jpg b/3802/CH13/EX13.1/Ex13_1.jpg Binary files differnew file mode 100644 index 000000000..f92fe143a --- /dev/null +++ b/3802/CH13/EX13.1/Ex13_1.jpg diff --git a/3802/CH13/EX13.1/Ex13_1.sce b/3802/CH13/EX13.1/Ex13_1.sce new file mode 100644 index 000000000..65b0ddeb7 --- /dev/null +++ b/3802/CH13/EX13.1/Ex13_1.sce @@ -0,0 +1,18 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex13_1.sce.
+
+clc;
+clear;
+Vc=60;
+V_not=120;
+t=20;
+C=10e-6;
+R=-t/(C*log(Vc/V_not));
+printf("\n The value of resistance=%1.3f mega_ohm",R*1e-6)
+
+
+
diff --git a/3802/CH13/EX13.14/Ex13_14.jpg b/3802/CH13/EX13.14/Ex13_14.jpg Binary files differnew file mode 100644 index 000000000..9b8dc4a3d --- /dev/null +++ b/3802/CH13/EX13.14/Ex13_14.jpg diff --git a/3802/CH13/EX13.14/Ex13_14.sce b/3802/CH13/EX13.14/Ex13_14.sce new file mode 100644 index 000000000..3856bbbaf --- /dev/null +++ b/3802/CH13/EX13.14/Ex13_14.sce @@ -0,0 +1,23 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex13_14.sce
+
+clc;
+clear;
+//From Ex_13.2
+Id=300e-3;
+t=6e-3;
+V=12;
+R=60;
+Ir=V/R;
+Ic1=0.15*exp(-125*t); // it Obtain, after the simplification of loop equation
+I=Ir+Ic1;
+printf("\n Current drawn from the load after 6 ms=%3.0f mA \n",I*1e3)
+Ic2=Id-Ir;
+t=log(Ic2/0.15)/-125;
+printf("\n The time when current drawn from the source is 0.3 A=%1.3f ms \n",t*1e3)
+
+
diff --git a/3802/CH13/EX13.2/Ex13_2.jpg b/3802/CH13/EX13.2/Ex13_2.jpg Binary files differnew file mode 100644 index 000000000..4328a4e87 --- /dev/null +++ b/3802/CH13/EX13.2/Ex13_2.jpg diff --git a/3802/CH13/EX13.2/Ex13_2.sce b/3802/CH13/EX13.2/Ex13_2.sce new file mode 100644 index 000000000..6a2c56003 --- /dev/null +++ b/3802/CH13/EX13.2/Ex13_2.sce @@ -0,0 +1,22 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex13_2.sce
+
+clc;
+clear;
+R1=60;
+R2=80;
+C=100e-6;
+V=12;
+t1=6e-3;
+i_S=300e-3;
+i_R=V/R1;
+i_C=(V/R2)*exp(-t1/(R2*C));
+i=i_R+i_C;
+printf("\n The current drawn from the source=%3.0f mA \n",i*1e3)
+I_C=i_S-i_R;
+t2=(R2*C)*log(V/(R2*I_C));
+printf("\n Time for draw the current of 300 mA from the source=%1.3f ms \n",t2*1e3)
diff --git a/3802/CH13/EX13.5/Ex13_5.jpg b/3802/CH13/EX13.5/Ex13_5.jpg Binary files differnew file mode 100644 index 000000000..fa12fd43c --- /dev/null +++ b/3802/CH13/EX13.5/Ex13_5.jpg diff --git a/3802/CH13/EX13.5/Ex13_5.sce b/3802/CH13/EX13.5/Ex13_5.sce new file mode 100644 index 000000000..daafb5e65 --- /dev/null +++ b/3802/CH13/EX13.5/Ex13_5.sce @@ -0,0 +1,22 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex13_5.sce
+
+clc;
+clear;
+V=100;
+R=2;
+L=10;
+t=8;
+T=L/R;
+printf("\n Time constant=%d sec \n",T)
+del=R/L;
+printf("\n Damping ratio=%1.1f \n",del)
+I=(V/R)*(1-exp(-t/T));
+printf("\n The value of current of after 8 seconds of switching=%2.1f A \n",I)
+
+
+
diff --git a/3802/CH13/EX13.6/Ex13_6.jpg b/3802/CH13/EX13.6/Ex13_6.jpg Binary files differnew file mode 100644 index 000000000..7f2e4c92b --- /dev/null +++ b/3802/CH13/EX13.6/Ex13_6.jpg diff --git a/3802/CH13/EX13.6/Ex13_6.sce b/3802/CH13/EX13.6/Ex13_6.sce new file mode 100644 index 000000000..cad8e07d2 --- /dev/null +++ b/3802/CH13/EX13.6/Ex13_6.sce @@ -0,0 +1,24 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex13_6.sce
+
+clc;
+clear;
+R=20;
+L=0.5;
+V=100;
+R_S=10;
+t1=0;
+t2=50e-3;
+Req=R+R_S;
+T1=L/Req;//Time constant1
+T2=L/R;//Time constant2
+I=V/Req;
+printf("\n Steady state current=%1.3f A \n",I)
+i=I*exp(-t2/T2);
+printf("\n The value of current after 50 ms=%0.2f A \n",i)
+
+
diff --git a/3802/CH13/EX13.7/Ex13_7.jpg b/3802/CH13/EX13.7/Ex13_7.jpg Binary files differnew file mode 100644 index 000000000..1f3589b4f --- /dev/null +++ b/3802/CH13/EX13.7/Ex13_7.jpg diff --git a/3802/CH13/EX13.7/Ex13_7.sce b/3802/CH13/EX13.7/Ex13_7.sce new file mode 100644 index 000000000..29e07d27e --- /dev/null +++ b/3802/CH13/EX13.7/Ex13_7.sce @@ -0,0 +1,24 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex13_7.sce
+
+clc;
+clear;
+R=10;
+L=0.1;
+t1=0.01;
+omega=100*%pi;
+phi=omega*t1;
+t=(asin(1)+atan((omega*L)/R))/omega;
+Imax=((-omega*L*exp(-R*t/L))/(R^2+(omega*L)^2))-(sin((100*%pi*t)-(atan(omega*L/R)))/sqrt(R^2+(omega*L)^2));
+t=0;
+Iss=((-omega*L*exp(-R*t/L))/(R^2+(omega*L)^2))-(sind((100*%pi*t)-(atan(omega*L/R)))/sqrt(R^2+(omega*L)^2));
+a=Imax/Iss;
+printf("\n Ratio of maximum value of current to steady state value of current=%1.2f \n",a)
+//Answer vary dueto round off error in 't' calculation
+
+
+
diff --git a/3802/CH14/EX14.1/Ex14_1.jpg b/3802/CH14/EX14.1/Ex14_1.jpg Binary files differnew file mode 100644 index 000000000..1dcc5cb85 --- /dev/null +++ b/3802/CH14/EX14.1/Ex14_1.jpg diff --git a/3802/CH14/EX14.1/Ex14_1.sce b/3802/CH14/EX14.1/Ex14_1.sce new file mode 100644 index 000000000..2c0fcf8d3 --- /dev/null +++ b/3802/CH14/EX14.1/Ex14_1.sce @@ -0,0 +1,30 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex14_1.sce.
+
+clc;
+clear;
+maximum_demand=1.5e3;
+total_lamps=10;
+lamps_on=7;
+lamp_ontime=5;
+lamp_power=100;
+heater_on=2;
+heater_ontime=3;
+heater_power=1e3;
+printf("\n (a)")
+actual_energy_consumed=(lamps_on*lamp_power*lamp_ontime)+(heater_on*heater_power*heater_ontime);
+time_duration=24;
+average_load=(actual_energy_consumed)/(time_duration);
+printf("\n Average load=%3.2f W \n",average_load)
+
+printf("\n (b)")
+monthly_energy_consump=actual_energy_consumed*30*1e-3;
+printf("\n Monthly energy consumption=%3.0f kW \n",monthly_energy_consump)
+
+printf("\n (c)")
+load_factor=average_load/maximum_demand;
+printf("\n Load factor=%1.3f \n",load_factor)
diff --git a/3802/CH14/EX14.2/Ex14_2.jpg b/3802/CH14/EX14.2/Ex14_2.jpg Binary files differnew file mode 100644 index 000000000..4e176a2f7 --- /dev/null +++ b/3802/CH14/EX14.2/Ex14_2.jpg diff --git a/3802/CH14/EX14.2/Ex14_2.sce b/3802/CH14/EX14.2/Ex14_2.sce new file mode 100644 index 000000000..9e0d2c2ae --- /dev/null +++ b/3802/CH14/EX14.2/Ex14_2.sce @@ -0,0 +1,45 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex14_2.sce.
+
+clc;
+clear;
+//Loads are in kilowatt
+avg_load1=1;
+avg_load2=0.3;
+avg_load3=0.5;
+avg_load4=2.5;
+max_load1=5;
+max_load2=2;
+max_load3=2;
+max_load4=10;
+max_demand1=5;
+max_demand2=1.6;
+max_demand3=1;
+max_demand4=5;
+
+printf("\n (a)")
+sumof_individualmax_dem=max_load1+max_load2+max_load3+max_load4;
+max_demandof_wholegroup=max_demand1+max_demand2+max_demand3+max_demand4;
+diversity_factor=sumof_individualmax_dem/max_demandof_wholegroup;
+printf("\n Diversity factor=%1.4f \n",diversity_factor)
+
+
+printf("\n (b)")
+LF_of_consumer1=avg_load1/max_load1;
+printf("\n Load factor of consumer1 =%1.2f \n",LF_of_consumer1)
+LF_of_consumer2=avg_load2/max_load2;
+printf("\n Load factor of consumer2 =%1.2f \n",LF_of_consumer2)
+LF_of_consumer3=avg_load3/max_load3;
+printf("\n Load factor of consumer3 =%1.2f \n",LF_of_consumer3)
+LF_of_consumer4=avg_load4/max_load4;
+printf("\n Load factor of consumer4 =%1.2f \n",LF_of_consumer4)
+
+printf("\n (c)")
+combined_avg_load=(avg_load1+avg_load2+avg_load3+avg_load4);
+printf("\n Combined average load =%1.1f kW \n",combined_avg_load)
+combined_load_factor=combined_avg_load/max_demandof_wholegroup;
+printf("\n Combined load factor =%1.3f \n",combined_load_factor)
diff --git a/3802/CH14/EX14.3/Ex14_3.jpg b/3802/CH14/EX14.3/Ex14_3.jpg Binary files differnew file mode 100644 index 000000000..118aad48b --- /dev/null +++ b/3802/CH14/EX14.3/Ex14_3.jpg diff --git a/3802/CH14/EX14.3/Ex14_3.sce b/3802/CH14/EX14.3/Ex14_3.sce new file mode 100644 index 000000000..d45fe5be4 --- /dev/null +++ b/3802/CH14/EX14.3/Ex14_3.sce @@ -0,0 +1,15 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex14_3.sce.
+
+clc;
+clear;
+average_demand=33.75; //in kilowatt
+time_duration=24*365; // in hours
+tariff=1.25; //in rupees per kilowatthour
+annualenergy_consumption=average_demand*time_duration;
+C=annualenergy_consumption*tariff;
+printf(" \n Annual bill of the consumer=%6.1f rupees \n",C)
diff --git a/3802/CH14/EX14.4/Ex14_4.jpg b/3802/CH14/EX14.4/Ex14_4.jpg Binary files differnew file mode 100644 index 000000000..c9da85508 --- /dev/null +++ b/3802/CH14/EX14.4/Ex14_4.jpg diff --git a/3802/CH14/EX14.4/Ex14_4.sce b/3802/CH14/EX14.4/Ex14_4.sce new file mode 100644 index 000000000..564dfa4e4 --- /dev/null +++ b/3802/CH14/EX14.4/Ex14_4.sce @@ -0,0 +1,20 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex14_4.sce.
+
+clc;
+clear;
+max_demand=75; //in kilowatt
+time_duration=24*365; //in hour
+load_factor=0.45;
+tariff1=650;
+tariff2=1.30;
+annual_energy_consump=max_demand*time_duration*load_factor;
+Ce=tariff2*annual_energy_consump;
+Cf=tariff1*max_demand;
+total_annualcharge=Ce+Cf;
+overall_costperkwhr=total_annualcharge/annual_energy_consump;
+printf(" \n Overall cost per kWh= %1.2f rupees \n",overall_costperkwhr)
diff --git a/3802/CH14/EX14.5/Ex14_5.jpg b/3802/CH14/EX14.5/Ex14_5.jpg Binary files differnew file mode 100644 index 000000000..422fa7070 --- /dev/null +++ b/3802/CH14/EX14.5/Ex14_5.jpg diff --git a/3802/CH14/EX14.5/Ex14_5.sce b/3802/CH14/EX14.5/Ex14_5.sce new file mode 100644 index 000000000..32fed9c57 --- /dev/null +++ b/3802/CH14/EX14.5/Ex14_5.sce @@ -0,0 +1,21 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex14_5.sce
+
+clc;
+clear;
+tariff1=3.50; //tariff in rupees per kilowatthour for first 500kilowatthour
+tariff2=3.00; //tariff in rupees per kilowatthour for next 500kilowatthour
+tariff3=2.50; //tariff in rupees per kilowatthour for usage exceeding 1000kilowatthour
+days_in_a_month=31;
+time_duration=24*days_in_a_month;
+average_demand=2.5; //in kilowatt
+monthly_consumption=time_duration*average_demand;
+a1=500; //kWh for tariff1
+a2=500; //kWh for tariff2
+a3=monthly_consumption-a1-a2; //kWh for tariff3
+monthly_charge=(a1*tariff1)+(a2*tariff2)+(a3*tariff3);
+printf("\n Monthly Charge=%d rupees.",monthly_charge)
diff --git a/3802/CH14/EX14.6/Ex14_6.jpg b/3802/CH14/EX14.6/Ex14_6.jpg Binary files differnew file mode 100644 index 000000000..73fc90bb0 --- /dev/null +++ b/3802/CH14/EX14.6/Ex14_6.jpg diff --git a/3802/CH14/EX14.6/Ex14_6.sce b/3802/CH14/EX14.6/Ex14_6.sce new file mode 100644 index 000000000..bc21c1c1c --- /dev/null +++ b/3802/CH14/EX14.6/Ex14_6.sce @@ -0,0 +1,22 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex14_6.sce.
+
+clc;
+clear;
+average_demand=450;
+load_factor=0.65;
+power_factor=0.8;
+tariff1=75; //in ruees per month per kVA
+tariff2=1.30; //in rupees per kilowatthour
+working_time=8*300;
+maximum_kw_demand=average_demand/load_factor;
+maximum_kVA_demand=maximum_kw_demand/power_factor;
+annual_energy_charge=tariff2*average_demand*working_time;
+annual_max_demand_charge=tariff1*12*maximum_kVA_demand;
+annual_charge=annual_energy_charge+annual_max_demand_charge;
+disp(annual_charge,'Annual bill of the consumer in rupees')
+//The answer vary dueto roundoff error.
diff --git a/3802/CH15/EX15.1/Ex15_1.jpg b/3802/CH15/EX15.1/Ex15_1.jpg Binary files differnew file mode 100644 index 000000000..e8d899a24 --- /dev/null +++ b/3802/CH15/EX15.1/Ex15_1.jpg diff --git a/3802/CH15/EX15.1/Ex15_1.sce b/3802/CH15/EX15.1/Ex15_1.sce new file mode 100644 index 000000000..6e67f060a --- /dev/null +++ b/3802/CH15/EX15.1/Ex15_1.sce @@ -0,0 +1,24 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex15_1.sce
+
+clc;
+clear;
+W=100;
+V=250;
+light_flux=3000;
+printf("\n(a)")
+mew=light_flux/W;
+printf("\n Lamp efficiency=%d Lumens/watt \n",mew)
+
+printf("\n(b)")
+total_solid_angle=(4*%pi);
+I=light_flux/total_solid_angle;
+printf("\n Luminous intensity=%3.2f cd \n",I)
+
+printf("\n(c)")
+M.S.C.P=I/W;
+printf("\n Mean Spherical Candle Power per watt=%1.4f cd/watt \n",M.S.C.P)
diff --git a/3802/CH15/EX15.2/Ex15_2.jpg b/3802/CH15/EX15.2/Ex15_2.jpg Binary files differnew file mode 100644 index 000000000..08b1519b6 --- /dev/null +++ b/3802/CH15/EX15.2/Ex15_2.jpg diff --git a/3802/CH15/EX15.2/Ex15_2.sce b/3802/CH15/EX15.2/Ex15_2.sce new file mode 100644 index 000000000..47e417135 --- /dev/null +++ b/3802/CH15/EX15.2/Ex15_2.sce @@ -0,0 +1,18 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex15_2.sce
+
+clc;
+clear;
+d=40e-2;
+light_flux=5000;
+absorption_factor=0.2;
+transmission_factor=0.8;
+F=light_flux*transmission_factor;
+A=%pi*d^2;
+L=F/A;
+printf("\n Average luminance of the sphere=%4.1f lumens/m^2 \n",L)
+//Answer vary due to roundoff error in surface area (A) calculation
diff --git a/3802/CH15/EX15.3/Ex15_3.jpg b/3802/CH15/EX15.3/Ex15_3.jpg Binary files differnew file mode 100644 index 000000000..d522343ce --- /dev/null +++ b/3802/CH15/EX15.3/Ex15_3.jpg diff --git a/3802/CH15/EX15.3/Ex15_3.sce b/3802/CH15/EX15.3/Ex15_3.sce new file mode 100644 index 000000000..215358f46 --- /dev/null +++ b/3802/CH15/EX15.3/Ex15_3.sce @@ -0,0 +1,15 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex15_3.sce
+
+clc;
+clear;
+M.S.C.P=1000;
+h=2.8;
+x=2.5;
+E=(M.S.C.P*h)/(h^2+x^2)^(3/2);
+printf("\n Illumination=%2.2f lux \n",E)
+
diff --git a/3802/CH15/EX15.4/Ex15_4.jpg b/3802/CH15/EX15.4/Ex15_4.jpg Binary files differnew file mode 100644 index 000000000..f949aa6e1 --- /dev/null +++ b/3802/CH15/EX15.4/Ex15_4.jpg diff --git a/3802/CH15/EX15.4/Ex15_4.sce b/3802/CH15/EX15.4/Ex15_4.sce new file mode 100644 index 000000000..cafb67074 --- /dev/null +++ b/3802/CH15/EX15.4/Ex15_4.sce @@ -0,0 +1,24 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex15_4.sce.
+
+clc;
+clear;
+//There is a mistake in the question , given height is 5 instead of 4
+h=4;
+x=[2:2:14];
+for i=1:length(x)
+
+Ed(i)=(64/(4^2+x(i)^2)^(3/2))+1;
+Eb(i)=(256/(4^2+(x(i)/2)^2)^(3/2));
+
+end
+xlabel("x-axis")
+ylabel("y-axis")
+title("Curves of L.H.S and R.H.S for different values of x")
+plot(x,[Ed Eb])
+
+legend('LHS','RHS')
diff --git a/3802/CH15/EX15.5/Ex15_5.jpg b/3802/CH15/EX15.5/Ex15_5.jpg Binary files differnew file mode 100644 index 000000000..6e3a0d2fa --- /dev/null +++ b/3802/CH15/EX15.5/Ex15_5.jpg diff --git a/3802/CH15/EX15.5/Ex15_5.sce b/3802/CH15/EX15.5/Ex15_5.sce new file mode 100644 index 000000000..ac35b5bad --- /dev/null +++ b/3802/CH15/EX15.5/Ex15_5.sce @@ -0,0 +1,26 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex15_5.sce
+
+clc;
+clear;
+I=25;
+V=230;
+l=45;
+d=(0.02*V)+1; //Permissible voltage drop
+//Referring table 15.10,
+d1=(l/3.4)*(I/27); //voltage for selected values from the table
+if (d<d1) then
+ I_refer=43;
+ l_refer=5.4;
+ A=16;
+ d2=(l/l_refer)*(I/I_refer);
+else
+ d1=d2
+end
+
+printf("\n Voltage drop=%1.3f V \n",d2)
+printf("\n Size of the conductor=%d mm^2 \n",A)
diff --git a/3802/CH2/EX2.1/Ex2_1.jpg b/3802/CH2/EX2.1/Ex2_1.jpg Binary files differnew file mode 100644 index 000000000..9bd81f516 --- /dev/null +++ b/3802/CH2/EX2.1/Ex2_1.jpg diff --git a/3802/CH2/EX2.1/Ex2_1.sce b/3802/CH2/EX2.1/Ex2_1.sce new file mode 100644 index 000000000..025ab9fb9 --- /dev/null +++ b/3802/CH2/EX2.1/Ex2_1.sce @@ -0,0 +1,31 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex2_1.sce.
+
+clc;
+clear;
+R1=3; //Resistance in ohm
+R2=5; //Resistance in ohm
+R3=4; //Resistance in ohm
+R4=8; //Resistance in ohm
+
+I2=1/3;
+I1=4*I2;
+I3=I1-I2;;
+V1=R1*I1; //Applying ohm's law(V=IR)
+V2=R2*I1;
+V3=R3*I2;
+V4=R4*I3;
+printf("\n The unknown voltages:")
+printf("\n\t V1=%d V",V1)
+printf("\n\t V2=%1.2f V",V2)
+printf("\n\t V3=%1.2f V",V3)
+printf("\n\t V4=%d V \n",V4)
+printf("\n The unknown currents:")
+printf("\n\t I1=%1.2f A",I1)
+printf("\n\t I2=%1.2f A",I2)
+printf("\n\t I3=%d A",I3)
+
diff --git a/3802/CH2/EX2.10/Ex2_10.jpg b/3802/CH2/EX2.10/Ex2_10.jpg Binary files differnew file mode 100644 index 000000000..56e4215c3 --- /dev/null +++ b/3802/CH2/EX2.10/Ex2_10.jpg diff --git a/3802/CH2/EX2.10/Ex2_10.sce b/3802/CH2/EX2.10/Ex2_10.sce new file mode 100644 index 000000000..82dcd5a6b --- /dev/null +++ b/3802/CH2/EX2.10/Ex2_10.sce @@ -0,0 +1,47 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex2_10.sce.
