diff options
Diffstat (limited to '3802/CH9')
-rw-r--r-- | 3802/CH9/EX9.1/Ex9_1.jpg | bin | 0 -> 23215 bytes | |||
-rw-r--r-- | 3802/CH9/EX9.1/Ex9_1.sce | 24 | ||||
-rw-r--r-- | 3802/CH9/EX9.10/Ex9_10.jpg | bin | 0 -> 26383 bytes | |||
-rw-r--r-- | 3802/CH9/EX9.10/Ex9_10.sce | 36 | ||||
-rw-r--r-- | 3802/CH9/EX9.11/Ex9_11.jpg | bin | 0 -> 22874 bytes | |||
-rw-r--r-- | 3802/CH9/EX9.11/Ex9_11.sce | 40 | ||||
-rw-r--r-- | 3802/CH9/EX9.2/Ex9_2.jpg | bin | 0 -> 17733 bytes | |||
-rw-r--r-- | 3802/CH9/EX9.2/Ex9_2.sce | 33 | ||||
-rw-r--r-- | 3802/CH9/EX9.3/Ex9_3.jpg | bin | 0 -> 29935 bytes | |||
-rw-r--r-- | 3802/CH9/EX9.3/Ex9_3.sce | 40 | ||||
-rw-r--r-- | 3802/CH9/EX9.4/Ex9_4.jpg | bin | 0 -> 16154 bytes | |||
-rw-r--r-- | 3802/CH9/EX9.4/Ex9_4.sce | 20 | ||||
-rw-r--r-- | 3802/CH9/EX9.5/Ex9_5.jpg | bin | 0 -> 32414 bytes | |||
-rw-r--r-- | 3802/CH9/EX9.5/Ex9_5.sce | 31 | ||||
-rw-r--r-- | 3802/CH9/EX9.6/Ex9_6.jpg | bin | 0 -> 34183 bytes | |||
-rw-r--r-- | 3802/CH9/EX9.6/Ex9_6.sce | 36 | ||||
-rw-r--r-- | 3802/CH9/EX9.7/Ex9_7.jpg | bin | 0 -> 25777 bytes | |||
-rw-r--r-- | 3802/CH9/EX9.7/Ex9_7.sce | 33 | ||||
-rw-r--r-- | 3802/CH9/EX9.8/Ex9_8.jpg | bin | 0 -> 14971 bytes | |||
-rw-r--r-- | 3802/CH9/EX9.8/Ex9_8.sce | 16 | ||||
-rw-r--r-- | 3802/CH9/EX9.9/Ex9_9.jpg | bin | 0 -> 23637 bytes | |||
-rw-r--r-- | 3802/CH9/EX9.9/Ex9_9.sce | 16 |
22 files changed, 325 insertions, 0 deletions
diff --git a/3802/CH9/EX9.1/Ex9_1.jpg b/3802/CH9/EX9.1/Ex9_1.jpg Binary files differnew file mode 100644 index 000000000..6613bb4cc --- /dev/null +++ b/3802/CH9/EX9.1/Ex9_1.jpg diff --git a/3802/CH9/EX9.1/Ex9_1.sce b/3802/CH9/EX9.1/Ex9_1.sce new file mode 100644 index 000000000..5e3012684 --- /dev/null +++ b/3802/CH9/EX9.1/Ex9_1.sce @@ -0,0 +1,24 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex9_1.sce.
+
+clc;
+clear;
+slots=24;
+pole=4;
+
+printf("\n (a)")
+//when all slots are wound
+m=slots/pole;
+alpha=180/m;
+Kd=sind(m*alpha/2)/(m*sind(alpha/2));
+printf("\n Distribution factor when all slots are wound=%1.3f",Kd)
+
+printf("\n (b)")
+//only 4 adjacent slots are wound
+m=4;
+Kd=sind(m*alpha/2)/(m*sind(alpha/2));
+printf("\n Distribution factor when only four slots per pole are wound=%1.3f",Kd)
diff --git a/3802/CH9/EX9.10/Ex9_10.jpg b/3802/CH9/EX9.10/Ex9_10.jpg Binary files differnew file mode 100644 index 000000000..1c071775f --- /dev/null +++ b/3802/CH9/EX9.10/