+
+clc;
+clear;
+R1=4;
+R2=3;
+R3=5;
+R4=6;
+
+//CASE (a)
+Vs1=80;
+VA1=(Vs1/R3)/((1/R1)+(1/R2)+(1/R3)+(1/R4));
+I1dash=VA1/R1; //From ohm's law(V=IR)
+I2dash=VA1/R2;
+I3dash=(Vs1-VA1)/R3;
+I4dash=VA1/R4;
+
+//CASE (b)
+Vs2=90;
+VA2=(Vs2/R2)/((1/R1)+(1/R2)+(1/R3)+(1/R4));
+I1doubledash=VA2/R1;
+I2doubledash=(Vs2-VA2)/R2;
+I3doubledash=VA2/R3;
+I4doubledash=VA2/R4;
+
+//CASE (c)
+Is=20;
+VA3=Is/((1/R1)+(1/R2)+(1/R3)+(1/R4));
+I1tripledash=VA3/R1;
+I2tripledash=VA3/R2;
+I3tripledash=VA3/R3;
+I4tripledash=VA3/R4;
+I1=I1dash+I1doubledash+I1tripledash;
+I2=-I2dash+I2doubledash-I2tripledash;
+I3=I3dash-I3doubledash-I3tripledash;
+I4=I4dash+I4doubledash+I4tripledash;
+printf("\n Current in 4 ohm resitance=%2.1f A \n",I1)
+printf("\n Current in 3 ohm resitance=%1.2f A \n",I2)
+printf("\n Current in 5 ohm resitance=%d A \n",I3)
+printf("\n Current in 6 ohm resitance=%2.1f A \n",I4)
+
+//The answer vary dueto roundoff error
diff --git a/3802/CH2/EX2.11/Ex2_11.jpg b/3802/CH2/EX2.11/Ex2_11.jpg Binary files differnew file mode 100644 index 000000000..0f11ba69a --- /dev/null +++ b/3802/CH2/EX2.11/Ex2_11.jpg diff --git a/3802/CH2/EX2.11/Ex2_11.sce b/3802/CH2/EX2.11/Ex2_11.sce new file mode 100644 index 000000000..4521d5f11 --- /dev/null +++ b/3802/CH2/EX2.11/Ex2_11.sce @@ -0,0 +1,22 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex2_11.sce
+
+clc;
+clear;
+R1=30; //Resistance in ohm
+R2=60; //Resistance in ohm
+R3=60; //Resistance in ohm
+R4=30; //Resistance in ohm
+R5=10; //Resistance in ohm
+R=50; //Resistance in ohm
+I1=5/110; //Loop1 current in Ampere
+I2=5/110; //Loop2 current in Ampere
+Voc=(I2*R2)-(I1*R1); //Open circuit voltage in Volt
+Isc=1/30; //Open circuit current in Ampere
+Rs=Voc/Isc; //Series resistance in ohm
+I=Voc/(Rs+R);
+printf("\n Current through the 50 ohm resistor=%1.3f A \n",I)
diff --git a/3802/CH2/EX2.12/Ex2_12.jpg b/3802/CH2/EX2.12/Ex2_12.jpg Binary files differnew file mode 100644 index 000000000..c2ee3a356 --- /dev/null +++ b/3802/CH2/EX2.12/Ex2_12.jpg diff --git a/3802/CH2/EX2.12/Ex2_12.sce b/3802/CH2/EX2.12/Ex2_12.sce new file mode 100644 index 000000000..fa5868bd0 --- /dev/null +++ b/3802/CH2/EX2.12/Ex2_12.sce @@ -0,0 +1,15 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex2_12.sce
+
+clc;
+clear;
+R=50; //Resistance in ohm
+Is=1/30; //Source current in Ampere
+Rs=40.92; //Parallel resistance in ohm
+Gs=1/Rs; //Parallel conductance in mho
+I=(Is*Rs)/(Rs+R);
+printf("\n Current through the 50 ohm resistor=%1.3f A \n",I)
diff --git a/3802/CH2/EX2.13/Ex2_13.jpg b/3802/CH2/EX2.13/Ex2_13.jpg Binary files differnew file mode 100644 index 000000000..9e48412bd --- /dev/null +++ b/3802/CH2/EX2.13/Ex2_13.jpg diff --git a/3802/CH2/EX2.13/Ex2_13.sce b/3802/CH2/EX2.13/Ex2_13.sce new file mode 100644 index 000000000..14f16e2a1 --- /dev/null +++ b/3802/CH2/EX2.13/Ex2_13.sce @@ -0,0 +1,22 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex2_13.sce.
+
+clc;
+clear;
+R1=4; //Resistance in ohm
+R2=4; //Resistance in ohm
+R3=8; //Resistance in ohm
+R4=10; //Resistance in ohm
+R5=3; //Resistance in ohm
+R6=8; //Resistance in ohm
+R7=2; //Resistance in ohm
+R12=1/((1/R1)+(1/R2)); //R1 and R2 are in parallel
+R34=1/((1/R4)+(1/(R3+R12))); //R12 and R3 are in parallel with R4
+R56=1/((1/R6)+(1/(R5+R34))); //R34 and R5 are in parallel with R6
+Rab=R7+R56; //R56 and R7 are in series
+RL=Rab;
+printf("\n Load resitance to the 10 volt source=%d ohm \n",RL )
diff --git a/3802/CH2/EX2.14/Ex2_14.jpg b/3802/CH2/EX2.14/Ex2_14.jpg Binary files differnew file mode 100644 index 000000000..ebd1ab7ae --- /dev/null +++ b/3802/CH2/EX2.14/Ex2_14.jpg diff --git a/3802/CH2/EX2.14/Ex2_14.sce b/3802/CH2/EX2.14/Ex2_14.sce new file mode 100644 index 000000000..296418118 --- /dev/null +++ b/3802/CH2/EX2.14/Ex2_14.sce @@ -0,0 +1,15 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex2_14.sce
+
+clc;
+clear;
+I=5/31; //Circuit current in ampere
+Vs=5; //Source voltage in volt
+R1=3; //Resistance in ohm
+R2=4; //Resistance in ohm
+driving_point_resistance=Vs/I;
+printf("\n The driving point resistance of the voltage source=%d ohm \n",driving_point_resistance)
diff --git a/3802/CH2/EX2.15/Ex2_15.jpg b/3802/CH2/EX2.15/Ex2_15.jpg Binary files differnew file mode 100644 index 000000000..1a4d3fe17 --- /dev/null +++ b/3802/CH2/EX2.15/Ex2_15.jpg diff --git a/3802/CH2/EX2.15/Ex2_15.sce b/3802/CH2/EX2.15/Ex2_15.sce new file mode 100644 index 000000000..81190c5be --- /dev/null +++ b/3802/CH2/EX2.15/Ex2_15.sce @@ -0,0 +1,34 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex2_15.sce.
+
+clc;
+clear;
+R_aB=5;
+R_AB=6;
+R_BC=6;
+R_CD=5;
+R_AE=25;
+R_ED=10;
+R_DA=5;
+R_EC=50;
+
+//For triangle AED
+R_OA=(R_AE*R_DA)/(R_AE+R_ED+R_DA);
+R_OD=(R_ED*R_DA)/(R_AE+R_ED+R_DA);
+R_OE=(R_AE*R_ED)/(R_AE+R_ED+R_DA);
+
+//For triangle OCD
+R_OC=R_OE+R_EC;
+R_OdashO=(R_OC*R_OD)/(R_OC+R_OD+R_CD);
+R_OdashD=(R_CD*R_OD)/(R_OC+R_OD+R_CD);
+R_OdashC=(R_OC*R_CD)/(R_OC+R_OD+R_CD);
+
+R_OB=R_OA+R_AB;
+R_BOdash=((R_OB+R_OdashO)*(R_BC+(R_OdashC)))/(R_OB+R_OdashO+R_BC+R_OdashC);
+Rab=(R_aB+(R_BOdash)+(R_OdashD));
+printf("\n The driving point resistance=%2.1f ohms \n",Rab)
+
diff --git a/3802/CH2/EX2.16/Ex2_16.jpg b/3802/CH2/EX2.16/Ex2_16.jpg Binary files differnew file mode 100644 index 000000000..861fd5915 --- /dev/null +++ b/3802/CH2/EX2.16/Ex2_16.jpg diff --git a/3802/CH2/EX2.16/Ex2_16.sce b/3802/CH2/EX2.16/Ex2_16.sce new file mode 100644 index 000000000..1e9a45132 --- /dev/null +++ b/3802/CH2/EX2.16/Ex2_16.sce @@ -0,0 +1,28 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex2_16.sce.
+
+clc;
+clear;
+R1=10;
+I1=2.5;
+V2=60;
+R2=30;
+I2=V2/R2; //Ohm's law
+Gs=(1/R1)+(1/R2);
+Rs=1/Gs;
+Isc=I1+I2;
+Voc=Isc*Rs;
+
+//case (a)
+printf("\n (a)")
+R=Rs;
+printf("\n The value of R which absorbs maximum power from the circuit=%1.1f ohm \n",R)
+
+//case (b)
+printf("\n (b)")
+Pm=Voc^2/(4*Rs);
+printf("\n The amount of power=%2.0f W \n",Pm)
diff --git a/3802/CH2/EX2.2/Ex2_2.jpg b/3802/CH2/EX2.2/Ex2_2.jpg Binary files differnew file mode 100644 index 000000000..e0f8aea3d --- /dev/null +++ b/3802/CH2/EX2.2/Ex2_2.jpg diff --git a/3802/CH2/EX2.2/Ex2_2.sce b/3802/CH2/EX2.2/Ex2_2.sce new file mode 100644 index 000000000..4f667e302 --- /dev/null +++ b/3802/CH2/EX2.2/Ex2_2.sce @@ -0,0 +1,26 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex2_2.sce.
+
+clc;
+clear;
+a1=2;b1=1;c1=5;d1=1; //these are the coefficient values of I1,I2,I3 and source obtained from loop ABDA in the given circuit
+a2=4;b2=-5;c2=-3;d2=0; //these are the coefficient values of I1,I2,I3 and source obtained from loop ABCA in the given circuit
+a3=4;b3=1;c3=-9;d3=0; //these are the coefficient values of I1,I2,I3 and source obtained from loop BCDB in the given circuit
+
+del=det([a1 b1 c1;a2 b2 c2;a3 b3 c3]);
+del1=det([d1 b1 c1;d2 b2 c2;d3 b3 c3]);
+del2=det([a1 d1 c1;a2 d2 c2;a3 d3 c3]);
+del3=det([a1 b1 d1;a2 b2 d2;a3 b3 d3]);
+
+I1=del1/del; //Using Cramer's rule
+I2=del2/del; //Using Cramer's rule
+I3=del3/del; //Using Cramer's rule
+
+printf("\n The current values are,")
+printf("\n\t I1=%1.1f A",I1)
+printf("\n\t I2=%1.1f A",I2)
+printf("\n\t I3=%1.1f A",I3)
diff --git a/3802/CH2/EX2.3/Ex2_3.jpg b/3802/CH2/EX2.3/Ex2_3.jpg Binary files differnew file mode 100644 index 000000000..edc1ef3a5 --- /dev/null +++ b/3802/CH2/EX2.3/Ex2_3.jpg diff --git a/3802/CH2/EX2.3/Ex2_3.sce b/3802/CH2/EX2.3/Ex2_3.sce new file mode 100644 index 000000000..284c87346 --- /dev/null +++ b/3802/CH2/EX2.3/Ex2_3.sce @@ -0,0 +1,28 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex2_3.sce.
+
+clc;
+clear;
+//case1
+//voltage source series with the resistance converted into current source parallel to the conductance
+printf("\n (a)")
+Rs1=5;
+Vs1=100;
+Is1=Vs1/Rs1;
+Gs1=1/Rs1;
+printf("\n Is1=%d A \n",Is1)
+printf("\n Gs1=%1.2f mho \n",Gs1)
+
+//case2
+//current source parallel to the conductance converted into voltage source series with the resistance
+printf("\n (b)")
+Gs2=10e-3;
+Is2=500e-3;
+Vs2=Is2/Gs2;
+Rs2=1/Gs2;
+printf("\n Vs2=%d V \n",Vs2)
+printf("\n Rs2=%d ohm \n",Rs2)
diff --git a/3802/CH2/EX2.4/Ex2_4.jpg b/3802/CH2/EX2.4/Ex2_4.jpg Binary files differnew file mode 100644 index 000000000..5a973ace1 --- /dev/null +++ b/3802/CH2/EX2.4/Ex2_4.jpg diff --git a/3802/CH2/EX2.4/Ex2_4.sce b/3802/CH2/EX2.4/Ex2_4.sce new file mode 100644 index 000000000..967a5c8c9 --- /dev/null +++ b/3802/CH2/EX2.4/Ex2_4.sce @@ -0,0 +1,27 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex2_4.sce.
+
+clc;
+clear;
+R5=60;
+a1=9;b1=-5;c1=0;d1=80; //these are the coefficient values of VA,VB,VC and the source obtained from node A in the given circuit
+a2=-1;b2=7;c2=-2;d2=24; //these are the coefficient values of VA,VB,VC and the source obtained from node B in the given circuit
+a3=0;b3=-3;c3=4;d3=36; //these are the coefficient values of VA,VB,VC and the source obtained from node C in the given circuit
+
+del=det([a1 b1 c1;a2 b2 c2;a3 b3 c3]);
+del1=det([d1 b1 c1;d2 b2 c2;d3 b3 c3]);
+del2=det([a1 d1 c1;a2 d2 c2;a3 d3 c3]);
+del3=det([a1 b1 d1;a2 b2 d2;a3 b3 d3]);
+
+VA=del1/del; //Using Cramer's rule
+VB=del2/del; //Using Cramer's rule
+VC=del3/del; //Using Cramer's rule
+Vba=VA-VB;
+I5=VC/R5; // from Ohm's law
+printf("\n Vba=%1.3f V \n",Vba)
+//Answer vary dueto round off error
+printf("\n Current through the 60 ohm resistor=%1.3f A \n",I5)
diff --git a/3802/CH2/EX2.5/Ex2_5.jpg b/3802/CH2/EX2.5/Ex2_5.jpg Binary files differnew file mode 100644 index 000000000..106d92d63 --- /dev/null +++ b/3802/CH2/EX2.5/Ex2_5.jpg diff --git a/3802/CH2/EX2.5/Ex2_5.sce b/3802/CH2/EX2.5/Ex2_5.sce new file mode 100644 index 000000000..922fb075a --- /dev/null +++ b/3802/CH2/EX2.5/Ex2_5.sce @@ -0,0 +1,26 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex2_5.sce.
+
+clc;
+clear;
+R1=10;
+R2=30;
+R3=15;
+R4=45;
+
+a1=3;b1=-1;c1=-9; //these are the coefficient values of VA,VB and the source obtained from node A in the given circuit
+a2=-3;b2=4;c2=-27; //these are the coefficient values of VA,VB and the source obtained from node B in the given circuit
+del=det([a1 b1;a2 b2]);
+del1=det([c1 b1;c2 b2]);
+del2=det([a1 c1;a2 c2]);
+
+VA=del1/del; //Using Cramer's rule
+VB=del2/del; //Using Cramer's rule
+Vba=VA-VB;
+I2=VA/R2; // from Ohm's law
+printf("\n Vba=%d V \n",Vba)
+printf("\n Current through the 30 ohm resistor=%1.4f A \n",I2)
diff --git a/3802/CH2/EX2.6/Ex2_6.jpg b/3802/CH2/EX2.6/Ex2_6.jpg Binary files differnew file mode 100644 index 000000000..0b822e835 --- /dev/null +++ b/3802/CH2/EX2.6/Ex2_6.jpg diff --git a/3802/CH2/EX2.6/Ex2_6.sce b/3802/CH2/EX2.6/Ex2_6.sce new file mode 100644 index 000000000..366e65898 --- /dev/null +++ b/3802/CH2/EX2.6/Ex2_6.sce @@ -0,0 +1,26 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex2_6.sce.
+
+clc;
+clear;
+R1=15;
+R2=20;
+R3=10;
+R4=5;
+
+a1=35;b1=-20;c1=2; //these are the coefficient values of I1,I2 and source obtained from loop ABDA in the given circuit
+a2=-20;b2=35;c2=0.5; //these are the coefficient values of I1,I2 and source obtained from loop BCDB in the given circuit
+del=det([a1 b1;a2 b2]);
+del1=det([c1 b1;c2 b2]);
+del2=det([a1 c1;a2 c2]);
+
+I1=del1/del; //Using Cramer's rule
+I2=del2/del; //Using Cramer's rule
+I20=I1-I2;
+Vcb=R3*I2;
+printf("\n Current through the 20 ohm resistor=%1.4f A \n",I20)
+printf("\n Voltage across the node B and C=%1.3f V \n",Vcb)
diff --git a/3802/CH2/EX2.7/Ex2_7.jpg b/3802/CH2/EX2.7/Ex2_7.jpg Binary files differnew file mode 100644 index 000000000..e8486d930 --- /dev/null +++ b/3802/CH2/EX2.7/Ex2_7.jpg diff --git a/3802/CH2/EX2.7/Ex2_7.sce b/3802/CH2/EX2.7/Ex2_7.sce new file mode 100644 index 000000000..2cadcd643 --- /dev/null +++ b/3802/CH2/EX2.7/Ex2_7.sce @@ -0,0 +1,23 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex2_7.sce.
+
+clc;
+clear;
+R1=5; //Resistance in ohm
+R2=2; //Resistance in ohm
+R3=3; //Resistance in ohm
+
+a1=7;b1=-5;c1=50; //these are the coefficient values of VA,VB and the source obtained from node A in the given circuit
+a2=3;b2=5;c2=0; //these are the coefficient values of VA,VB and the source obtained from node B in the given circuit
+del=det([a1 b1;a2 b2]);
+del1=det([c1 b1;c2 b2]);
+del2=det([a1 c1;a2 c2]);
+
+VA=del1/del; //Using Cramer's rule
+VB=del2/del; //Using Cramer's rule
+Vba=VA-VB;
+printf("\n Voltage across the 2 ohm resistor=%d V \n",Vba)
diff --git a/3802/CH2/EX2.8/Ex2_8.jpg b/3802/CH2/EX2.8/Ex2_8.jpg Binary files differnew file mode 100644 index 000000000..4394411b3 --- /dev/null +++ b/3802/CH2/EX2.8/Ex2_8.jpg diff --git a/3802/CH2/EX2.8/Ex2_8.sce b/3802/CH2/EX2.8/Ex2_8.sce new file mode 100644 index 000000000..3e8178a3d --- /dev/null +++ b/3802/CH2/EX2.8/Ex2_8.sce @@ -0,0 +1,24 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex2_8.sce.
+
+clc;
+clear;
+R1=3;
+R2=4;
+R3=2;
+R4=1;
+
+a1=7;b1=-4;c1=2; //these are the coefficient values of I1,I2 and source obtained from the first loop in the given circuit
+a2=-10;b2=7;c2=3; //these are the coefficient values of I1,I2 and source obtained from the second loop in the given circuit
+del=det([a1 b1;a2 b2]);
+del1=det([c1 b1;c2 b2]);
+del2=det([a1 c1;a2 c2]);
+
+I1=del1/del; //Using Cramer's rule
+I2=del2/del; //Using Cramer's rule
+I=I2-I1;
+printf("\n Current through the 4 ohm resistor=%1.2f A(upward) \n",I)
diff --git a/3802/CH2/EX2.9/Ex2_9.jpg b/3802/CH2/EX2.9/Ex2_9.jpg Binary files differnew file mode 100644 index 000000000..82bec2369 --- /dev/null +++ b/3802/CH2/EX2.9/Ex2_9.jpg diff --git a/3802/CH2/EX2.9/Ex2_9.sce b/3802/CH2/EX2.9/Ex2_9.sce new file mode 100644 index 000000000..c14e97c9c --- /dev/null +++ b/3802/CH2/EX2.9/Ex2_9.sce @@ -0,0 +1,32 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex2_9.sce.
+
+clc;
+clear;
+R1=3;
+R2=4;
+R3=2;
+R4=1;
+
+//case (a)
+a1=13;b1=-6;c1=20; //these are the coefficient values of VA,VB and source obtained from the node A in the given circuit
+a2=-5;b2=3;c2=-20; //these are the coefficient values of VA,VB and source obtained from the node B in the given circuit
+del=det([a1 b1;a2 b2]);
+del1=det([c1 b1;c2 b2]);
+VA1=del1/del;
+Idash=-VA1/R2;
+
+//case (b)
+Vs=3;
+a1=13;b1=-6;c1=9; //these are the coefficient values of VA,VB and source obtained from the node A in the given circuit
+a2=-5;b2=3;c2=0; //these are the coefficient values of VA,VB and source obtained from the node B in the given circuit
+del=det([a1 b1;a2 b2]);
+del1=det([c1 b1;c2 b2]);
+VA2=del1/del;
+I_doubledash=(Vs-VA2)/R2;
+I=Idash+I_doubledash;
+printf("\n Current through the 4 ohm resistor=%1.2f A \n",I)
diff --git a/3802/CH3/EX3.1/Ex3_1.jpg b/3802/CH3/EX3.1/Ex3_1.jpg Binary files differnew file mode 100644 index 000000000..43f686ff0 --- /dev/null +++ b/3802/CH3/EX3.1/Ex3_1.jpg diff --git a/3802/CH3/EX3.1/Ex3_1.sce b/3802/CH3/EX3.1/Ex3_1.sce new file mode 100644 index 000000000..701c8ce95 --- /dev/null +++ b/3802/CH3/EX3.1/Ex3_1.sce @@ -0,0 +1,16 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_1.sce
+
+clc;
+clear;
+L=2.5;
+s=-1; //complex frequency , which is taken from the coefficient value of time in the given exponential term
+Z=L*s;
+printf("\n Impedence=%1.1f ohm \n",Z)
+Y=1/Z;
+printf("\n Admittance=%0.1f mho \n",Y)
+//Voltage cannot be determined since it involves equation in the result
diff --git a/3802/CH3/EX3.10/Ex3_10.jpg b/3802/CH3/EX3.10/Ex3_10.jpg Binary files differnew file mode 100644 index 000000000..cf80ac0de --- /dev/null +++ b/3802/CH3/EX3.10/Ex3_10.jpg diff --git a/3802/CH3/EX3.10/Ex3_10.sce b/3802/CH3/EX3.10/Ex3_10.sce new file mode 100644 index 000000000..7196ce595 --- /dev/null +++ b/3802/CH3/EX3.10/Ex3_10.sce @@ -0,0 +1,41 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_10.sce
+
+clc;
+clear;
+//datas are taken from example 3.8
+R=2; //Resistance in ohm
+L=2; //Inductor value in henry
+C=1/12; //capacitor value in farad
+omega=3; //Taken from v(t) value
+//given v(t)=12 sin(3t+30);
+Vm=12;
+Vrms=Vm/sqrt(2);
+theta=30;
+
+Z=complex(R,(omega*L)-(1/(omega*C)));
+V=complex(Vrms*cosd(theta),Vrms*sind(theta));
+I=V/Z; //from Ohm's law
+disp(I,' circuit current is')
+
+Vr=I*R;
+disp(Vr,'Voltage across the resistance is')
+
+theta1=90;
+Xl=complex(omega*L*cosd(theta1),omega*L*sind(theta1));
+Vl=I*Xl;
+disp(Vl,'Voltage across the inductance is')
+
+theta2=-90;
+Xc=complex(cosd(theta2)/(omega*C),sind(theta2)/(omega*C));
+Vc=I*Xc;
+disp(Vc,'Voltage across the capacitance is')
+
+Vsum=Vr+Vl+Vc;
+disp(Vsum,'The sum of three element voltages is')
+
+//Answers are displayed in a complex mode(real and imaginary) because it is solved in complex method
diff --git a/3802/CH3/EX3.11/Ex3_11.jpg b/3802/CH3/EX3.11/Ex3_11.jpg Binary files differnew file mode 100644 index 000000000..bde15c880 --- /dev/null +++ b/3802/CH3/EX3.11/Ex3_11.jpg diff --git a/3802/CH3/EX3.11/Ex3_11.sce b/3802/CH3/EX3.11/Ex3_11.sce new file mode 100644 index 000000000..3a6770a5d --- /dev/null +++ b/3802/CH3/EX3.11/Ex3_11.sce @@ -0,0 +1,29 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_11.sce
+
+clc;
+clear;
+R=10e3; //Resistance in ohm
+L=50.7e-6; //Inductor value in henry
+C=500e-12; //capacitor value in farad
+
+fr=1/(2*%pi*sqrt(L*C));
+printf("\n Resonance frequency=%1.0f MHz \n",fr*1e-6)
+
+Q=(1/R)*sqrt(L/C);
+printf("\n Quality factor=%1.5f \n",Q)
+
+f1=(-fr/(2*Q))+(fr*sqrt((1/(2*Q))^2+1));
+printf("\n Lower half power frequency=%2.1f kHz \n",f1*1e-3)
+
+f2=(fr/(2*Q))+(fr*sqrt((1/(2*Q))^2+1));
+printf("\n Upper half power frequency=%5.1f kHz \n",f2*1e-3)
+
+BW=f2-f1;
+printf("\n Bandwidth=%5.0f kHz \n",BW*1e-3)
+
+//Answer vary dueto round off error in fr , Q Calculation
diff --git a/3802/CH3/EX3.12/Ex3_12.jpg b/3802/CH3/EX3.12/Ex3_12.jpg Binary files differnew file mode 100644 index 000000000..d562e4578 --- /dev/null +++ b/3802/CH3/EX3.12/Ex3_12.jpg diff --git a/3802/CH3/EX3.12/Ex3_12.sce b/3802/CH3/EX3.12/Ex3_12.sce new file mode 100644 index 000000000..b5009ef3e --- /dev/null +++ b/3802/CH3/EX3.12/Ex3_12.sce @@ -0,0 +1,30 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_12.sce
+
+clc;
+clear;
+R=10e3; //Resistance in ohm
+L=50.7e-6; //Inductor value in henry
+C=500e-12; //capacitor value in farad
+
+fr=1/(2*%pi*sqrt(L*C));
+printf("\n Resonance frequency=%1.0f MHz \n",fr*1e-6)
+
+Q=(R)*sqrt(C/L);
+printf("\n Quality factor=%2.1f \n",Q)
+
+f1=(-fr/(2*Q))+(fr*sqrt((1/(2*Q))^2+1));
+printf("\n Lower half power frequency=%3.0f kHz \n",f1*1e-3)
+
+f2=(fr/(2*Q))+(fr*sqrt((1/(2*Q))^2+1));
+printf("\n Upper half power frequency=%4.0f kHz \n",f2*1e-3)
+
+BW=f2-f1;
+printf("\n Bandwidth=%2.0f kHz \n",BW*1e-3)
+
+
+
diff --git a/3802/CH3/EX3.13/Ex3_13.jpg b/3802/CH3/EX3.13/Ex3_13.jpg Binary files differnew file mode 100644 index 000000000..09ed588c9 --- /dev/null +++ b/3802/CH3/EX3.13/Ex3_13.jpg diff --git a/3802/CH3/EX3.13/Ex3_13.sce b/3802/CH3/EX3.13/Ex3_13.sce new file mode 100644 index 000000000..1f2eae098 --- /dev/null +++ b/3802/CH3/EX3.13/Ex3_13.sce @@ -0,0 +1,44 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_13.sce
+
+clc;
+clear;
+
+//from the figure 3.25 the below values are taken
+Z1=complex(1.2,1.6);
+Z2=complex(1.0,-1.75);
+Z12=complex(6,8);
+
+V1=complex(110,0);
+V2=complex(110*cosd(-5),110*sind(-5));
+
+//VA is calculated from the nodal equation of node A
+VA=((V1/Z1)+(V2/Z2))/(1/Z1 + 1/Z2 + 1/Z12);
+VA_mag=sqrt(real(VA)^2+imag(VA)^2);
+VA_ang=atand(imag(VA)/real(VA));
+printf("\n V3=%3.0f angle:%1.2f degree \n",VA_mag,VA_ang)
+
+I1=(V1-VA)/Z1;
+I1_mag=sqrt(real(I1)^2+imag(I1)^2);
+I1_ang=atand(imag(I1)/real(I1))-180;
+printf("\n I1=%1.2f angle:%3.2f degree \n",I1_mag,I1_ang)
+
+I2=(V2-VA)/Z2;
+I2_mag=sqrt(real(I2)^2+imag(I2)^2);
+I2_ang=atand(imag(I2)/real(I2));
+printf("\n I2=%2.0f angle:%2.0f degree \n",I2_mag,I2_ang)
+
+I3=(VA)/Z12;
+I3_mag=sqrt(real(I3)^2+imag(I3)^2);
+I3_ang=atand(imag(I3)/real(I3));
+printf("\n I3=%2.2f angle:%2.1f degree \n",I3_mag,I3_ang)
+
+//Answer vary dueto round off error
+
+
+
+
diff --git a/3802/CH3/EX3.14/Ex3_14.jpg b/3802/CH3/EX3.14/Ex3_14.jpg Binary files differnew file mode 100644 index 000000000..4455ac193 --- /dev/null +++ b/3802/CH3/EX3.14/Ex3_14.jpg diff --git a/3802/CH3/EX3.14/Ex3_14.sce b/3802/CH3/EX3.14/Ex3_14.sce new file mode 100644 index 000000000..a13026bf7 --- /dev/null +++ b/3802/CH3/EX3.14/Ex3_14.sce @@ -0,0 +1,23 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_14.sce
+
+clc;
+clear;
+
+//i(t)=sqrt(2)*1e-4*cos(4*10^7*t);
+a1=complex(5,4.04);b1=complex(0,-0.04);c1=1/10; //these are the coefficient values of VA,VB and source obtained from the node A in the given circuit
+a2=complex(200,-0.04);b2=complex(1.2,-1.56);c2=0; //these are the coefficient values of VA,VB and source obtained from the node B in the given circuit
+del=det([a1 b1;a2 b2]);
+delB=det([a1 c1;a2 c2]);
+VB=delB/del;
+
+VB_mag=sqrt(real(VB)^2+imag(VB)^2);
+VB_ang=atand(imag(VB)/real(VB))+180;
+printf("\n Vo=%1.1f angle:%3.1f degree \n",VB_mag,VB_ang)
+
+//Answer vary due to roundoff error
+//Result:Vo(t)=sqrt(2)*1.5*cos(4*10^7*t+157.7)
diff --git a/3802/CH3/EX3.15/Ex3_15.jpg b/3802/CH3/EX3.15/Ex3_15.jpg Binary files differnew file mode 100644 index 000000000..3262ab66d --- /dev/null +++ b/3802/CH3/EX3.15/Ex3_15.jpg diff --git a/3802/CH3/EX3.15/Ex3_15.sce b/3802/CH3/EX3.15/Ex3_15.sce new file mode 100644 index 000000000..cd7ede439 --- /dev/null +++ b/3802/CH3/EX3.15/Ex3_15.sce @@ -0,0 +1,26 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_15.sce
+
+clc;
+clear;
+V1=complex(12,0);
+//current source and its parallel impedance gives the voltage source
+V2=complex(5*cosd(-30),5*sind(-30))*complex(6,-3);
+//for loop1 , the coefficient of I1 ,I2 and source is given below
+a1=complex(10+6,15);
+b1=-complex(10,15);
+c1=V1;
+//for loop2 , the coefficient of I1 ,I2 and source is given below
+a2=-complex(10,15);
+b2=complex(19,12);
+c2=-V2;
+del2=det([a1 c1;a2 c2]);
+del=det([a1 b1;a2 b2]);
+I2=del2/del;
+I2_mag=sqrt(real(I2)^2+imag(I2)^2);
+I2_ang=atand(imag(I2)/real(I2))+180;
+printf("\n Current through the 3 ohm resistor=%1.3f angle:%3.2f degree \n",I2_mag,I2_ang)
diff --git a/3802/CH3/EX3.16/Ex3_16.jpg b/3802/CH3/EX3.16/Ex3_16.jpg Binary files differnew file mode 100644 index 000000000..4afa414dd --- /dev/null +++ b/3802/CH3/EX3.16/Ex3_16.jpg diff --git a/3802/CH3/EX3.16/Ex3_16.sce b/3802/CH3/EX3.16/Ex3_16.sce new file mode 100644 index 000000000..5e1f2fc9f --- /dev/null +++ b/3802/CH3/EX3.16/Ex3_16.sce @@ -0,0 +1,29 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//EX3_16.sce
+
+clc;
+clear;
+//from the mesh equations coefficient of I1,I2,and source is given below
+a1=complex(4,-2);
+b1=-complex(3,-2);
+c1=complex(12,0);
+a2=-complex(3,4);
+b2=complex(5,3);
+c2=complex(0);
+
+del1=det([c1 b1;c2 b2]);
+del2=det([a1 c1;a2 c2]);
+del=det([a1 b1;a2 b2]);
+I2=del2/del;
+I1=del1/del;
+
+V2=(2*I2)+((3*(-2*%i))*(I1-I2));
+V2_mag=sqrt(real(V2)^2+imag(V2)^2);
+V2_ang=atand(imag(V2)/real(V2));
+printf("\n V2=%1.2f angle:%2.2f degree \n",V2_mag,V2_ang)
+//Anawer vary dueto round off error
+//Result:v2(t)=4.87*sqrt(2) sin(2t-66.04)
diff --git a/3802/CH3/EX3.17/Ex3_17.jpg b/3802/CH3/EX3.17/Ex3_17.jpg Binary files differnew file mode 100644 index 000000000..0fa382d64 --- /dev/null +++ b/3802/CH3/EX3.17/Ex3_17.jpg diff --git a/3802/CH3/EX3.17/Ex3_17.sce b/3802/CH3/EX3.17/Ex3_17.sce new file mode 100644 index 000000000..0503c4695 --- /dev/null +++ b/3802/CH3/EX3.17/Ex3_17.sce @@ -0,0 +1,23 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_17.sce
+
+clc;
+clear;
+//Below values are taken from the given circuit (fig.3.29)
+Z1=complex(5,-5);
+Z2=complex(5,-5);
+Z3=complex(10,10);
+V=complex(100,0);
+
+I=V/(Z1+Z2);
+Vab=I*Z2;
+Zs=(Z1*Z2)/(Z1+Z2)+Z3;
+V_AB=(Vab*real(Z3))/Zs;
+V_AB_mag=sqrt(real(V_AB)^2+imag(V_AB)^2);
+V_AB_ang=atand(imag(V_AB)/real(V_AB));
+printf("\n V_AB=%2.2f angle:%2.2f degree \n",V_AB_mag,V_AB_ang)
+
diff --git a/3802/CH3/EX3.18/Ex3_18.jpg b/3802/CH3/EX3.18/Ex3_18.jpg Binary files differnew file mode 100644 index 000000000..f17782a71 --- /dev/null +++ b/3802/CH3/EX3.18/Ex3_18.jpg diff --git a/3802/CH3/EX3.18/Ex3_18.sce b/3802/CH3/EX3.18/Ex3_18.sce new file mode 100644 index 000000000..ad1c91f12 --- /dev/null +++ b/3802/CH3/EX3.18/Ex3_18.sce @@ -0,0 +1,24 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_18.sce
+
+clc;
+clear;
+//Below values are taken from the given circuit (fig.3.27)
+Z1=complex(6,0);
+Z2=complex(10,15);
+Z3=complex(6,-3);
+
+Zs=(Z1*Z2)/(Z1+Z2)+Z3;
+V=12;
+Va=V-(V/(Z1+Z2))*real(Z3);
+Is=complex(5*cosd(-30),5*sind(-30));
+Vb=Is*Z3;
+Voc=Va-Vb;
+I=Voc/(Zs+3);
+I_mag=sqrt(real(I)^2+imag(I)^2);
+I_ang=atand(imag(I)/real(I))+180;
+printf("\n The required current= %1.4f angle:%3.2f degree \n",I_mag,I_ang)
diff --git a/3802/CH3/EX3.19/Ex3_19.jpg b/3802/CH3/EX3.19/Ex3_19.jpg Binary files differnew file mode 100644 index 000000000..a659111fe --- /dev/null +++ b/3802/CH3/EX3.19/Ex3_19.jpg diff --git a/3802/CH3/EX3.19/Ex3_19.sce b/3802/CH3/EX3.19/Ex3_19.sce new file mode 100644 index 000000000..ad6bd435f --- /dev/null +++ b/3802/CH3/EX3.19/Ex3_19.sce @@ -0,0 +1,34 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_19.sce
+
+clc;
+clear;
+//Below values are taken from the given circuit (fig.3.27)
+Z1=complex(6,0);
+Z2=complex(10,15);
+Z3=complex(6,-3);
+Zs=(Z1*Z2)/(Z1+Z2)+Z3;
+Vs=complex(12,0);
+Is=complex(5*cosd(-30),5*sind(-30));
+
+//for loop1 , the coefficient of I2 ,Isc and source is given below
+a1=Z1+Z2;
+b1=Z1;
+c1=Vs;
+//for loop2 , the coefficient of I1 ,I2 and source is given below
+a2=Z2;
+b2=-Z3;
+c2=Is*Z3;
+del2=det([a1 c1;a2 c2]);
+del=det([a1 b1;a2 b2]);
+
+Isc=del2/del;
+Ys=1/Zs;
+I=(Isc/Ys)/((1/Ys)+3);
+I_mag=sqrt(real(I)^2+imag(I)^2);
+I_ang=atand(imag(I)/real(I))+180;
+printf("\n Current through the 3 ohm resistor= %1.4f angle:%3.2f degree \n",I_mag,I_ang)
diff --git a/3802/CH3/EX3.20/Ex3_20.jpg b/3802/CH3/EX3.20/Ex3_20.jpg Binary files differnew file mode 100644 index 000000000..fe7aa6bf4 --- /dev/null +++ b/3802/CH3/EX3.20/Ex3_20.jpg diff --git a/3802/CH3/EX3.20/Ex3_20.sce b/3802/CH3/EX3.20/Ex3_20.sce new file mode 100644 index 000000000..abea7902a --- /dev/null +++ b/3802/CH3/EX3.20/Ex3_20.sce @@ -0,0 +1,36 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_20.sce.
+
+clc;
+clear;
+
+Vm=16*sqrt(2); //Maximum voltage value in volt
+Vrms=Vm/sqrt(2); //RMS voltage in volt
+R=1; //resistance in ohm
+C=-%i; //capacitance in ohm
+R1=2; //resistance in ohm
+R2=3; //resistance in ohm
+C1=-%i; //capacitance in ohm
+//After simplication of the network by star-delta transformation
+Za=complex(2,-10)/26;
+Zb=complex(3,-15)/26;
+Zc=complex(30,6)/26;
+Voc=(Vrms*(Zc+C))/(R+Za+Zc+C);
+Zs=(1/((1/(Za+R))+(1/(Zc+C))))+Zb;
+
+printf("\n (a)")
+Zl=Zs;
+Zl_mag=sqrt(real(Zl)^2+imag(Zl)^2);
+Zl_ang=atand(imag(Zl)/real(Zl));
+printf("\n Z_L=%1.2f angle:%2.2f degree \n",Zl_mag,Zl_ang)
+
+printf("\n (b)")
+Voc_mag=sqrt(real(Voc)^2+imag(Voc)^2);
+Pmax=Voc_mag^2/(2*real(Zl));
+printf("\n Maximum power=%2.2f watt \n",Pmax)
+//There is a mistake in Zs calculation .Zs=0.7555-0.8539i is wrong .the correct value of Zs=0.6829-0.8536i
+//So the answer vary
diff --git a/3802/CH3/EX3.21/Ex3_21.jpg b/3802/CH3/EX3.21/Ex3_21.jpg Binary files differnew file mode 100644 index 000000000..f3c4c9277 --- /dev/null +++ b/3802/CH3/EX3.21/Ex3_21.jpg diff --git a/3802/CH3/EX3.21/Ex3_21.sce b/3802/CH3/EX3.21/Ex3_21.sce new file mode 100644 index 000000000..8197ec8fa --- /dev/null +++ b/3802/CH3/EX3.21/Ex3_21.sce @@ -0,0 +1,39 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_21.sce
+
+clc;
+clear;
+P1=7e3; //supplied power in watt
+pf1=0.8; //lagging power factor
+//below values are taken from the given circuit (fig.3.39)
+Z1=complex(0.8,1);
+Z2=complex(1.4,1.6);
+V1=440; //terminal voltage in volt
+PL=10e3; //power required by the load in watt
+pf2=0.8; //lagging power factor
+
+I1=P1/(V1*pf1);
+Pr1=P1-(I1^2*real(Z1));
+Q1=P1*tand(acosd(pf1));
+Qr1=Q1-(I1^2*imag(Z1));
+VA=sqrt(Pr1^2+Qr1^2);
+VL=VA/I1;
+printf("\n V_L=%3.1f V \n",VL)
+
+QL=PL*tand(acosd(pf2));
+Pr2=PL-Pr1;
+Qr2=QL-Qr1;
+VA_load=sqrt(Pr2^2+Qr2^2);
+I2=VA_load/VL;
+
+P2=Pr2+(I2^2*real(Z2));
+Q2=Qr2+(I2^2*imag(Z2));
+V2=sqrt(P2^2+Q2^2)/I2;
+printf("\n V2=%3.1f V \n",V2)
+printf("\n Reactive power:P2=%4.1f W \t Q2=%4.1f Var \n",P2,Q2)
+
+
diff --git a/3802/CH3/EX3.22/Ex3_22.jpg b/3802/CH3/EX3.22/Ex3_22.jpg Binary files differnew file mode 100644 index 000000000..c645dd3c1 --- /dev/null +++ b/3802/CH3/EX3.22/Ex3_22.jpg diff --git a/3802/CH3/EX3.22/Ex3_22.sce b/3802/CH3/EX3.22/Ex3_22.sce new file mode 100644 index 000000000..f7d41c445 --- /dev/null +++ b/3802/CH3/EX3.22/Ex3_22.sce @@ -0,0 +1,37 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_22.sce.
+
+clc;
+clear;
+V=230; //Supply voltage in volt
+PL1=10E3; //supply power to loaad 1 in watt
+pf1=0.7;// lagging power factor value of load 1
+P2=10E3; //supply power to load 2 in watt
+pf2=0.5; //lagging power factor value of load 2
+
+printf("\n (a)")
+PL2=P2*pf2;
+QL1=PL1*tand(acosd(pf1));
+QL2=PL2*tand(acosd(pf2));
+PL=PL1+PL2;
+QL=QL1+QL2;
+QC=-QL;
+IC=QC/V;
+XC=QC/IC^2;
+f=50;
+C=1/(2*%pi*f*-XC);
+printf("\n The value of capacitance=%4.1f micro-farad \n",C*1e6)
+
+printf("\n (b)\t(i)")
+kVA=sqrt(PL^2+QL^2);
+Ig=kVA/V;
+printf("\n Magnitude alternator current without capacitor=%3.1f A \n",Ig)
+printf("\n\t(ii)")
+kVA=PL;
+Ig=kVA/V;
+printf("\n Magnitude alternator current with capacitor=%2.1f A \n",Ig)
+//Answer vary dueto roundoff error
diff --git a/3802/CH3/EX3.27/Ex3_27.jpg b/3802/CH3/EX3.27/Ex3_27.jpg Binary files differnew file mode 100644 index 000000000..9278382de --- /dev/null +++ b/3802/CH3/EX3.27/Ex3_27.jpg diff --git a/3802/CH3/EX3.27/Ex3_27.sce b/3802/CH3/EX3.27/Ex3_27.sce new file mode 100644 index 000000000..e9157b56f --- /dev/null +++ b/3802/CH3/EX3.27/Ex3_27.sce @@ -0,0 +1,53 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_27(b).sce
+
+clc;
+clear;
+//case(b)
+//from case(a) result v(t)=5+6.36 sin(t)+2.12 sin(3t)+1.27 sin(5t)
+V0=5
+V1=6.36/sqrt(2);
+V3=2.12/sqrt(2);
+V5=1.27/sqrt(2);
+
+omega0=0;
+omega1=1;
+omega3=3;
+omega5=5;
+
+Vdc=(2*V0)/(2+%i*omega0);
+V1=(2*V1)/(2+%i*omega1)
+V3=(2*V3)/(2+%i*omega3)
+V5=(2*V5)/(2+%i*omega5)
+
+Vdc_mag=sqrt(real(Vdc)^2+imag(Vdc)^2);
+Vdc_ang=atand(imag(Vdc)/real(Vdc));
+V1_mag=sqrt(real(V1)^2+imag(V1)^2);
+V1_ang=atand(imag(V1)/real(V1))-180;
+V3_mag=sqrt(real(V3)^2+imag(V3)^2);
+V3_ang=atand(imag(V3)/real(V3));
+V5_mag=sqrt(real(V5)^2+imag(V5)^2);
+V5_ang=atand(imag(V5)/real(V5));
+
+
+t=[0:0.1:2*%pi];
+
+Vc1=V1_mag*sin(t-V1_ang);
+Vc3=V3_mag*sin((3*t)-V3_ang);
+Vc5=V5_mag*sin((5*t)-V5_ang);
+for tt=1:length(t)
+ V(tt)=Vdc_mag*sin(%pi/2);
+end
+V=V';
+Vc=V+Vc1+Vc3+Vc5;
+
+plot(t,[Vc1; Vc3; Vc5; V ;Vc])
+
+title('The dc, fundamental, third and fifth harmonics components and resultant waveforms')
+xlabel('Time')
+ylabel('Voltage')
+legend('Fundamental component','3rd harmonic component','5th harmonic component','DC component','output')
diff --git a/3802/CH3/EX3.3/Ex3_3.jpg b/3802/CH3/EX3.3/Ex3_3.jpg Binary files differnew file mode 100644 index 000000000..36e7efc78 --- /dev/null +++ b/3802/CH3/EX3.3/Ex3_3.jpg diff --git a/3802/CH3/EX3.3/Ex3_3.sce b/3802/CH3/EX3.3/Ex3_3.sce new file mode 100644 index 000000000..9c766dc03 --- /dev/null +++ b/3802/CH3/EX3.3/Ex3_3.sce @@ -0,0 +1,20 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_3(b).sce.
+
+clc;
+clear;
+R=1;
+L=1;
+C=0.1;
+//case (b)
+s=0;
+//Z=R+(L*s)+(1/(C*s))
+Z=0; //Z=s/(s^2+s+10)
+//voltage across the resistancce and inductance are zero
+
+Vc=100/(s^2+s+10);//simplified form of (10s/(s^2+s+10))/(0.1s)
+printf("\n Voltage across the capacitance=%d volt",Vc)
diff --git a/3802/CH3/EX3.4/Ex3_4.jpg b/3802/CH3/EX3.4/Ex3_4.jpg Binary files differnew file mode 100644 index 000000000..99829a122 --- /dev/null +++ b/3802/CH3/EX3.4/Ex3_4.jpg diff --git a/3802/CH3/EX3.4/Ex3_4.sce b/3802/CH3/EX3.4/Ex3_4.sce new file mode 100644 index 000000000..c627a69d7 --- /dev/null +++ b/3802/CH3/EX3.4/Ex3_4.sce @@ -0,0 +1,25 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_4(b).sce
+
+
+//case(b)
+clc;
+clear;
+R=1;
+L=0.1;
+C=1;
+I=10;
+s=0; //complex frequency
+V=(10*s)/(s^2+s+10); //voltage across the parallel circuit
+iG=V*R;
+printf("\n Current through conductance=%d A \n",iG)
+iC=V*C;
+printf("\n Current through capacitance=%d A \n",iC)
+iL=100/(s^2+s+10); //simplified form of V/Ls=(10s/(s^2+s+10))/(0.1s)
+printf("\n Current through inductance=%d A \n",iL)
+
+
diff --git a/3802/CH3/EX3.5/Ex3_5.jpg b/3802/CH3/EX3.5/Ex3_5.jpg Binary files differnew file mode 100644 index 000000000..24003c585 --- /dev/null +++ b/3802/CH3/EX3.5/Ex3_5.jpg diff --git a/3802/CH3/EX3.5/Ex3_5.sce b/3802/CH3/EX3.5/Ex3_5.sce new file mode 100644 index 000000000..1dc265daa --- /dev/null +++ b/3802/CH3/EX3.5/Ex3_5.sce @@ -0,0 +1,30 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_5.sce
+
+clc;
+clear;
+R=2;
+L=2;
+C=1/12;
+omega=3;
+XL=omega*L;
+XC=1/(omega*C);
+Z=complex(R,XL-XC);
+Vl=12*sqrt(2);
+theta=30;
+V=complex(Vl*cosd(theta),Vl*sind(theta));
+I=V/Z;
+I_mag=sqrt(real(I)^2+imag(I)^2);
+I_angle=atand(imag(I)/real(I));
+printf("\n Current flow through the given circuit=%d angle:%d degree \n",I_mag,I_angle)
+
+XL=complex(0,6);
+V_L=I*XL;
+V_L_mag=sqrt(real(V_L)^2+imag(V_L)^2);
+V_L_angle=atand(imag(V_L)/real(V_L));
+printf("\n Voltage across the inductance=%d angle:%2.0f degree \n",V_L_mag,V_L_angle)
+//result:Vl(t)=36 sin(wt+75) , i(t)=6 sin(wt-15)
diff --git a/3802/CH3/EX3.6/Ex3_6.jpg b/3802/CH3/EX3.6/Ex3_6.jpg Binary files differnew file mode 100644 index 000000000..a146bef3c --- /dev/null +++ b/3802/CH3/EX3.6/Ex3_6.jpg diff --git a/3802/CH3/EX3.6/Ex3_6.sce b/3802/CH3/EX3.6/Ex3_6.sce new file mode 100644 index 000000000..901211118 --- /dev/null +++ b/3802/CH3/EX3.6/Ex3_6.sce @@ -0,0 +1,24 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_6.sce
+
+clc;
+clear;
+G=3; //conductance in mho
+L=1/4; //Inductor value in henry
+C=3; //capacitor value in farad
+omega=2; //taken from i(t)
+XL=1/(omega*L);
+XC=(omega*C);
+Y=complex(G,XC-XL);
+I=complex(15,0);
+V=I/Y;
+BL= complex(0,-2);
+I_L=V*BL;
+I_L_mag=sqrt(real(I_L)^2+imag(I_L)^2);
+I_L_angle=atand(imag(I_L)/real(I_L))-180;
+printf("\n The current through inductor=%d angle:%2.1f degree \n",I_L_mag,I_L_angle)
+//result: iL(t)=6 cos(2t-143.1)
diff --git a/3802/CH3/EX3.7/Ex3_7.jpg b/3802/CH3/EX3.7/Ex3_7.jpg Binary files differnew file mode 100644 index 000000000..555ca9032 --- /dev/null +++ b/3802/CH3/EX3.7/Ex3_7.jpg diff --git a/3802/CH3/EX3.7/Ex3_7.sce b/3802/CH3/EX3.7/Ex3_7.sce new file mode 100644 index 000000000..a7c871a92 --- /dev/null +++ b/3802/CH3/EX3.7/Ex3_7.sce @@ -0,0 +1,21 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_7.sce
+
+clc;
+clear;
+
+printf("\n (a)")
+T=(2*%pi); //Time value for one cycle
+V=15; //Maximum voltage in volt
+t0=%pi/4;t1=%pi; //time values for particular period which is taken from the given voltage wave form
+Vav=(1/T)*integrate('V*sin(t)','t',t0,t1);
+printf("\n Average value=%1.3f volt \n",Vav)
+
+printf("\n (b)")
+Vrms=sqrt(((V^2)/T)*integrate('(1-cos(2*t))/2','t',t0,t1)); //sin^2(t)=(1-cos(2t))/2
+printf("\n RMS value=%1.2f volt \n",Vrms)
+//Answer given in the book for Vrms is wrong
diff --git a/3802/CH3/EX3.8/Ex3_8.jpg b/3802/CH3/EX3.8/Ex3_8.jpg Binary files differnew file mode 100644 index 000000000..f4ca24acd --- /dev/null +++ b/3802/CH3/EX3.8/Ex3_8.jpg diff --git a/3802/CH3/EX3.8/Ex3_8.sce b/3802/CH3/EX3.8/Ex3_8.sce new file mode 100644 index 000000000..ba8d34f2b --- /dev/null +++ b/3802/CH3/EX3.8/Ex3_8.sce @@ -0,0 +1,43 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//EX3_8.sce
+
+clc;
+clear;
+R=2; //Resistance in ohm
+L=2; //Inductor value in henry
+C=1/12; //capacitor value in farad
+omega=3; //Taken from v(t) value
+//given v(t)=12 sin(3t+30);
+Vm=12;
+Vrms=Vm/sqrt(2);
+theta=30;
+
+Z=complex(R,(omega*L)-(1/(omega*C)));
+V=complex(Vrms*cosd(theta),Vrms*sind(theta));
+I=V/Z;
+I_mag=sqrt(real(I)^2+imag(I)^2);
+I_ang=atand(imag(I)/real(I));
+printf("\n Circuit current=%1.0f angle:%d degree \n",I_mag,I_ang)
+
+Vr=I*R;
+Vr_mag=sqrt(real(Vr)^2+imag(Vr)^2);
+Vr_ang=atand(imag(Vr)/real(Vr));
+printf("\n Voltage across the resistance=%1.0f angle:%d degree \n",Vr_mag,Vr_ang)
+
+theta1=90;
+Xl=complex(omega*L*cosd(theta1),omega*L*sind(theta1));
+Vl=I*Xl;
+Vl_mag=sqrt(real(Vl)^2+imag(Vl)^2);
+Vl_ang=atand(imag(Vl)/real(Vl));
+printf("\n Voltage across the inductance=%1.0f angle:%1.0f degree \n",Vl_mag,Vl_ang)
+
+theta2=-90;
+Xc=complex(cosd(theta2)/(omega*C),sind(theta2)/(omega*C));
+Vc=I*Xc;
+Vc_mag=sqrt(real(Vc)^2+imag(Vc)^2);
+Vc_ang=atand(imag(Vc)/real(Vc))-180;
+printf("\n Voltage across the capacitance=%1.0f angle:%d degree \n",Vc_mag,Vc_ang)
diff --git a/3802/CH3/EX3.9/Ex3_9.jpg b/3802/CH3/EX3.9/Ex3_9.jpg Binary files differnew file mode 100644 index 000000000..88b5aed32 --- /dev/null +++ b/3802/CH3/EX3.9/Ex3_9.jpg diff --git a/3802/CH3/EX3.9/Ex3_9.sce b/3802/CH3/EX3.9/Ex3_9.sce new file mode 100644 index 000000000..b34b53ecf --- /dev/null +++ b/3802/CH3/EX3.9/Ex3_9.sce @@ -0,0 +1,46 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex3_9.sce
+
+clc;
+clear;
+G=3; //Conductance in mho
+L=1/4; //Inductor value in henry
+C=3; //capacitor value in farad
+//Given i(t)=15 cos 2t;
+Im=15;
+Irms=Im/sqrt(2);
+omega=2;
+theta=0;
+
+Y=complex(G,(omega*C)-(1/(omega*L)));
+I=complex(Irms*cosd(theta),Irms*sind(theta));
+V=I/Y;
+V_mag=sqrt(real(V)^2+imag(V)^2);
+V_ang=atand(imag(V)/real(V));
+printf("\n Voltage across the elements=%1.2f angle:%2.1f degree \n",V_mag,V_ang)
+
+Ig=V*G;
+Ig_mag=sqrt(real(Ig)^2+imag(Ig)^2);
+Ig_ang=atand(imag(Ig)/real(Ig));
+printf("\n Current through the conductor=%1.2f angle:%2.1f degree \n",Ig_mag,Ig_ang)
+
+theta1=-90;
+Bl=complex(cosd(theta1)/(omega*L),sind(theta1)/(omega*L));
+Il=V*Bl;
+Il_mag=sqrt(real(Il)^2+imag(Il)^2);
+Il_ang=atand(imag(Il)/real(Il))-180;
+printf("\n Current through the inductor=%1.2f angle:%3.1f degree \n",Il_mag,Il_ang)
+
+theta2=90;
+Bc=complex(cosd(theta1)*omega*C,sind(theta1)*omega*C);
+Ic=V*Bc;
+Ic_mag=sqrt(real(Ic)^2+imag(Ic)^2);
+Ic_ang=atand(imag(Ic)/real(Ic));
+printf("\n Current through the capacitor=%2.3f angle:%2.1f degree \n",Ic_mag,Ic_ang)
+
+
+
diff --git a/3802/CH4/EX4.1/Ex4_1.jpg b/3802/CH4/EX4.1/Ex4_1.jpg Binary files differnew file mode 100644 index 000000000..3728b4790 --- /dev/null +++ b/3802/CH4/EX4.1/Ex4_1.jpg diff --git a/3802/CH4/EX4.1/Ex4_1.sce b/3802/CH4/EX4.1/Ex4_1.sce new file mode 100644 index 000000000..52c23bc3b --- /dev/null +++ b/3802/CH4/EX4.1/Ex4_1.sce @@ -0,0 +1,22 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex4_1.sce.
+
+clc;
+clear;
+Q1=2e-9; //Sphere 1 charges in coulomb
+Q2=-0.5e-9; //Sphere 2 charges in coulomb
+r=4e-2; //Distance between the two spheres in m
+epsilon_not=1/(36e9*%pi);
+printf("\n(a)")
+F=-(Q1*Q2)/(4*%pi*epsilon_not*r^2); //Coulomb's law
+printf("\n Force between two spheres when they are displaced 4cm apart=%1.4f*10^-5 N Attractive\n",F*1e5)
+
+printf("\n(b)")
+q=(Q1+Q2)/2;
+F=(q^2)/(4*%pi*epsilon_not*r^2)
+printf("\n Force between two spheres if they are brought into contact and separated by 4cm =%1.4f*10^-5 N repulsive\n",F*1e5)
+
diff --git a/3802/CH4/EX4.11/Ex4_11.jpg b/3802/CH4/EX4.11/Ex4_11.jpg Binary files differnew file mode 100644 index 000000000..db501f08a --- /dev/null +++ b/3802/CH4/EX4.11/Ex4_11.jpg diff --git a/3802/CH4/EX4.11/Ex4_11.sce b/3802/CH4/EX4.11/Ex4_11.sce new file mode 100644 index 000000000..48ad8bd75 --- /dev/null +++ b/3802/CH4/EX4.11/Ex4_11.sce @@ -0,0 +1,25 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex4_11.sce.
+
+clc;
+clear;
+q=1e-6;
+l=2e-2;
+E=1e5;
+
+printf("\n (a)")
+theta=90;
+p=l*q;
+T_max=p*E*sind(theta);
+printf("\n The maximum torque=%1.1f*10^-3 Nm\n",T_max*1e3)
+
+printf("\n (b)")
+U_180=-p*E*cosd(180); //U is the potential energy for theta=180 degree and 0 degree
+U_0=-p*E*cosd(0);
+W=(U_180)-(U_0);
+printf("\n The work done=%1.1f*10^-3 J",W*1e3)
+
diff --git a/3802/CH4/EX4.14/Ex4_14.jpg b/3802/CH4/EX4.14/Ex4_14.jpg Binary files differnew file mode 100644 index 000000000..b955389cf --- /dev/null +++ b/3802/CH4/EX4.14/Ex4_14.jpg diff --git a/3802/CH4/EX4.14/Ex4_14.sce b/3802/CH4/EX4.14/Ex4_14.sce new file mode 100644 index 000000000..7e3611832 --- /dev/null +++ b/3802/CH4/EX4.14/Ex4_14.sce @@ -0,0 +1,14 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex4_14.sce.
+
+clc;
+clear;
+V=100;
+epsilon_not=8.854e-12;
+r=10e-2;
+q=4*%pi*epsilon_not*r*V;
+printf("\n Magnitude value of isolated positive charge=%1.2g*10^-9 coulomb",q*1e9)
diff --git a/3802/CH4/EX4.15/Ex4_15.jpg b/3802/CH4/EX4.15/Ex4_15.jpg Binary files differnew file mode 100644 index 000000000..02e7acfd7 --- /dev/null +++ b/3802/CH4/EX4.15/Ex4_15.jpg diff --git a/3802/CH4/EX4.15/Ex4_15.sce b/3802/CH4/EX4.15/Ex4_15.sce new file mode 100644 index 000000000..edb73f642 --- /dev/null +++ b/3802/CH4/EX4.15/Ex4_15.sce @@ -0,0 +1,15 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex4_15.sce.
+
+clc;
+clear;
+q=1e-9;
+r_p=10e-2;
+r_q=20e-2;
+epsilon_not=8.854e-12;
+V=(q/(4*%pi*epsilon_not))*((1/r_p)-(1/r_q));
+printf("\n The potential difference between the two points=%2.0f volt",V)
diff --git a/3802/CH4/EX4.16/Ex4_16.jpg b/3802/CH4/EX4.16/Ex4_16.jpg Binary files differnew file mode 100644 index 000000000..b3fc3652f --- /dev/null +++ b/3802/CH4/EX4.16/Ex4_16.jpg diff --git a/3802/CH4/EX4.16/Ex4_16.sce b/3802/CH4/EX4.16/Ex4_16.sce new file mode 100644 index 000000000..cbcb797ed --- /dev/null +++ b/3802/CH4/EX4.16/Ex4_16.sce @@ -0,0 +1,21 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex4_16.sce.
+
+clc;
+clear;
+q1=-2e-9;
+q2=3e-9;
+q3=2e-9;
+q4=1e-9;
+AB=1; //Given square side as 1 metre
+BC=1;
+epsilon_not=8.854e-12;
+AP=sqrt(AB^2+BC^2)/2; //formula derived from the figure
+Vp=(1/(4*%pi*epsilon_not*AP))*(q1+q2+q3+q4);
+printf("\n Potential at the centre of the square=%2.2f volt",Vp)
+
+//Answer vary due to roundoff error
diff --git a/3802/CH4/EX4.18/Ex4_18.jpg b/3802/CH4/EX4.18/Ex4_18.jpg Binary files differnew file mode 100644 index 000000000..7cd9406a3 --- /dev/null +++ b/3802/CH4/EX4.18/Ex4_18.jpg diff --git a/3802/CH4/EX4.18/Ex4_18.sce b/3802/CH4/EX4.18/Ex4_18.sce new file mode 100644 index 000000000..3f8a2a4a3 --- /dev/null +++ b/3802/CH4/EX4.18/Ex4_18.sce @@ -0,0 +1,24 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex4_18.sce.
+clc;
+clear;
+Q1=3e-6;
+Q2=2e-6;
+a=9e9; //a=(1/(4*%pi*epsilon_not))
+
+x=1;y=2;z=3;
+
+//V=-a*((Q1/(sqrt((x-1)^2+(y-1)^2+(z-1)^2)))+(Q2/(sqrt((x-1)^2+(y-3)^2+(z-2)^2))));
+
+dV_dx=-a*((Q1*(x-1)/((x-1)^2+(y-1)^2+(z-1)^2)^(3/2))+(Q2*(x-1)/((x-1)^2+(y-3)^2+(z-2)^2)^(3/2))); //differentietion of potential with respect to x
+
+dV_dy=-a*((Q1*(y-1)/((x-1)^2+(y-1)^2+(z-1)^2)^(3/2))+(Q2*(y-3)/((x-1)^2+(y-3)^2+(z-2)^2)^(3/2))); //differentietion of potential with respect to y
+
+dV_dz=-a*((Q1*(z-1)/((x-1)^2+(y-1)^2+(z-1)^2)^(3/2))+(Q2*(z-2)/((x-1)^2+(y-3)^2+(z-2)^2)^(3/2))); //differentietion of potential with respect to z
+
+//E=-(del_V)
+printf("\n E=(%gi)+(%4.0fj)+(%5.0fk) V/m",-dV_dx,-dV_dy,-dV_dz)
diff --git a/3802/CH4/EX4.19/Ex4_19.jpg b/3802/CH4/EX4.19/Ex4_19.jpg Binary files differnew file mode 100644 index 000000000..34c22f0a0 --- /dev/null +++ b/3802/CH4/EX4.19/Ex4_19.jpg diff --git a/3802/CH4/EX4.19/Ex4_19.sce b/3802/CH4/EX4.19/Ex4_19.sce new file mode 100644 index 000000000..e6faed92b --- /dev/null +++ b/3802/CH4/EX4.19/Ex4_19.sce @@ -0,0 +1,43 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex4_19.sce.
+
+clc;
+clear;
+r1=3e-2;
+r2=6e-2;
+r3=9e-2;
+q1=9e-12;
+q2=-6e-12;
+q3=3e-12;
+d1=2e-2;
+d2=4e-2;
+d3=7e-2;
+d4=12e-2;
+epsilon_not=8.854e-12;
+a=9e9; //a=1/(4*%pi*epsilon_not);
+
+printf("\n Field strength and potentials for point a,b,c,d are ,")
+Ea=0;
+printf("\n\t Ea=%g N/C",Ea)
+Va=a*((q1/r1)+(q2/r2)+(q3/r3));
+printf("\n\t Va=%g V \n",Va)
+
+Eb=a*(q1/d2^2);
+printf("\n\t Eb=%g N/C",Eb)
+Vb=a*((q1/d2)+(q2/r2)+(q3/r3));
+printf("\n\t Vb=%g V \n",Vb)
+
+Ec=a*((q1/d3^2)+(q2/d3^2));
+printf("\n\t Ec=%1.2f N/C",Ec)
+Vc=a*((q1/d3)+(q2/d3)+(q3/r3));
+printf("\n\t Vc=%1.3f V \n",Vc)
+
+Ed=(a/d4^2)*(q1+q2+q3);
+printf("\n\t Ed=%g N/C",Ed)
+Vd=(a/d4)*(q1+q2+q3);
+printf("\n\t Vd=%g V \n",Vd)
+//There is a error in book calculation on Vc. In the book Vc=0.762 volt instead of 0.6857 volt
diff --git a/3802/CH4/EX4.22/Ex4_22.jpg b/3802/CH4/EX4.22/Ex4_22.jpg Binary files differnew file mode 100644 index 000000000..285acf13c --- /dev/null +++ b/3802/CH4/EX4.22/Ex4_22.jpg diff --git a/3802/CH4/EX4.22/Ex4_22.sce b/3802/CH4/EX4.22/Ex4_22.sce new file mode 100644 index 000000000..df93e8765 --- /dev/null +++ b/3802/CH4/EX4.22/Ex4_22.sce @@ -0,0 +1,34 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex4_22.sce.
+
+clc;
+clear;
+V=2.5; //potential difference of the plates in kv
+x=0.25; //distance between two parallel plates in cm
+x1=0.02; //airgap in between the parallel plates in cm
+x2=0.23; //thickness of fibre sheet in the gap in cm
+epsilon_r=5;
+
+//As the eletric displacement is perpendicular to the boundary
+//D=D1=D2; , D1=epsilon_not*E1; , D2=epsilon_not*epsilon_r*E2;
+//from this E1=5*E2;
+
+//V=V1+V2; V1=x1*E1; V2=x2*E2;
+//from this we can find the equation of E2
+
+E2=V/((x1*epsilon_r)+(x2));
+E1=5*E2;
+
+printf("\n Electric field strength in air , E1=%2.2f kV/cm \n",E1)
+printf("\n Electric field strength in the fibre , E2=%1.3f kV/cm \n",E2)
+
+E=30; //Dielectric strength of air in kV/cm
+if (E1>E)
+ printf("\n The air will break.")
+else
+ printf("\n The air will not break.")
+end
diff --git a/3802/CH4/EX4.24/Ex4_24.jpg b/3802/CH4/EX4.24/Ex4_24.jpg Binary files differnew file mode 100644 index 000000000..1388818a3 --- /dev/null +++ b/3802/CH4/EX4.24/Ex4_24.jpg diff --git a/3802/CH4/EX4.24/Ex4_24.sce b/3802/CH4/EX4.24/Ex4_24.sce new file mode 100644 index 000000000..b0cfd9aed --- /dev/null +++ b/3802/CH4/EX4.24/Ex4_24.sce @@ -0,0 +1,28 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex4_24.sce.
+
+clc;
+clear;
+d=1e-2;
+l=15e-2;
+h=10e-2;
+Q=750e-12;
+epsilon_not=8.854e-12;
+
+A=l*h;
+C=(epsilon_not*A)/d;
+printf("\n Capacitance=%2.3f pF \n",C*1e12)
+V=Q/C;
+printf("\n Potential difference=%2.1f volt \n",V)
+
+epsilon_r=4;
+C=(epsilon_not*epsilon_r*A)/d;
+printf("\n New capacitance=%2.3f pF \n",C*1e12)
+V=Q/C;
+printf("\n New potential difference=%2.3f volt \n",V)
+
+//There is a error in the book calculation for finding new potential difference(V) ,the answer is given V=14.125 volt insteadof 14.118 volt
diff --git a/3802/CH4/EX4.26/Ex4_26.jpg b/3802/CH4/EX4.26/Ex4_26.jpg Binary files differnew file mode 100644 index 000000000..bf5ec21b9 --- /dev/null +++ b/3802/CH4/EX4.26/Ex4_26.jpg diff --git a/3802/CH4/EX4.26/Ex4_26.sce b/3802/CH4/EX4.26/Ex4_26.sce new file mode 100644 index 000000000..907fa7925 --- /dev/null +++ b/3802/CH4/EX4.26/Ex4_26.sce @@ -0,0 +1,33 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex4_26.sce.
+
+clc;
+clear;
+d_i=5e-3; //Diameter of inner cylinder in metre
+d_o=15e-3; //Diameter of outer cylinder in metre
+epsilon_r=4;
+V=500;
+epsilon_not=8.854e-12;
+epsilon=epsilon_r*epsilon_not;
+a=d_i/2;
+b=d_o/2;
+C=(2*%pi*epsilon)/(log(b/a));
+printf("\n Capacitance of the cable=%3.2f pF/m \n",C*1e12)
+
+printf("\n(a)")
+p_l=C*V; //Electric displacement through a cylindrical area of unit length in C/m
+D=p_l/(2*%pi*a);
+E=D/epsilon;
+printf("\n The electric flux density at the surface of inner conductor=%1.3f micro_C/m^2",D*1e6)
+printf("\n The electric field intensity at the surface of inner conductor=%3.0f kV/m \n",E*1e-3)
+
+printf("\n(b)")
+D=p_l/(2*%pi*b);
+E=D/epsilon;
+printf("\n The electric flux density at the inner surface of outer conductor=%1.3f micro_C/m^2",D*1e6)
+printf("\n The electric field intensity at the inner surface of outer conductor=%2.3f kV/m \n",E*1e-3)
+//Answer vary dueto round off error
diff --git a/3802/CH4/EX4.27/Ex4_27.jpg b/3802/CH4/EX4.27/Ex4_27.jpg Binary files differnew file mode 100644 index 000000000..a6a4f8fa5 --- /dev/null +++ b/3802/CH4/EX4.27/Ex4_27.jpg diff --git a/3802/CH4/EX4.27/Ex4_27.sce b/3802/CH4/EX4.27/Ex4_27.sce new file mode 100644 index 000000000..3a79fda6d --- /dev/null +++ b/3802/CH4/EX4.27/Ex4_27.sce @@ -0,0 +1,15 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex4_27.sce.
+
+clc;
+clear;
+l=4e3;
+b=2*75e-2;
+a=2.5e-2;
+epsilon_not=8.854e-12;
+C=(%pi*epsilon_not*l)/log(b/a);
+printf("\n Capacitance of the transmission line=%1.4f micro farad",C*1e6)
diff --git a/3802/CH4/EX4.28/Ex4_28.jpg b/3802/CH4/EX4.28/Ex4_28.jpg Binary files differnew file mode 100644 index 000000000..8ee59508b --- /dev/null +++ b/3802/CH4/EX4.28/Ex4_28.jpg diff --git a/3802/CH4/EX4.28/Ex4_28.sce b/3802/CH4/EX4.28/Ex4_28.sce new file mode 100644 index 000000000..49d756ffd --- /dev/null +++ b/3802/CH4/EX4.28/Ex4_28.sce @@ -0,0 +1,23 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex4_28.sce.
+
+clc;
+clear;
+t1=1.5; //Insulation thickness of conductor in cm
+d_c=1.5; //Diameter of conductor in cm
+a1=d_c/2;
+b1=a1+t1;
+R1=500; //Insulation resistance in megaohm for a given thickness
+R2=700; //Insulation resistance in megaohm for a unknown thickness
+
+//R=(p/(2*%pi*l))*log(b/a) R1=(p/(2*%pi*l))*log(b1/a1) R2=(p/(2*%pi*l))*log(b2/a2)
+
+a2=d_c/2;
+b2=a2; //b2 is the sum of a2 and unknown thickness
+
+t2=a2*(b1/a1)^(R2/R1)-b2; //thickness of 700 megaohm resistance insulation in cm
+printf("\n Insulation thickness of the cable if insulation resistance is 700 megaohm=%1.3f cm",t2)
diff --git a/3802/CH4/EX4.29/Ex4_29.jpg b/3802/CH4/EX4.29/Ex4_29.jpg Binary files differnew file mode 100644 index 000000000..6ef30caa9 --- /dev/null +++ b/3802/CH4/EX4.29/Ex4_29.jpg diff --git a/3802/CH4/EX4.29/Ex4_29.sce b/3802/CH4/EX4.29/Ex4_29.sce new file mode 100644 index 000000000..077c958f1 --- /dev/null +++ b/3802/CH4/EX4.29/Ex4_29.sce @@ -0,0 +1,27 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex4_29.sce.
+
+clc;
+clear;
+Q1=60e-6; //Capacitor charges in coulomb
+V1=180; //Volatge in volt
+
+C1=Q1/V1;
+C2=4*C1;
+Q2=0;
+E1=(1/2)*C1*V1^2; //Before two capacitance are joined the energy stored in C1
+E2=0; //Energy stored in C2
+Ea=E1+E2; //Total energy before two capacitors are joined
+V=(Q1+Q2)/(C1+C2); //Potential in volt
+
+E1=(1/2)*C1*V^2; //Energy stored in C1 in joule
+E2=(1/2)*C2*V^2; //Energy stored in C2 in joule
+Eb=E1+E2; //Total energy after two capacitors are joined
+
+E_loss=Ea-Eb;
+printf("\n Loss of energy=%2.1f*10^-4 joule",E_loss*1e4)
+
diff --git a/3802/CH4/EX4.3/Ex4_3.jpg b/3802/CH4/EX4.3/Ex4_3.jpg Binary files differnew file mode 100644 index 000000000..f9b7b6eab --- /dev/null +++ b/3802/CH4/EX4.3/Ex4_3.jpg diff --git a/3802/CH4/EX4.3/Ex4_3.sce b/3802/CH4/EX4.3/Ex4_3.sce new file mode 100644 index 000000000..c884f6ef4 --- /dev/null +++ b/3802/CH4/EX4.3/Ex4_3.sce @@ -0,0 +1,29 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex4_3.sce
+
+clc;
+clear;
+r=[-0.03 0.01 0.04];
+r_dash=[0.03 0.08 -0.02];
+Q1=129e-9;
+Q2=110e-6;
+epsilon_not=1/(36*%pi*1e9);
+
+a=r-r_dash; //r and r_dash are the position of two charges
+b=a.^2;
+c=b(1,1)+b(1,2)+b(1,3);
+d=sqrt(c); //b,c,d are assumed alphabets for calculating magnitude of difference of r and r'
+
+F=(Q1*Q2)/(4*%pi*epsilon_not*d^2);
+printf("\n The force on Q2=%2.1f N \n",F)
+Ir=a/d;
+F1=Ir*F;
+printf("\n Force interms of i,j,k vector coefficient is")
+disp(F1)
+
+//There is a error in the book for calculating F value
+//So answer given in the book is wrong
diff --git a/3802/CH4/EX4.4/Ex4_4.jpg b/3802/CH4/EX4.4/Ex4_4.jpg Binary files differnew file mode 100644 index 000000000..3b0e7aef5 --- /dev/null +++ b/3802/CH4/EX4.4/Ex4_4.jpg diff --git a/3802/CH4/EX4.4/Ex4_4.sce b/3802/CH4/EX4.4/Ex4_4.sce new file mode 100644 index 000000000..50f4489ba --- /dev/null +++ b/3802/CH4/EX4.4/Ex4_4.sce @@ -0,0 +1,15 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex4_4.sce.
+
+clc;
+clear;
+q=1.6e-19;
+m=9.1e-31;
+g=9.8;
+F=m*g;
+E=F/q;
+printf("\n Magnitude of electric field intensity E=%1.1f*10^-11 N/C",E*1e11)
diff --git a/3802/CH4/EX4.5/Ex4_5.jpg b/3802/CH4/EX4.5/Ex4_5.jpg Binary files differnew file mode 100644 index 000000000..80ece4a00 --- /dev/null +++ b/3802/CH4/EX4.5/Ex4_5.jpg diff --git a/3802/CH4/EX4.5/Ex4_5.sce b/3802/CH4/EX4.5/Ex4_5.sce new file mode 100644 index 000000000..ae2ce6433 --- /dev/null +++ b/3802/CH4/EX4.5/Ex4_5.sce @@ -0,0 +1,25 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex4_5.sce.
+
+clc;
+clear;
+//from the given figure
+q=1e-8;
+OB=sqrt(5^2-4^2); //Distance between point O and B
+cos_theta=3/5;
+sin_theta=4/5;
+r=5e-2;
+
+epsilon_not=1/(36e9*%pi);
+modulus_E=q/(4*%pi*epsilon_not*r^2);
+E1=((modulus_E*cos_theta)-(modulus_E*sin_theta*%i));
+E2=((-modulus_E*cos_theta)-(modulus_E*sin_theta*%i));
+E=E1+E2;
+disp(E,'The resultant field intensity in N/C is')
+
+
+
diff --git a/3802/CH4/EX4.7/Ex4_7.jpg b/3802/CH4/EX4.7/Ex4_7.jpg Binary files differnew file mode 100644 index 000000000..4c37474dc --- /dev/null +++ b/3802/CH4/EX4.7/Ex4_7.jpg diff --git a/3802/CH4/EX4.7/Ex4_7.sce b/3802/CH4/EX4.7/Ex4_7.sce new file mode 100644 index 000000000..e264debea --- /dev/null +++ b/3802/CH4/EX4.7/Ex4_7.sce @@ -0,0 +1,14 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex4_7.sce.
+
+clc;
+clear;
+q1=1e-4;
+q2=2e-4;
+l=10e-2;
+x=l*1e2/(1+sqrt(q2/q1));
+printf("\n Distance between q1 and the point on the line joining two charges where the electric field is zero=%1.1f cm",x)
diff --git a/3802/CH5/EX5.10/Ex5_10.jpg b/3802/CH5/EX5.10/Ex5_10.jpg Binary files differnew file mode 100644 index 000000000..657dd5e54 --- /dev/null +++ b/3802/CH5/EX5.10/Ex5_10.jpg diff --git a/3802/CH5/EX5.10/Ex5_10.sce b/3802/CH5/EX5.10/Ex5_10.sce new file mode 100644 index 000000000..b0b3999cc --- /dev/null +++ b/3802/CH5/EX5.10/Ex5_10.sce @@ -0,0 +1,31 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex5_10.sce.
+
+clc;
+clear;
+N=800;
+Hi=50e-3;
+Wi=40e-3;
+l_not=2e-3;
+A_not=2500e-6;
+leakage_factor=1.2;
+mew_not=4e-7*%pi;
+mew_r=322;
+pi_not=2.5e-3;
+lc=600e-3; //from the figure
+
+B_not=pi_not/A_not;
+H_not=B_not/mew_not;
+F_not=H_not*l_not;
+pi_T=pi_not*leakage_factor;
+Ac=Wi*Hi*0.92; //given 8 percent is taken for insulation . so (1-0.08=0.92)
+Bc=pi_T/Ac;
+Hc=Bc/(mew_r*mew_not);
+Fc=Hc*lc;
+F=Fc+F_not;
+Im=F/N;
+printf("\n Magnetizing current=%d A \n",Im)
diff --git a/3802/CH5/EX5.12/Ex5_12.jpg b/3802/CH5/EX5.12/Ex5_12.jpg Binary files differnew file mode 100644 index 000000000..fc98de133 --- /dev/null +++ b/3802/CH5/EX5.12/Ex5_12.jpg diff --git a/3802/CH5/EX5.12/Ex5_12.sce b/3802/CH5/EX5.12/Ex5_12.sce new file mode 100644 index 000000000..d4096e27a --- /dev/null +++ b/3802/CH5/EX5.12/Ex5_12.sce @@ -0,0 +1,25 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex5_12.sce.
+
+clc;
+clear;
+N=20000;
+R=5e2;
+V=250;
+mmf=3471;
+pi=0.04e-3;
+
+printf("\n (a)")
+I=mmf/N;
+L=(N*pi)/I;
+printf("\n Inductance of the coil=%1.2f H \n",L)
+
+printf("\n (b)")
+t=log(1/(1-((I*R)/V)))*(L/R);
+printf("\n Time required for the current to reach pickup value=%1.2f ms",t*1E3)
+//The book answer for t (=3.93 ms) is obtained only if R=500 ohm.Otherwise (R=5000) we cannot get the answer
+//So there is a mistake in R value given
diff --git a/3802/CH5/EX5.13/Ex5_13.jpg b/3802/CH5/EX5.13/Ex5_13.jpg Binary files differnew file mode 100644 index 000000000..3c628aaf3 --- /dev/null +++ b/3802/CH5/EX5.13/Ex5_13.jpg diff --git a/3802/CH5/EX5.13/Ex5_13.sce b/3802/CH5/EX5.13/Ex5_13.sce new file mode 100644 index 000000000..597d966a1 --- /dev/null +++ b/3802/CH5/EX5.13/Ex5_13.sce @@ -0,0 +1,27 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex5_13.sce.
+
+clc;
+clear;
+Bm=1.1;
+V=2.2e3;
+f=50;
+N=200;
+
+printf("\n\t (a)")
+stack_factor=0.9;
+pi_m=V/(4.44*f*N);
+A=pi_m/(Bm*stack_factor);
+printf("\n Cross sectional area of the core=%3.1f cm^2 \n",A*1e4)
+//There is a small (printing) mistake in the final answer of A in the book
+
+printf("\n\t (b)")
+l=250e-2;
+H=490; //from the graph 5.21 H value is taken which is corresponding to B=1.1 wb/m^2
+mmf=H*l;
+Im=mmf/N;
+printf("\n Magnetizing current=%1.3f A",Im)
diff --git a/3802/CH5/EX5.14/Ex5_14.jpg b/3802/CH5/EX5.14/Ex5_14.jpg Binary files differnew file mode 100644 index 000000000..d90e31ca3 --- /dev/null +++ b/3802/CH5/EX5.14/Ex5_14.jpg diff --git a/3802/CH5/EX5.14/Ex5_14.sce b/3802/CH5/EX5.14/Ex5_14.sce new file mode 100644 index 000000000..a77dfd1b5 --- /dev/null +++ b/3802/CH5/EX5.14/Ex5_14.sce @@ -0,0 +1,24 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex5_14.sce.
+
+clc;
+clear;
+V=200;
+i=0.2;
+T=3e-3;
+t=3e-3;
+
+R=(V/i)*(1-exp(-t/T));
+I=V/R;
+printf("\n The final steady state value of current=%1.3f A \n",I)
+
+L=R*T;
+printf("\n Inductance=%1.3f H \n",L)
+printf("\n Resistance=%3.0f ohm \n",R)
+
+E=(L*I^2)/2;
+printf("\n Energy stored when current reached its final value=%1.3f J",E)
diff --git a/3802/CH5/EX5.15/Ex5_15.jpg b/3802/CH5/EX5.15/Ex5_15.jpg Binary files differnew file mode 100644 index 000000000..951fe18b4 --- /dev/null +++ b/3802/CH5/EX5.15/Ex5_15.jpg diff --git a/3802/CH5/EX5.15/Ex5_15.sce b/3802/CH5/EX5.15/Ex5_15.sce new file mode 100644 index 000000000..78dbba0f1 --- /dev/null +++ b/3802/CH5/EX5.15/Ex5_15.sce @@ -0,0 +1,26 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex5_15.sce.
+
+clc;
+clear;
+P=50e3;
+V1=2.2e3;
+V2=220;
+
+printf("\n (a)")
+I1=P/V1;
+I2=P/V2;
+printf("\n Primary current=%2.2f A \n",I1)
+printf("\n Secondary current=%3.1f A \n",I2)
+
+printf("\n (b)")
+Zl2=V2/I2;
+printf("\n The load impedence for the secondary side=%1.3f ohm \n",Zl2)
+
+printf("\n (c)")
+Zl1=V1/I1;
+printf("\n The load impedence for the primary side=%2.1f ohm \n",Zl1)
diff --git a/3802/CH5/EX5.16/Ex5_16.jpg b/3802/CH5/EX5.16/Ex5_16.jpg Binary files differnew file mode 100644 index 000000000..436eedd47 --- /dev/null +++ b/3802/CH5/EX5.16/Ex5_16.jpg diff --git a/3802/CH5/EX5.16/Ex5_16.sce b/3802/CH5/EX5.16/Ex5_16.sce new file mode 100644 index 000000000..689ad581b --- /dev/null +++ b/3802/CH5/EX5.16/Ex5_16.sce @@ -0,0 +1,29 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex5_16.sce.
+
+clc;
+clear;
+N=100;
+a=10e-2;
+n=20;
+B=0.5;
+
+omega=2*%pi*n;
+A=a^2;
+v=A*N*omega*B;
+
+printf("\n(a)")
+//theta=40*180*t=n*180 where n=0,1,2,3.....
+//if we take n=2
+V=v*sind(180*2);
+printf("\n The instantaneous value of induced emf when plane of the coil is right angle to the field=%d volt \n",V)
+
+printf("\n(b)")
+//theta=n*180/2 where n=1,3,5,7.........
+//if we take n=3
+V=v*sind(180*3/2);
+printf("\n The instantaneous value of induced emf when the plane of the coil is in the plane of the field=%2.1f volt",V)
diff --git a/3802/CH5/EX5.17/Ex5_17.jpg b/3802/CH5/EX5.17/Ex5_17.jpg Binary files differnew file mode 100644 index 000000000..111d4ed33 --- /dev/null +++ b/3802/CH5/EX5.17/Ex5_17.jpg diff --git a/3802/CH5/EX5.17/Ex5_17.sce b/3802/CH5/EX5.17/Ex5_17.sce new file mode 100644 index 000000000..39bff4ccb --- /dev/null +++ b/3802/CH5/EX5.17/Ex5_17.sce @@ -0,0 +1,16 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex5_17.sce.
+
+clc;
+clear;
+l=7.5e-2;
+b=5e-2;
+N=100;
+B=1.1;
+i=5;
+T=N*B*l*b*i;
+printf("\n Torque exerted on the coil=%1.4f Nm",T)
diff --git a/3802/CH5/EX5.5/Ex5_5.jpg b/3802/CH5/EX5.5/Ex5_5.jpg Binary files differnew file mode 100644 index 000000000..291c54f1a --- /dev/null +++ b/3802/CH5/EX5.5/Ex5_5.jpg diff --git a/3802/CH5/EX5.5/Ex5_5.sce b/3802/CH5/EX5.5/Ex5_5.sce new file mode 100644 index 000000000..848524877 --- /dev/null +++ b/3802/CH5/EX5.5/Ex5_5.sce @@ -0,0 +1,31 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex5_5.sce.
+
+clc;
+clear;
+N=200;
+A=5e-4;
+I=4;
+l=60e-2;
+
+printf("\n\t (a)")
+F=N*I;
+printf("\n Magnetomotive force=%d AT \n",F)
+
+printf("\n\t (b)")
+mew_r=1;
+mew_not=4e-7*%pi;
+mew=mew_r*mew_not;
+R=l/(mew*A);
+phi=(F)/R;
+printf("\n Total flux=%1.5f microWb \n",phi*1e6)
+
+printf("\n\t (c)")
+B=phi/A;
+printf("\n Flux density=%1.4f mWb/m^2",B*1e3)
+//Answer vary dueto round off error
+//The unit for B(flux density) is Wbm/m^2
diff --git a/3802/CH5/EX5.6/Ex5_6.jpg b/3802/CH5/EX5.6/Ex5_6.jpg Binary files differnew file mode 100644 index 000000000..905fc315c --- /dev/null +++ b/3802/CH5/EX5.6/Ex5_6.jpg diff --git a/3802/CH5/EX5.6/Ex5_6.sce b/3802/CH5/EX5.6/Ex5_6.sce new file mode 100644 index 000000000..c0a4cbdae --- /dev/null +++ b/3802/CH5/EX5.6/Ex5_6.sce @@ -0,0 +1,18 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex5_6.sce.
+
+clc;
+clear;
+l=2.5e-3;
+A=200e-4;
+phi=0.015; //flux in weber
+mew_r=1;
+mew_not=4e-7*%pi;
+mew=mew_r*mew_not;
+R=l/(mew*A);
+F=phi*R;
+printf("\n The Magnetomotive force=%d AT \n",F)
diff --git a/3802/CH5/EX5.7/Ex5_7.jpg b/3802/CH5/EX5.7/Ex5_7.jpg Binary files differnew file mode 100644 index 000000000..87a47f6d5 --- /dev/null +++ b/3802/CH5/EX5.7/Ex5_7.jpg diff --git a/3802/CH5/EX5.7/Ex5_7.sce b/3802/CH5/EX5.7/Ex5_7.sce new file mode 100644 index 000000000..af7c0c20a --- /dev/null +++ b/3802/CH5/EX5.7/Ex5_7.sce @@ -0,0 +1,26 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex5_7.sce.
+
+clc;
+clear;
+A=5e-4;
+l=0.4;
+N=200;
+mew_r=380;
+mew_not=4e-7*%pi;
+mew=mew_r*mew_not;
+
+printf("\n (a)")
+R=(l*1e-6)/(mew*A);
+printf("\n Reluctance of the core=%1.4f*10^6 AT/Wb \n",R)
+
+printf("\n (b)")
+phi=800e-6; //flux in weber
+F=phi*1e6*R;
+I=F/N;
+printf("\n Magnetizing current=%1.4f A \n",I)
+//Answer vary dueto round off error
diff --git a/3802/CH5/EX5.8/Ex5_8.jpg b/3802/CH5/EX5.8/Ex5_8.jpg Binary files differnew file mode 100644 index 000000000..22a59578e --- /dev/null +++ b/3802/CH5/EX5.8/Ex5_8.jpg diff --git a/3802/CH5/EX5.8/Ex5_8.sce b/3802/CH5/EX5.8/Ex5_8.sce new file mode 100644 index 000000000..e2e7d6204 --- /dev/null +++ b/3802/CH5/EX5.8/Ex5_8.sce @@ -0,0 +1,29 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex5_8.sce.
+
+clc;
+clear;
+mew_rA=250;
+mew_rB=320;
+lA=40e-2;
+lB=25e-2;
+aA=5e-4;
+aB=7e-4;
+N=250;
+printf("\n (a)")
+mew_not=4e-7*%pi;
+mew_A=mew_rA*mew_not;
+mew_B=mew_rB*mew_not;
+R=((lA/(mew_A*aA))+(lB/(mew_B*aB)));
+printf("\n The total reluctance=%g*10^3 AT/Wb \n",R*1e-3)
+
+printf("\n (b)")
+phi=2.5e-3;
+F=phi*R;
+I=F/N;
+printf("\n The magnetizing current=%2.2f AT \n",I)
+//Answer vary dueto round_off error
diff --git a/3802/CH5/EX5.9/Ex5_9.jpg b/3802/CH5/EX5.9/Ex5_9.jpg Binary files differnew file mode 100644 index 000000000..9a20bc332 --- /dev/null +++ b/3802/CH5/EX5.9/Ex5_9.jpg diff --git a/3802/CH5/EX5.9/Ex5_9.sce b/3802/CH5/EX5.9/Ex5_9.sce new file mode 100644 index 000000000..221009a4c --- /dev/null +++ b/3802/CH5/EX5.9/Ex5_9.sce @@ -0,0 +1,25 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex5_9.sce.
+
+clc;
+clear;
+//from the given figure
+l_not=350e-3;
+lc=150e-3;
+la=1e-3;
+A_not=400e-6;
+Ac=800e-6;
+pi=1e-3; //flux in weber
+mew_r=340;
+mew_not=4e-7*%pi;
+
+R_not=l_not/(mew_r*mew_not*A_not);
+Rc=lc/(mew_r*mew_not*Ac);
+Ra=la/(mew_not*Ac);
+F=pi*(R_not/2+Rc+Ra);
+printf("\n Total mmf=%4.2f AT",F)
+//Answer vary dueto round_off error
diff --git a/3802/CH7/EX7.1/Ex7_1.jpg b/3802/CH7/EX7.1/Ex7_1.jpg Binary files differnew file mode 100644 index 000000000..7734d0b8c --- /dev/null +++ b/3802/CH7/EX7.1/Ex7_1.jpg diff --git a/3802/CH7/EX7.1/Ex7_1.sce b/3802/CH7/EX7.1/Ex7_1.sce new file mode 100644 index 000000000..fce88fcfd --- /dev/null +++ b/3802/CH7/EX7.1/Ex7_1.sce @@ -0,0 +1,31 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex7_1.sce.
+
+clc;
+clear;
+p=175e3; //power rating of transformer in KVA
+Ep=6600; //primary voltage in volts
+Es=440; //secondary voltage in volts
+f=50;
+Ns=100; //Number of secondary turns
+
+//(a)
+printf("\n (a)")
+Ip=p/Ep;
+Is=p/Es;
+printf("\n Full load primary current=%2.2f A ",Ip)
+printf("\n Full load secondary current=%3.2f A \n",Is)
+
+//(b)
+printf("\n (b)")
+Np=Ns*Ep/Es;
+printf("\n Number of primary turns=%d \n",Np)
+
+//(c)
+printf("\n (c)")
+max_flux=Es/(4.44*f*Ns);
+printf("\n The maximum value of flux=%1.5f Wb \n",max_flux)
diff --git a/3802/CH7/EX7.10/Ex7_10.jpg b/3802/CH7/EX7.10/Ex7_10.jpg Binary files differnew file mode 100644 index 000000000..2f098e955 --- /dev/null +++ b/3802/CH7/EX7.10/Ex7_10.jpg diff --git a/3802/CH7/EX7.10/Ex7_10.sce b/3802/CH7/EX7.10/Ex7_10.sce new file mode 100644 index 000000000..0962ef68f --- /dev/null +++ b/3802/CH7/EX7.10/Ex7_10.sce @@ -0,0 +1,27 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex7_10.sce.
+
+clc;
+clear;
+Ip=1000; //primary current in A
+Is=5; //secodary current in A
+Tp=1; //number of Primary turns
+
+printf("\n (a)")
+nominal_ratio=Ip/Is;
+Ie=7; //loss component of current in A
+actual_ratio=nominal_ratio+(Ie/Is);
+epsilon_r=((nominal_ratio-actual_ratio)/actual_ratio)*100;
+printf("\n Ratio error when turns ratio equal to nominal ratio=%1.3f percentage \n",epsilon_r)
+
+printf("\n (b)")
+reducing_value=0.5/100;
+Ts=nominal_ratio-(reducing_value*nominal_ratio);
+n=Ts/Tp; //transformer turns ratio
+actual_ratio=n+(Ie/Is);
+epsilon_r=((nominal_ratio-actual_ratio)/actual_ratio)*100;
+printf("\n Ratio error when secondary turns are reduced by 0.5 percentage=%1.1f percentage",epsilon_r)
diff --git a/3802/CH7/EX7.2/Ex7_2.jpg b/3802/CH7/EX7.2/Ex7_2.jpg Binary files differnew file mode 100644 index 000000000..7f9c349de --- /dev/null +++ b/3802/CH7/EX7.2/Ex7_2.jpg diff --git a/3802/CH7/EX7.2/Ex7_2.sce b/3802/CH7/EX7.2/Ex7_2.sce new file mode 100644 index 000000000..481ba6eb0 --- /dev/null +++ b/3802/CH7/EX7.2/Ex7_2.sce @@ -0,0 +1,26 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex7_2.sce.
+
+clc;
+clear;
+Np=1000; //number of Primary turns
+Ns=200; //number of secondary turns
+Io=3; //No load current in A
+cos_phi_not=0.2; //lagging
+Is=250; //secondary current in A
+cos_phi_s=0.8; //lagging
+
+Is_dash=Ns*Is/Np;
+phi_s=(acosd(0.8));
+phi_not=(acosd(0.2));
+Ip_cos_phi_p=(Is_dash*cos_phi_s)+(Io*cos_phi_not);
+Ip_sin_phi_p=(Is_dash*(sind(phi_s)))+(Io*(sind(phi_not)));
+Ip=sqrt((Ip_cos_phi_p)^2+(Ip_sin_phi_p)^2);
+printf("\n Primary current=%2.2f A\n",Ip)
+
+phi_p=atand((Ip_sin_phi_p)/(Ip_cos_phi_p));
+printf("\n Power factor=%1.3f lagging",cosd(phi_p))
diff --git a/3802/CH7/EX7.3/EX7_3.jpg b/3802/CH7/EX7.3/EX7_3.jpg Binary files differnew file mode 100644 index 000000000..21bc3b91b --- /dev/null +++ b/3802/CH7/EX7.3/EX7_3.jpg diff --git a/3802/CH7/EX7.3/Ex7_3.sce b/3802/CH7/EX7.3/Ex7_3.sce new file mode 100644 index 000000000..0216c8fd9 --- /dev/null +++ b/3802/CH7/EX7.3/Ex7_3.sce @@ -0,0 +1,42 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex7_3.sce.
+
+clc;
+clear;
+T1=1000; //number of Primary turns
+T2=200; //number of secondary turns
+Is=250; //secodary load current in A
+I0=3; //No load current in A
+rp=0.72; //primary winding resistance in ohms
+rs=0.025; //secondary winding resistance in ohms
+xp=0.92; //primary winding leakage reactance in ohms
+xs=0.036; //secondary winding leakage reactance in ohms
+Vs=2.2e3; //supply voltage in volts
+
+N=T1/T2; //turns ratio of transformer
+Is_dash=Is/N;
+rs_dash=N^2*rs;
+xs_dash=N^2*xs;
+cos_pi_s=0.8;
+cos_pi_0=0.2;
+sin_pi_s=sind(acosd(0.8));
+sin_pi_0=sind(acosd(0.2));
+Isdash=(Is_dash*cos_pi_s)-%i*(Is_dash*sin_pi_s);
+Io=(I0*cos_pi_0)-%i*(I0*sin_pi_0);
+Ip=Isdash+Io;
+a=real(Ip);
+b=imag(Ip);
+Ip_mag=sqrt(a^2+b^2);
+printf("\n Primary Current=%2.2f A \n",Ip_mag)
+
+pi_p=atand(b/a);
+printf("\n Power factor=%1.3f lagging \n",cosd(pi_p))
+
+VL_dash=Vs-(Ip*(rp+%i*xp))-(Isdash*(rs_dash+%i*xs_dash)); //secondary terminal voltage referred to primary
+VL_dash_mag=real(VL_dash);
+VL=VL_dash_mag/N;
+printf("\n Secondary terminal voltage=%3.1f V \n",VL)
diff --git a/3802/CH7/EX7.4/Ex7_4.jpg b/3802/CH7/EX7.4/Ex7_4.jpg Binary files differnew file mode 100644 index 000000000..c5dff35ae --- /dev/null +++ b/3802/CH7/EX7.4/Ex7_4.jpg diff --git a/3802/CH7/EX7.4/Ex7_4.sce b/3802/CH7/EX7.4/Ex7_4.sce new file mode 100644 index 000000000..de9b6552d --- /dev/null +++ b/3802/CH7/EX7.4/Ex7_4.sce @@ -0,0 +1,46 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex7_4.sce.
+
+clc;
+clear;
+P=75e3; //power rating of transformer in KVA
+Np=500; //number of Primary turns
+Ns=100; //number of secondary turns
+rp=0.4; //primary winding resistance in ohms
+rs=0.02; //secondary winding resistance in ohms
+xp=1.5; //primary winding leakage reactance in ohms
+xs=0.045; //secondary winding leakage reactance in ohms
+Vs=2200; //supply voltage in volts
+
+//case1
+printf("\n (a)")
+Re=rp+(Np/Ns)^2*rs; //Equivalent resistance in ohms
+Xe=xp+(Np/Ns)^2*xs; //Equivalent leakage reactance in ohms
+Ze=sqrt(Re^2+Xe^2);
+printf("\n Equivalent impedance referred to prinmary side=%1.3f ohms\n",Ze)
+
+//case2
+printf("\n (b).1")
+I1=P/Vs; //full load primary current in A
+cos_pi2=0.8;
+sin_pi2=sind(acosd(0.8));
+percentage_voltage_reg=((I1*((Re*cos_pi2)+(Xe*sin_pi2)))/Vs)*100;
+printf("\n Voltage regulation for 0.8 power factor lagging=%1.2f percentage \n",percentage_voltage_reg)
+NL_secondary_voltage=(Ns/Np)*Vs; //NL means "no load"
+del_V=(NL_secondary_voltage*percentage_voltage_reg)/100;
+FL_secondary_voltage=(NL_secondary_voltage)-(del_V);
+printf("\n Secodary terminal voltage at FL 0.8 power factor lagging=%3.3f V \n",FL_secondary_voltage)
+
+//case3
+printf("\n (b).2")
+percentage_voltage_reg=((I1*((Re*cos_pi2)-(Xe*sin_pi2)))/Vs)*100;
+printf("\n Voltage regulation for 0.8 power factor leading=%1.3f percentage \n",percentage_voltage_reg)
+del_V=(NL_secondary_voltage*percentage_voltage_reg)/100;
+FL_secondary_voltage=(NL_secondary_voltage)-(del_V);
+printf("\n Secodary terminal voltage at FL 0.8 power factor leading=%4.4f V \n",FL_secondary_voltage)
+//The anwser vary dueto roundoff error
+
diff --git a/3802/CH7/EX7.5/Ex7_5.jpg b/3802/CH7/EX7.5/Ex7_5.jpg Binary files differnew file mode 100644 index 000000000..d09837ea3 --- /dev/null +++ b/3802/CH7/EX7.5/Ex7_5.jpg diff --git a/3802/CH7/EX7.5/Ex7_5.sce b/3802/CH7/EX7.5/Ex7_5.sce new file mode 100644 index 000000000..029151346 --- /dev/null +++ b/3802/CH7/EX7.5/Ex7_5.sce @@ -0,0 +1,38 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex7_5.sce.
+
+clc;
+clear;
+P=500e3; //KVA rating of the transformer
+Vp=6600; //primary voltage in V
+Vs=440; //secondary voltage in V
+rp=0.45; //primary winding resistance in ohms
+rs=0.0015; //secondary winding resistance in ohms
+iron_loss=2.9e3;
+pf=0.8; //power factor lagging
+
+//case1
+printf("\n (a)")
+Ip=P/Vp; //primary current in A
+Is=P/Vs; //secondary current in A
+Ip_square_rp=Ip^(2)*rp; //primary copper loss
+Is_square_rs=Is^(2)*rs; //secondary copper loss
+FL_copper_loss=Ip_square_rp+Is_square_rs; //FL means "full load"
+FL_total_loss=iron_loss+FL_copper_loss;
+FL_output_power=P*pf;
+FL_input_power=FL_output_power+FL_total_loss;
+FL_efficiency=(FL_output_power/FL_input_power)*100;
+printf("\n Full load efficiency=%2.2f percentage \n",FL_efficiency)
+
+//case2
+printf("\n (b)")
+HL_copper_loss=FL_copper_loss*(0.5^2); //HL means "half load"
+HL_total_loss=iron_loss+HL_copper_loss;
+HL_output_power=FL_output_power/2;
+HL_input_power=HL_output_power+HL_total_loss;
+HL_efficiency=(HL_output_power/HL_input_power)*100;
+printf("\n Half load efficiency=%2.4f percentage \n",HL_efficiency)
diff --git a/3802/CH7/EX7.6/Ex7_6.jpg b/3802/CH7/EX7.6/Ex7_6.jpg Binary files differnew file mode 100644 index 000000000..9c5ac0e90 --- /dev/null +++ b/3802/CH7/EX7.6/Ex7_6.jpg diff --git a/3802/CH7/EX7.6/Ex7_6.sce b/3802/CH7/EX7.6/Ex7_6.sce new file mode 100644 index 000000000..71032962c --- /dev/null +++ b/3802/CH7/EX7.6/Ex7_6.sce @@ -0,0 +1,24 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex7_6.sce.
+
+clc;
+clear;
+//the given data are taken from previous example(Ex7_5)
+
+Vp=6600; //primary voltage in V
+Vs=440; //secondary voltage in V
+rp=0.45; //primary winding resistance in ohms
+rs=0.0015; //secondary winding resistance in ohms
+Wi=2.9e3; //iron loss in watt
+pf=0.8; //power factor lagging
+
+Re=rp+(Vp/Vs)^2*rs; //equivalent resistance referred to primary
+Ip=sqrt(Wi/Re);
+P_max=Vp*Ip*pf;
+total_loss=2*Wi;
+Max_efficiency=(P_max/(P_max+total_loss))*100;
+printf("\n Maximum Efficiency=%2.2f percentage \n",Max_efficiency)
diff --git a/3802/CH7/EX7.7/Ex7_7.jpg b/3802/CH7/EX7.7/Ex7_7.jpg Binary files differnew file mode 100644 index 000000000..96b2ca359 --- /dev/null +++ b/3802/CH7/EX7.7/Ex7_7.jpg diff --git a/3802/CH7/EX7.7/Ex7_7.sce b/3802/CH7/EX7.7/Ex7_7.sce new file mode 100644 index 000000000..7b7c06762 --- /dev/null +++ b/3802/CH7/EX7.7/Ex7_7.sce @@ -0,0 +1,44 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex7_7.sce
+clc;
+clear;
+KVA=50e3;
+
+printf("\n (a)")
+PF=0.7;
+iron_loss=430; //primary power of transformer on open circuit test in watt is called iron loss
+copper_loss_FL=525; //primary power of transformer on short circuit test in watt is called copper loss
+total_loss_FL=iron_loss+copper_loss_FL;
+eta_FL=(KVA*PF)/((KVA*PF)+total_loss_FL)*100; //full load efficiency
+printf("\n Full load efficiency for 0.7 power factor=%2.2f percentage \n",eta_FL)
+copper_loss_HL=(0.5^2)*copper_loss_FL;
+total_loss_HL=iron_loss+copper_loss_HL;
+eta_HL=(KVA*PF*0.5)/((KVA*0.5*PF)+total_loss_HL)*100;
+printf("\n Half load Efficiency for 0.7 power factor=%2.2f percentage \n",eta_HL)
+
+printf("\n (b)")
+Vsc=124; //primary voltage on short circuit test in volts
+Isc=15.3; //primary current on short circuit test in amphere
+Psc=525; //primary power of transformer on open circuit test in watt
+pi_e=acosd(Psc/(Vsc*Isc));
+pi_2=acosd(PF);
+Voc=3300;
+voltage_regulation1=Vsc*cosd(pi_e-pi_2)/(Voc)*100;
+printf("\n The voltage regulation for 0.7 lagging power factor=%1.1f percentage \n",voltage_regulation1)
+pi_2=-acosd(PF);
+voltage_regulation2=Vsc*cosd(pi_e-pi_2)/(Voc)*100;
+printf("\n The voltage regulation for 0.7 leading power factor=%1.2f percentage \n",voltage_regulation2)
+
+printf("\n (c)")
+Voc=400;
+decrease_in_voltage=voltage_regulation1*Voc/100;
+Vs1=Voc-decrease_in_voltage;
+increase_in_voltage=voltage_regulation2*Voc/100;
+Vs2=Voc-increase_in_voltage;
+printf("\n The secondary terminal voltage corresponding to 0.7 pf lagging=%3.1f V \n",Vs1)
+printf("\n The secondary terminal voltage corresponding to 0.7 pf leading=%3.1f V \n",Vs2)
+
diff --git a/3802/CH7/EX7.8/Ex7_8.jpg b/3802/CH7/EX7.8/Ex7_8.jpg Binary files differnew file mode 100644 index 000000000..3ab36a692 --- /dev/null +++ b/3802/CH7/EX7.8/Ex7_8.jpg diff --git a/3802/CH7/EX7.8/Ex7_8.sce b/3802/CH7/EX7.8/Ex7_8.sce new file mode 100644 index 000000000..de10ea05c --- /dev/null +++ b/3802/CH7/EX7.8/Ex7_8.sce @@ -0,0 +1,35 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex7_8.sce.
+
+clc;
+clear;
+Np=1000; //number of Primary turns
+Ns=100; //number of secondary turns
+KVA=120e3; //KVA rating of the transformer
+V_SL=440; //supply voltage in V
+
+K=Np/Ns; //transformer turns ratio
+I_SL=KVA/(sqrt(3)*V_SL);
+
+printf("\n (a)")
+V_PL=(V_SL*K)/sqrt(3);
+I_PL=(sqrt(3)*I_SL)/K;
+transformation_ratio=V_PL/V_SL;
+printf("\n Delta star connection:\n")
+printf("\n Primary line current=%2.1f A ",I_PL)
+printf("\n Primary line voltage=%d V ",V_PL)
+printf("\n Transformation ratio =%2.1f \n",transformation_ratio)
+
+printf("\n(b)")
+V_PL=V_SL*K*sqrt(3);
+I_PL=I_SL/(sqrt(3)*K);
+transformation_ratio=V_PL/V_SL;
+printf("\n star delta connection:\n")
+printf("\n Primary line current=%1.1f A ",I_PL)
+printf("\n Primary line voltage=%d V ",V_PL)
+printf("\n Transformation ratio =%2.2f ",transformation_ratio)
+
diff --git a/3802/CH7/EX7.9/Ex7_9.jpg b/3802/CH7/EX7.9/Ex7_9.jpg Binary files differnew file mode 100644 index 000000000..39cfbf8db --- /dev/null +++ b/3802/CH7/EX7.9/Ex7_9.jpg diff --git a/3802/CH7/EX7.9/Ex7_9.sce b/3802/CH7/EX7.9/Ex7_9.sce new file mode 100644 index 000000000..b65af80d8 --- /dev/null +++ b/3802/CH7/EX7.9/Ex7_9.sce @@ -0,0 +1,32 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex7_9.sce.
+
+clc;
+clear;
+Vp=220; //primary voltage in V
+Vs=250; //secondary voltage in V
+Ns=2000; //number of secondary turns
+
+printf("\n (a)")
+Np=(Vp/Vs)*Ns; //number of Primary turns
+tapping_point=Ns-Np; //number of turns from C to A in figure
+printf("\n The position of tapping point=%d turns \n",tapping_point)
+
+printf("\n (b)")
+Po=10e3; //output power in KVA
+Is=Po/Vs; //secodary current in A
+Ip=(Vs/Vp)*Is; //primary current in A
+approximate_current=Ip-Is;
+printf("\n The approximate value of current in each part of the winding:\n")
+printf("\t Is=%d A\n",Is)
+printf("\t Ip=%2.2f A\n",Ip)
+printf("\t Ip-Is=%1.2f A\n",approximate_current)
+
+printf("\n (c)")
+copper_saved=Vp/Vs;
+printf("\n copper saved=%1.2f p.u",copper_saved)
+
diff --git a/3802/CH8/EX8.1/Ex8_1.jpg b/3802/CH8/EX8.1/Ex8_1.jpg Binary files differnew file mode 100644 index 000000000..c44e0f9d4 --- /dev/null +++ b/3802/CH8/EX8.1/Ex8_1.jpg diff --git a/3802/CH8/EX8.1/Ex8_1.sce b/3802/CH8/EX8.1/Ex8_1.sce new file mode 100644 index 000000000..a42b7a42a --- /dev/null +++ b/3802/CH8/EX8.1/Ex8_1.sce @@ -0,0 +1,31 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex8_1.sce
+
+clc;
+clear;
+p=4;
+s=24;
+com_seg=24;
+//winding detail calculation
+pole_pitch=s/p;
+c=com_seg;
+printf("\n Number of coils=%d \n",c)
+Cs=2*c;
+printf("\n Number of coil sides=%d \n",Cs)
+Yb1=Cs/p+1;
+Yb2=Cs/p-1;
+Yb=Yb1; //choosing full pitch coil
+printf("\n Back pitch=%d \n",Yb)
+Yf1=Yb-2; //For progressive winding
+Yf2=Yb+2; //For retrogressive winding
+Yf=Yf1;
+printf("\n Full pitch=%d \n",Yf)
+//for progressive winding
+Y=2;
+Yc=1;
+printf("\n Winding pitch=%d \n",Y)
+printf("\n Commutator pitch=%d \n",Yc)
diff --git a/3802/CH8/EX8.10/Ex8_10.jpg b/3802/CH8/EX8.10/Ex8_10.jpg Binary files differnew file mode 100644 index 000000000..dc13e54ae --- /dev/null +++ b/3802/CH8/EX8.10/Ex8_10.jpg diff --git a/3802/CH8/EX8.10/Ex8_10.sce b/3802/CH8/EX8.10/Ex8_10.sce new file mode 100644 index 000000000..2615493d1 --- /dev/null +++ b/3802/CH8/EX8.10/Ex8_10.sce @@ -0,0 +1,22 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex8_10.sce.
+
+clc;
+clear;
+Ra=0.1;
+
+printf("\n (a)")
+Ia=80;
+V=230;
+E=V+(Ia*Ra);
+printf("\n The generated emf when running as generator=%3.0f volt \n",E)
+
+printf("\n (b)")
+Ia=60;
+V=230;
+E=V-(Ia*Ra);
+printf("\n The generated emf when running as motor=%3.0f volt \n",E)
diff --git a/3802/CH8/EX8.11/Ex8_11.jpg b/3802/CH8/EX8.11/Ex8_11.jpg Binary files differnew file mode 100644 index 000000000..f4be64141 --- /dev/null +++ b/3802/CH8/EX8.11/Ex8_11.jpg diff --git a/3802/CH8/EX8.11/Ex8_11.sce b/3802/CH8/EX8.11/Ex8_11.sce new file mode 100644 index 000000000..41c460f42 --- /dev/null +++ b/3802/CH8/EX8.11/Ex8_11.sce @@ -0,0 +1,26 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex8_11.sce.
+
+clc;
+clear;
+V1=440;
+V2=220;
+Ia=50;
+Ra=0.3;
+a=2;
+p=2;
+Z=850;
+phi_1=0.025;
+phi_2=0.02;
+
+E=V1-(Ia*Ra);
+n1=(E*a)/(2*Z*p*phi_1);
+N1=n1*60;
+n1_by_n2=(V1*phi_2)/(V2*phi_1);
+n2=n1/(n1_by_n2);
+N2=n2*60;
+printf("\n Motor Speed: \t N1=%d r.p.m \t N2=%d r.p.m \n",N1,N2)
diff --git a/3802/CH8/EX8.12/Ex8_12.jpg b/3802/CH8/EX8.12/Ex8_12.jpg Binary files differnew file mode 100644 index 000000000..7742d1c76 --- /dev/null +++ b/3802/CH8/EX8.12/Ex8_12.jpg diff --git a/3802/CH8/EX8.12/Ex8_12.sce b/3802/CH8/EX8.12/Ex8_12.sce new file mode 100644 index 000000000..e0da4d367 --- /dev/null +++ b/3802/CH8/EX8.12/Ex8_12.sce @@ -0,0 +1,27 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex8_12.sce.
+
+clc;
+clear;
+V=480;
+Ia=110;
+Ra=0.2;
+Z=864;
+phi=0.05;
+a=6;
+p=3;
+
+printf("\n (a)")
+E=V-(Ia*Ra);
+n=(E*a)/(2*Z*p*phi);
+N=(n*60);
+printf("\n Speed=%d r.p.m \n",N)
+
+printf("\n (b)")
+Pm=E*Ia;
+T=Pm/(2*%pi*n);
+printf("\n Gross torque developed in the armature=%d Nm \n",T)
diff --git a/3802/CH8/EX8.13/Ex8_13.jpg b/3802/CH8/EX8.13/Ex8_13.jpg Binary files differnew file mode 100644 index 000000000..fc15e758b --- /dev/null +++ b/3802/CH8/EX8.13/Ex8_13.jpg diff --git a/3802/CH8/EX8.13/Ex8_13.sce b/3802/CH8/EX8.13/Ex8_13.sce new file mode 100644 index 000000000..e3ddb691b --- /dev/null +++ b/3802/CH8/EX8.13/Ex8_13.sce @@ -0,0 +1,37 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex8_13.sce.
+
+clc;
+clear;
+Il=2;
+Z=864;
+If=0.6;
+V=220;
+Ra=0.8;
+a=2;
+p=2;
+phi=5.4e-3;
+T=25;
+
+Ia=Il-If;
+E1=V-(Ia*Ra);
+n1=(E1*a)/(2*Z*phi*p);
+N1=n1*60;
+printf("\n Motor speed at no load=%4.0f r.p.m \n",N1)
+
+Ia=(T*a*%pi)/(p*phi*Z);
+Il=Ia+If;
+printf("\n Motor current at full load torque=%2.3f A \n",Il)
+E2=V-(Ia*Ra);
+n2=(E2*a)/(2*Z*phi*p);
+N2=n2*60;
+printf("\n Motor speed at full load=%4.0f r.p.m \n",N2)
+
+speed_reg=((N1-N2)/N2)*100;
+printf("\n Speed regulation=%1.3f percentage",speed_reg)
+//There is a error in the regulation calculation in the book
+//The book answer 9.95% is wrong
diff --git a/3802/CH8/EX8.14/Ex8_14.jpg b/3802/CH8/EX8.14/Ex8_14.jpg Binary files differnew file mode 100644 index 000000000..0de141b15 --- /dev/null +++ b/3802/CH8/EX8.14/Ex8_14.jpg diff --git a/3802/CH8/EX8.14/Ex8_14.sce b/3802/CH8/EX8.14/Ex8_14.sce new file mode 100644 index 000000000..60fa32013 --- /dev/null +++ b/3802/CH8/EX8.14/Ex8_14.sce @@ -0,0 +1,37 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex8_14.sce.
+
+clc;
+clear;
+N=600;
+V=500;
+Il=32;
+Ra=0.4;
+Rf=250;
+
+printf("\n (a)")
+P=(V*Il)/1e3;
+N1=450;
+Ia=Il-(V/Rf);
+k_phi=(V-(Ia*Ra))/N;
+R=(V-(k_phi*N1))/Ia-Ra;
+printf("\n Input power at 600 r.p.m=%d kW \n",P)
+printf("\n Armature current Ia=%d A \n",Ia)
+printf("\n R=%1.2f ohm \n",R)
+
+printf("\n (b)")
+//To increase the speed the field control is used.
+If1_by_If=0.856;
+If=Il-Ia;
+If1=If1_by_If*If;
+Rf1=V/If1;
+R=Rf1-Rf;
+Ia1=Ia/If1_by_If;
+Il=Ia1+If1;
+Pi=(V*Il)/1e3;
+printf("\n New armature current Ia=%d A \n",Ia1)
+printf("\n New Input power=%2.1f kW",Pi)
diff --git a/3802/CH8/EX8.15/Ex8_15.jpg b/3802/CH8/EX8.15/Ex8_15.jpg Binary files differnew file mode 100644 index 000000000..512742ad7 --- /dev/null +++ b/3802/CH8/EX8.15/Ex8_15.jpg diff --git a/3802/CH8/EX8.15/Ex8_15.sce b/3802/CH8/EX8.15/Ex8_15.sce new file mode 100644 index 000000000..f995a52a1 --- /dev/null +++ b/3802/CH8/EX8.15/Ex8_15.sce @@ -0,0 +1,30 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex8_15.sce.
+
+clc;
+clear;
+P_in_HP=37.5;
+V=220;
+N=535;
+Ra=0.086;
+Ia1=140;
+I=200;
+
+E=V-(Ia1*Ra);
+R=(V+E)/I;
+R_ext=R-Ra;
+P=(P_in_HP)*736;
+omega=(2*%pi*N)/60;
+FL_T=P/omega;
+initial_braking_T=FL_T*(I/Ia1);
+Ia2=(V+(E/2))/R;
+halfspeed_braking_T=FL_T*(Ia2/Ia1);
+printf("\n Armature circuit resistance=%1.2f ohm \n",R)
+printf("\n The external resistance=%1.3f ohm \n",R_ext)
+printf("\n Initial braking torque=%3.1f Nm \n",initial_braking_T)
+printf("\n Braking torque at half speed=%3.1f Nm \n",halfspeed_braking_T)
+//Answer vary due to roundoff error
diff --git a/3802/CH8/EX8.16/Ex8_16.jpg b/3802/CH8/EX8.16/Ex8_16.jpg Binary files differnew file mode 100644 index 000000000..43ebc3006 --- /dev/null +++ b/3802/CH8/EX8.16/Ex8_16.jpg diff --git a/3802/CH8/EX8.16/Ex8_16.sce b/3802/CH8/EX8.16/Ex8_16.sce new file mode 100644 index 000000000..db188b5b4 --- /dev/null +++ b/3802/CH8/EX8.16/Ex8_16.sce @@ -0,0 +1,41 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex8_16.sce.
+
+clc;
+clear;
+P_in_HP=20;
+P=(P_in_HP)*736;
+N=450;
+Ra=0.18;
+Rf=0.12;
+R=8.7+Ra+Rf;
+omega=(2*%pi*N)/60;
+Tf=P/omega;
+
+//The voltage developed for 450 rpm is 289 volt which is taken from the curve
+E=289;
+P_not=(E*E)/R;
+Pi=(2*%pi*N*Tf)/60;
+
+//The mechanical input is greater than electrical output , so the motor speed increases
+//The voltage developed for 550 rpm is 403 volt which is taken from the curve
+N=550;
+E=403;
+P_not=(E*E)/R;
+Pi=(2*%pi*N*Tf)/60;
+
+printf("\n Electrical input=%5.2f W \n",P_not)
+printf("\n Mechanical input=%5.2f W \n",Pi)
+if Pi<P_not then
+ N1=540;
+else
+ N1>N
+end
+printf("\n Desired speed=%d rpm \n",N1)
+//Answer vary dueto roundoff error
+//since mechanical input is less than electrical output the motor cannot attain a speed as 550 rpm
+//So the speed is 540 rpm which is obtained using trial and error method
diff --git a/3802/CH8/EX8.17/Ex8_17.jpg b/3802/CH8/EX8.17/Ex8_17.jpg Binary files differnew file mode 100644 index 000000000..798210997 --- /dev/null +++ b/3802/CH8/EX8.17/Ex8_17.jpg diff --git a/3802/CH8/EX8.17/Ex8_17.sce b/3802/CH8/EX8.17/Ex8_17.sce new file mode 100644 index 000000000..f73440c3b --- /dev/null +++ b/3802/CH8/EX8.17/Ex8_17.sce @@ -0,0 +1,43 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex8_17.sce.
+
+clc;
+clear;
+P=100e3;
+V=460;
+It=9.8;
+If=2.7;
+R=0.11;
+
+printf("\n (a)")
+I=(P/2)/V;
+Ia=I+If;
+Wa=Ia^2*R;
+Wsh=V*If;
+Ian=It-If;
+W_not=V*Ian;
+NL_armature_loss=Ian^2*R;
+other_loss=W_not-NL_armature_loss; //other losses include iron,friction,windage losses
+T_loss_HL=Wa+Wsh+other_loss;
+Pi_HL=(P/2)+T_loss_HL;
+efficiency=((P/2)/Pi_HL)*100;
+printf("\n Efficiency of the generator at half load=%2.1f percentage \n",efficiency)
+
+printf("\n (b)")
+I=P/V;
+Ia=I+If;
+Wa=Ia^2*R;
+Wsh=V*If;
+Ian=It-If;
+W_not=V*Ian;
+NL_armature_loss=Ian^2*R;
+other_loss=W_not-NL_armature_loss; //other losses include iron,friction,windage losses
+T_loss_FL=Wa+Wsh+other_loss;
+Pi_FL=P+T_loss_FL;
+efficiency=(P/Pi_FL)*100;
+printf("\n Efficiency of the generator at full load=%2.2f percentage \n",efficiency)
+
diff --git a/3802/CH8/EX8.18/Ex8_18.jpg b/3802/CH8/EX8.18/Ex8_18.jpg Binary files differnew file mode 100644 index 000000000..1ab8071c9 --- /dev/null +++ b/3802/CH8/EX8.18/Ex8_18.jpg diff --git a/3802/CH8/EX8.18/Ex8_18.sce b/3802/CH8/EX8.18/Ex8_18.sce new file mode 100644 index 000000000..68c8816e4 --- /dev/null +++ b/3802/CH8/EX8.18/Ex8_18.sce @@ -0,0 +1,40 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex8_18.sce.
+
+clc;
+clear;
+P=1000e3;
+V=500;
+I1=2000;
+I2=400;
+Ig=21; //shunt field current of generator
+Im=17; //shunt field current of motor
+R=0.01;
+I=P/V;
+
+printf("\n (a)")
+efficiency=sqrt(I1/(I1+I2))*100;
+printf("\n Effciency at full load=%2.1f percentage \n",efficiency)
+
+printf("\n (b)")
+Ia_G=I1+Ig;
+copper_loss_G=Ia_G^2*R;
+loss_G=V*Ig;
+
+Ia_M=I1+I2-Im;
+copper_loss_M=Ia_M^2*R;
+loss_M=V*Im;
+
+total_loss=V*I2;
+other_loss=total_loss-(copper_loss_G+loss_G+copper_loss_M+loss_M); //other losses include iron,friction,windage losses
+other_loss_each=other_loss/2;
+total_loss_G=copper_loss_G+loss_G+other_loss_each;
+Pi_G=P+total_loss_G;
+efficiency=(P/Pi_G)*100;
+printf("\n Efficiency with considering losses=%2.1f percentage \n",efficiency)
+//There is a mistake in the (a) part calculation in the book.
+//The efficiency is 91.3% not 89.1%
diff --git a/3802/CH8/EX8.2/Ex8_2.jpg b/3802/CH8/EX8.2/Ex8_2.jpg Binary files differnew file mode 100644 index 000000000..60df0fa42 --- /dev/null +++ b/3802/CH8/EX8.2/Ex8_2.jpg diff --git a/3802/CH8/EX8.2/Ex8_2.sce b/3802/CH8/EX8.2/Ex8_2.sce new file mode 100644 index 000000000..51a826d16 --- /dev/null +++ b/3802/CH8/EX8.2/Ex8_2.sce @@ -0,0 +1,26 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex8_2.sce
+
+clc;
+clear;
+p=4;
+s=30;
+c=90;
+Cs=2*c;
+printf("\n Number of coil sides=%d \n",Cs)
+Cs_per_slot=Cs/s;
+printf("\n Number of coil sides per slot=%d \n",Cs_per_slot)
+Yb1=Cs/p+2; //Winding is not split
+Yb2=Cs/p-2; //Winding is split
+Yb=Yb2;
+printf("\n Back pitch=%d \n",Yb)
+Cs1=1+Yb;
+Cs3=3+Yb;
+Cs5=5+Yb;
+//Top coil sides 1,3,5 are in in slot,while all the corresponding bottom coil sides 44,46,48 are in slot 8.
+
+
diff --git a/3802/CH8/EX8.20/Ex8_20.jpg b/3802/CH8/EX8.20/Ex8_20.jpg Binary files differnew file mode 100644 index 000000000..8ec6b612f --- /dev/null +++ b/3802/CH8/EX8.20/Ex8_20.jpg diff --git a/3802/CH8/EX8.20/Ex8_20.sce b/3802/CH8/EX8.20/Ex8_20.sce new file mode 100644 index 000000000..182fc0b94 --- /dev/null +++ b/3802/CH8/EX8.20/Ex8_20.sce @@ -0,0 +1,16 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex8_20(c).sce.
+
+clc;
+clear;
+Ra=35;
+J=6e-5;
+K=0.325;
+
+T=(J*Ra)/K^2;
+t=-T*log(1-0.98); //(1-0.98)=0.02
+printf("\n Time for the motor to run with 2 percentage of its final speed=%1.3f sec \n",t)
diff --git a/3802/CH8/EX8.3/Ex8_3.jpg b/3802/CH8/EX8.3/Ex8_3.jpg Binary files differnew file mode 100644 index 000000000..bef85619a --- /dev/null +++ b/3802/CH8/EX8.3/Ex8_3.jpg diff --git a/3802/CH8/EX8.3/Ex8_3.sce b/3802/CH8/EX8.3/Ex8_3.sce new file mode 100644 index 000000000..eaa7eacfc --- /dev/null +++ b/3802/CH8/EX8.3/Ex8_3.sce @@ -0,0 +1,31 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex8_3.sce
+
+clc;
+clear;
+s=25;
+c=25;
+com_seg=25;
+p=4;
+Sp=s/p; //slot per pole
+printf("\n Slots per pole=%d \n",Sp)
+Cs=2*c;
+printf("\n Number of coil sides=%d \n",Cs)
+Cs_per_slot=Cs/s;
+printf("\n Number of coil sides per slot=%d \n",Cs_per_slot)
+Y1=((2*c)+2)/(p/2);
+Y2=((2*c)-2)/(p/2);
+Y=Y1; //For progressive winding
+printf("\n Winding pitch=%d \n",Y)
+Yb=Y/2;
+printf("\n Back pitch=%d \n",Yb)
+Yf=Yb;
+printf("\n Full pitch=%d \n",Yf)
+Yc=(c+1)/(p/2);
+printf("\n Commutator pitch=%d \n",Yc)
+
+
diff --git a/3802/CH8/EX8.4/Ex8_4.jpg b/3802/CH8/EX8.4/Ex8_4.jpg Binary files differnew file mode 100644 index 000000000..9d86026f4 --- /dev/null +++ b/3802/CH8/EX8.4/Ex8_4.jpg diff --git a/3802/CH8/EX8.4/Ex8_4.sce b/3802/CH8/EX8.4/Ex8_4.sce new file mode 100644 index 000000000..39572035f --- /dev/null +++ b/3802/CH8/EX8.4/Ex8_4.sce @@ -0,0 +1,28 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex8_4.sce
+
+clc;
+clear;
+p=4;
+s=21;
+Cs_per_slot=4;
+Cs=Cs_per_slot*s;
+printf("\n Number of coil sides=%d \n",Cs)
+C=Cs/2;
+printf("\n Number of coils=%d \n",C)
+Yc1=(C+1)/(p/2);
+Yc2=(C-1)/(p/2);
+C=41; //Simplex wave winding is not possible with 42 coils.Therefore active coils are 42
+Yc=(C+1)/(p/2);
+printf("\n Commutator pitch=%d \n",Yc)
+Y=((2*C)+2)/(p/2);
+printf("\n Winding pitch=%d \n",Y)
+Yb=Y/2;
+printf("\n Back pitch=%d \n",Yb)
+Yf=Yb;
+printf("\n Full pitch=%d \n",Yf)
+//This value of Yb also satisfies the condition to avoid split winding
diff --git a/3802/CH8/EX8.5/Ex8_5.jpg b/3802/CH8/EX8.5/Ex8_5.jpg Binary files differnew file mode 100644 index 000000000..5c61d59a3 --- /dev/null +++ b/3802/CH8/EX8.5/Ex8_5.jpg diff --git a/3802/CH8/EX8.5/Ex8_5.sce b/3802/CH8/EX8.5/Ex8_5.sce new file mode 100644 index 000000000..66d017e4f --- /dev/null +++ b/3802/CH8/EX8.5/Ex8_5.sce @@ -0,0 +1,19 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex8_5.sce.
+
+clc;
+clear;
+s=50;
+c=8;
+N=900;
+phi=25e-3;
+Z=s*c;
+a=2;
+p=2;
+n=N/60;
+E=(2*Z*phi*p*n)/a;
+printf("\n Emf generated=%d volt",E)
diff --git a/3802/CH8/EX8.6/Ex8_6.jpg b/3802/CH8/EX8.6/Ex8_6.jpg Binary files differnew file mode 100644 index 000000000..15c3c16b0 --- /dev/null +++ b/3802/CH8/EX8.6/Ex8_6.jpg diff --git a/3802/CH8/EX8.6/Ex8_6.sce b/3802/CH8/EX8.6/Ex8_6.sce new file mode 100644 index 000000000..f640e244c --- /dev/null +++ b/3802/CH8/EX8.6/Ex8_6.sce @@ -0,0 +1,23 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex8_6.sce.
+
+clc;
+clear;
+N=360;
+phi=45e-3;
+s=120;
+E=260;
+p=4;
+n=N/60;
+a=8;
+Z=(E*a)/(2*phi*p*n);
+coductors_per_slot=Z/s;
+total_no_of_conductors=coductors_per_slot*s;
+printf("\n Number of conductors per slot=%d \n",coductors_per_slot)
+
+phi=(E*a)/(2*960*n*p)
+printf("\n Flux=%1.5f Wb/pole",phi)
diff --git a/3802/CH8/EX8.7/Ex8_7.jpg b/3802/CH8/EX8.7/Ex8_7.jpg Binary files differnew file mode 100644 index 000000000..de7e4dc5e --- /dev/null +++ b/3802/CH8/EX8.7/Ex8_7.jpg diff --git a/3802/CH8/EX8.7/Ex8_7.sce b/3802/CH8/EX8.7/Ex8_7.sce new file mode 100644 index 000000000..755ee0609 --- /dev/null +++ b/3802/CH8/EX8.7/Ex8_7.sce @@ -0,0 +1,27 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex8_7.sce.
+
+clc;
+clear;
+P=300e3;
+V=500;
+a=8;
+p=4;
+Z=786;
+theta=5;
+
+I=P/V;
+armature_AT=(1/2)*(I/a)*(Z/(2*p)); //Total AT per pole
+demagnetizing_AT=armature_AT*(4*theta/360); //demagnetizing AT per pole
+distorting_AT=armature_AT-demagnetizing_AT; //distorting AT per pole
+printf("\n Demagnetizing AT per pole=%d AT/pole \n",demagnetizing_AT)
+printf("\n Cross AT per pole=%4.0f AT/pole \n",distorting_AT)
+
+//There is a error in the substitution of number of conductors (Z) in the book
+//In the question Z=786 but problem is solved by substituting Z=768
+//But I make the codes with the given data that is Z=786
+//So the book answer vary
diff --git a/3802/CH8/EX8.8/Ex8_8.jpg b/3802/CH8/EX8.8/Ex8_8.jpg Binary files differnew file mode 100644 index 000000000..5ba6a86e2 --- /dev/null +++ b/3802/CH8/EX8.8/Ex8_8.jpg diff --git a/3802/CH8/EX8.8/Ex8_8.sce b/3802/CH8/EX8.8/Ex8_8.sce new file mode 100644 index 000000000..4852d569a --- /dev/null +++ b/3802/CH8/EX8.8/Ex8_8.sce @@ -0,0 +1,29 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex8_8.sce.
+
+clc;
+clear;
+R=200;
+P=100e3;
+V=500;
+E=525;
+
+printf("\n (a)")
+Il=P/V;
+If=V/R;
+Ia=Il+If;
+Ra=(E-V)/Ia;
+printf("\n The armature resistance=%1.4f ohm \n",Ra)
+
+printf("\n (b)")
+P=60e3;
+V=520;
+Il=P/V;
+If=V/R;
+Ia=Il+If;
+E=V+(Ia*Ra);
+printf("\n The generated emf=%3.2f volt",E)
diff --git a/3802/CH8/EX8.9/Ex8_9.jpg b/3802/CH8/EX8.9/Ex8_9.jpg Binary files differnew file mode 100644 index 000000000..c72f6be24 --- /dev/null +++ b/3802/CH8/EX8.9/Ex8_9.jpg diff --git a/3802/CH8/EX8.9/Ex8_9.sce b/3802/CH8/EX8.9/Ex8_9.sce new file mode 100644 index 000000000..9de1ebe68 --- /dev/null +++ b/3802/CH8/EX8.9/Ex8_9.sce @@ -0,0 +1,19 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex8_9.sce.
+
+clc;
+clear;
+Ra=0.8;
+Rsh=45;
+Rse=0.6;
+P=5e3;
+V=250;
+Il=P/V;
+If=(V+(Rse*Il))/Rsh;
+Ia=Il+If;
+E=V+(Il*Rse)+(Ia*Ra);
+printf("\n Armature generated voltage=%3.2f volt \n",E)
diff --git a/3802/CH9/EX9.1/Ex9_1.jpg b/3802/CH9/EX9.1/Ex9_1.jpg Binary files differnew file mode 100644 index 000000000..6613bb4cc --- /dev/null +++ b/3802/CH9/EX9.1/Ex9_1.jpg diff --git a/3802/CH9/EX9.1/Ex9_1.sce b/3802/CH9/EX9.1/Ex9_1.sce new file mode 100644 index 000000000..5e3012684 --- /dev/null +++ b/3802/CH9/EX9.1/Ex9_1.sce @@ -0,0 +1,24 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex9_1.sce.
+
+clc;
+clear;
+slots=24;
+pole=4;
+
+printf("\n (a)")
+//when all slots are wound
+m=slots/pole;
+alpha=180/m;
+Kd=sind(m*alpha/2)/(m*sind(alpha/2));
+printf("\n Distribution factor when all slots are wound=%1.3f",Kd)
+
+printf("\n (b)")
+//only 4 adjacent slots are wound
+m=4;
+Kd=sind(m*alpha/2)/(m*sind(alpha/2));
+printf("\n Distribution factor when only four slots per pole are wound=%1.3f",Kd)
diff --git a/3802/CH9/EX9.10/Ex9_10.jpg b/3802/CH9/EX9.10/Ex9_10.jpg Binary files differnew file mode 100644 index 000000000..1c071775f --- /dev/null +++ b/3802/CH9/EX9.10/Ex9_10.jpg diff --git a/3802/CH9/EX9.10/Ex9_10.sce b/3802/CH9/EX9.10/Ex9_10.sce new file mode 100644 index 000000000..2041df3b4 --- /dev/null +++ b/3802/CH9/EX9.10/Ex9_10.sce @@ -0,0 +1,36 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex9_10.sce.
+
+clc;
+clear;
+Pl=1e6;
+Pd=360; //developing power
+Pi=600e3;
+Vl=6600;
+pf=0.8;
+Pin=800e3;
+theta=acosd(pf);
+Il=Pl/(Vl*sqrt(3));
+Ps=(Pd*746)/0.9; // 1HP=746 watt and efficiency is assumed 90% (i.e 0.9)
+phi_s=acosd(Ps/Pi);
+Is=Pi/(Vl*sqrt(3));
+lag_reactive_crt_load=Il*sind(theta);
+lead_reacitve_crt_motor=lag_reactive_crt_load*sind(phi_s);
+lag_reactive_crt_result=lag_reactive_crt_load-lead_reacitve_crt_motor;
+resultant_active_crt=(Il*pf)+(lag_reactive_crt_load*cosd(phi_s));
+
+resultant_line_crt=sqrt(resultant_active_crt^2+lag_reactive_crt_result^2);
+printf("\n Resultant line current=%2.2f A \n",resultant_line_crt);
+
+final_power_factor=resultant_active_crt/resultant_line_crt;
+printf("\n Final power factor=%1.0f \n",final_power_factor);
+
+increase_of_crt=(resultant_line_crt-Il)*100/Il;
+printf("\n The increase of current=%2.1f percentage \n",increase_of_crt)
+
+increase_power_trans=((Pin+Ps)-Pin)*100/Pin;
+printf("\n The increase of power transmitted=%2.1f percentage \n",increase_power_trans)
diff --git a/3802/CH9/EX9.11/Ex9_11.jpg b/3802/CH9/EX9.11/Ex9_11.jpg Binary files differnew file mode 100644 index 000000000..551a351e9 --- /dev/null +++ b/3802/CH9/EX9.11/Ex9_11.jpg diff --git a/3802/CH9/EX9.11/Ex9_11.sce b/3802/CH9/EX9.11/Ex9_11.sce new file mode 100644 index 000000000..3a11b1082 --- /dev/null +++ b/3802/CH9/EX9.11/Ex9_11.sce @@ -0,0 +1,40 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex9_11.sce
+
+clc;
+clear;
+//The input data are taken from the previous example 9.10
+
+Pl=1e6;
+Pd=360; //developing power
+Pi=600e3;
+Vl=6600;
+pf=0.1;
+pf1=0.8;
+Pin=800e3;
+theta=acosd(pf);
+Il=Pl/(Vl*sqrt(3));
+Ps=(Pd*746)/0.9; // 1HP=746 watt and efficiency is assumed 90% (i.e 0.9)
+phi_s=acosd(Ps/Pi);
+Is=Pi/(Vl*sqrt(3));
+lag_reactive_crt_motor=52.5;
+lead_reacitve_crt_motor=lag_reactive_crt_motor*sind(acosd(pf));
+active_crt=lag_reactive_crt_motor*pf;
+lag_reactive_crt_result=lag_reactive_crt_motor-lead_reacitve_crt_motor;
+resultant_active_crt=(Il*pf1)+(active_crt);
+
+resultant_line_crt=sqrt(resultant_active_crt^2+lag_reactive_crt_result^2);
+printf("\n Resultant line current= %2.3f A \n",resultant_line_crt);
+
+pf=resultant_active_crt/resultant_line_crt;
+printf("\n Power factor= %1.0f \n",pf)
+
+increase_of_crt=(Il-resultant_active_crt)*100/Il;
+printf("\n The increase of current= %2.0f percentage \n",increase_of_crt)
+
+increase_power_trans=(Pi*pf)*100/Pin;
+printf("\n The increase of power transmitted= %2.0f percentage",increase_power_trans)
diff --git a/3802/CH9/EX9.2/Ex9_2.jpg b/3802/CH9/EX9.2/Ex9_2.jpg Binary files differnew file mode 100644 index 000000000..12431458e --- /dev/null +++ b/3802/CH9/EX9.2/Ex9_2.jpg diff --git a/3802/CH9/EX9.2/Ex9_2.sce b/3802/CH9/EX9.2/Ex9_2.sce new file mode 100644 index 000000000..e9998ee9f --- /dev/null +++ b/3802/CH9/EX9.2/Ex9_2.sce @@ -0,0 +1,33 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex9_2.sce
+
+clc;
+clear;
+V=3.6e3;
+phase=3
+f=50;
+N=500;
+m=3;
+c=10;
+
+printf("\n (a)")
+p=(120*f)/N;
+printf("\n The number of poles=%d",p)
+
+printf("\n (b)")
+slots_per_phase=m*p;
+conductor_per_phase=(slots_per_phase)*c;
+turns_per_phase=conductor_per_phase/2;
+emf_per_phase=V/sqrt(3);
+solts_per_pole=m*phase;
+alpha=180/solts_per_pole;
+
+Kd=sind(m*alpha/2)/(m*sind(alpha/2));
+betta=alpha;
+Kp=cosd(betta/2);
+phi=emf_per_phase/(4.44*f*Kd*Kp*turns_per_phase);
+printf("\n The useful flux per pole=%1.3f Wb",phi)
diff --git a/3802/CH9/EX9.3/Ex9_3.jpg b/3802/CH9/EX9.3/Ex9_3.jpg Binary files differnew file mode 100644 index 000000000..425654f8a --- /dev/null +++ b/3802/CH9/EX9.3/Ex9_3.jpg diff --git a/3802/CH9/EX9.3/Ex9_3.sce b/3802/CH9/EX9.3/Ex9_3.sce new file mode 100644 index 000000000..6e8287eff --- /dev/null +++ b/3802/CH9/EX9.3/Ex9_3.sce @@ -0,0 +1,40 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex9_3.sce
+
+clc;
+clear;
+P=45e3;
+E=220;
+phase=3;
+p=6;
+f=50;
+
+I=P/(E*sqrt(3));
+//From SCC ,the excitation current is,
+Isc1=118.1;
+If=2.2;
+//For this If, the corresponding line voltage from the air gap line is,
+V1=202;
+I1=1.0;
+Vph=V1/sqrt(3);
+Xs_unsat=Vph/Isc1; //Unsaturated reactance in ohm
+V=V1/E;
+Xs_unsat_pu=V/I1; //Unsaturated reactance in per unit
+printf("\n Unsaturated value of synchronous reactance=\t %1.4f ohm \t %1.3f p.u \n",Xs_unsat,Xs_unsat_pu)
+
+//For 220 volt from figure,
+If=2.9;
+Isc2=157;
+Vph=E/sqrt(3);
+Xs_sat=Vph/Isc2;
+Xs_sat_pu=I1/(Isc2/Isc1);
+printf("\n Saturated value of synchronous reactance=\t %1.3f ohm \t %1.3f p.u \n",Xs_sat,Xs_sat_pu)
+
+Ie2=2.9;
+Ie1=2.2;
+SCR=Ie2/Ie1;
+printf("\n Short circuit ratio=%1.2f \n",SCR)
diff --git a/3802/CH9/EX9.4/Ex9_4.jpg b/3802/CH9/EX9.4/Ex9_4.jpg Binary files differnew file mode 100644 index 000000000..4458b5b29 --- /dev/null +++ b/3802/CH9/EX9.4/Ex9_4.jpg diff --git a/3802/CH9/EX9.4/Ex9_4.sce b/3802/CH9/EX9.4/Ex9_4.sce new file mode 100644 index 000000000..e41a83159 --- /dev/null +++ b/3802/CH9/EX9.4/Ex9_4.sce @@ -0,0 +1,20 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex9_4.sce.
+
+clc;
+clear;
+//From figure 9.26
+EG=25;
+P=45e3;
+E=220;
+I=P/(E*sqrt(3));
+Xl=EG/(sqrt(3)*I);
+printf("\n Leakage reactance=%1.4f ohm \n",Xl)
+
+//From fig 9.26 armature reaction amphere is equal to the field current
+If=1.925;
+printf("\n Field amphere current=%1.3f A \n",If)
diff --git a/3802/CH9/EX9.5/Ex9_5.jpg b/3802/CH9/EX9.5/Ex9_5.jpg Binary files differnew file mode 100644 index 000000000..12a50d150 --- /dev/null +++ b/3802/CH9/EX9.5/Ex9_5.jpg diff --git a/3802/CH9/EX9.5/Ex9_5.sce b/3802/CH9/EX9.5/Ex9_5.sce new file mode 100644 index 000000000..9b755bf9e --- /dev/null +++ b/3802/CH9/EX9.5/Ex9_5.sce @@ -0,0 +1,31 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex9_5.sce
+
+clc;
+clear;
+V=1+%i*0;
+Xd=1.0;
+Xq=0.6;
+pf=0.8;
+theta=acosd(pf);
+Ia1=pf-%i*sind(acosd(pf));
+Ia=1.0; //phase magnitude of Ia
+
+tan_del=(Ia*Xq*cosd(theta))/(V+(Ia*Xq*sind(theta)));
+del=atand(real(tan_del));
+Ef_dash=((V+(Ia*Xq*sind(theta)))^2+(Ia*Xq*cosd(theta))^2)^(1/2);
+
+Ef=real(Ef_dash)+(Ia*sind(theta+del)*(Xd-Xq));
+disp(Ef,'Magnitude excitation voltage in p.u is')
+
+Ef_double_dash=V*(1+%i*0)+%i*((cosd(theta)-%i*sind(theta))*Xd);
+disp(Ef_double_dash,'The rectangular value of double excited voltage in p.u is')
+
+Ef_double_dash_mag=sqrt(real(Ef_double_dash)^2+imag(Ef_double_dash)^2);
+Ef_double_dash_ang=atand(imag(Ef_double_dash)/real(Ef_double_dash));
+printf("\n The polar form of double excited voltage=%1.2f angle%2.3f degree \n",Ef_double_dash_mag,Ef_double_dash_ang)
+
diff --git a/3802/CH9/EX9.6/Ex9_6.jpg b/3802/CH9/EX9.6/Ex9_6.jpg Binary files differnew file mode 100644 index 000000000..5e6a69a37 --- /dev/null +++ b/3802/CH9/EX9.6/Ex9_6.jpg diff --git a/3802/CH9/EX9.6/Ex9_6.sce b/3802/CH9/EX9.6/Ex9_6.sce new file mode 100644 index 000000000..bd72adc8a --- /dev/null +++ b/3802/CH9/EX9.6/Ex9_6.sce @@ -0,0 +1,36 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex9_6.sce.
+
+clc;
+clear;
+P=500e3;
+Vl=3.3e3
+Il=P/(sqrt(3)*Vl);
+Vph=Vl/sqrt(3);
+Iph=Il;
+Rph=0.4;
+Xsyn=4.2;
+
+printf("\n (a)")
+pf=1; //unity
+Ef=((Vph+(Iph*Rph))^2+(Iph*Xsyn)^2)^(1/2);
+reg=((Ef/Vph)-1)*100;
+printf("\n Voltage Regulation for unity power factor=%1.2f percentage \n",reg)
+
+printf("\n (b)")
+pf=0.8; //lagging
+theta=acosd(pf);
+Ef=((Vph+(Iph*Rph*cosd(theta))+(Iph*Xsyn*sind(theta)))^2+((Iph*Xsyn*cosd(theta))-(Iph*Rph*sind(theta)))^2)^(1/2);
+reg=((Ef/Vph)-1)*100;
+printf("\n Voltage Regulation for 0.8 lagging power factor=%2.3f percentage \n",reg)
+
+printf("\n (c)")
+pf=0.8; //leading
+theta=acosd(pf);
+Ef=((Vph+(Iph*Rph*cosd(theta))-(Iph*Xsyn*sind(theta)))^2+((Iph*Xsyn*cosd(theta))+(Iph*Rph*sind(theta)))^2)^(1/2);
+reg=((Ef/Vph)-1)*100;
+printf("\n Voltage Regulation for 0.8 leading power factor=%1.1f percentage \n",reg)
diff --git a/3802/CH9/EX9.7/Ex9_7.jpg b/3802/CH9/EX9.7/Ex9_7.jpg Binary files differnew file mode 100644 index 000000000..bc5f30ff9 --- /dev/null +++ b/3802/CH9/EX9.7/Ex9_7.jpg diff --git a/3802/CH9/EX9.7/Ex9_7.sce b/3802/CH9/EX9.7/Ex9_7.sce new file mode 100644 index 000000000..2e9cf9898 --- /dev/null +++ b/3802/CH9/EX9.7/Ex9_7.sce @@ -0,0 +1,33 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex9_7.sce.
+
+clc;
+clear;
+//input data are taken from example 9.5
+V=1+%i*0;
+Xd=1.0;
+Xq=0.6;
+pf=0.8;
+theta=acosd(pf);
+Ia1=pf-%i*sind(acosd(pf));
+Ia=1.0; //phase magnitude of Ia
+
+printf("\n (a)")
+//lagging power factor
+tan_del=(Ia*Xq*cosd(theta))/(V+(Ia*Xq*sind(theta)));
+del=atand(real(tan_del));
+Ef_dash=((V+(Ia*Xq*sind(theta)))^2+(Ia*Xq*cosd(theta))^2)^(1/2);
+Ef=real(Ef_dash)+(Ia*sind(theta+del)*(Xd-Xq));
+reg=((Ef-V)/1.0)*100;
+printf("\n Voltage Regulation for 0.8 lagging power factor=%d percentage \n",reg)
+
+printf("\n (b)")
+tan_del=(Ia*Xq*cosd(theta))/(V-(Ia*Xq*sind(theta)));
+del=atand(real(tan_del));
+Ef=((V-(Ia*Xq*sind(theta)))^2+(Ia*Xq*cosd(theta))^2)^(1/2);
+reg=((Ef-V)/1.0)*100;
+printf("\n Voltage Regulation for 0.8 leading power factor=%2.0f percentage",reg)
diff --git a/3802/CH9/EX9.8/Ex9_8.jpg b/3802/CH9/EX9.8/Ex9_8.jpg Binary files differnew file mode 100644 index 000000000..19fe22f41 --- /dev/null +++ b/3802/CH9/EX9.8/Ex9_8.jpg diff --git a/3802/CH9/EX9.8/Ex9_8.sce b/3802/CH9/EX9.8/Ex9_8.sce new file mode 100644 index 000000000..b5022b47f --- /dev/null +++ b/3802/CH9/EX9.8/Ex9_8.sce @@ -0,0 +1,16 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex9_8.sce.
+
+clc;
+clear;
+VI1=10e6;
+phi1=acosd(0.75);
+phip=acosd(0.9);
+phic=90-asind(7/100); //given loss is 7% of KVA output
+KVAc=VI1*(((sind(phi1)*cosd(phip))-(cosd(phi1)*sind(phip)))/((sind(phic)*cosd(phip))+(cosd(phic)*sind(phip))))*1e-3;
+MVAc=KVAc*1e-3;
+printf("\n The capacity of the synchronous condenser= %1.2f MVA",MVAc)
diff --git a/3802/CH9/EX9.9/Ex9_9.jpg b/3802/CH9/EX9.9/Ex9_9.jpg Binary files differnew file mode 100644 index 000000000..c5103cb30 --- /dev/null +++ b/3802/CH9/EX9.9/Ex9_9.jpg diff --git a/3802/CH9/EX9.9/Ex9_9.sce b/3802/CH9/EX9.9/Ex9_9.sce new file mode 100644 index 000000000..086d9b0a7 --- /dev/null +++ b/3802/CH9/EX9.9/Ex9_9.sce @@ -0,0 +1,16 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex9_9.sce.
+
+//input data are taken from example 9.8
+clc;
+clear;
+VI1=10e6;
+pf1=0.75;
+pfc=cosd(90-asind(7/100));
+KVAc=VI1*((sqrt(1-pf1^2))/(sqrt(1-pfc^2)))*1e-3;
+MVAc=KVAc*1e-3;
+printf("\n The capacity of synchronous condenser which is desired to raise the power factor to unity=%1.2f MVA",MVAc);
|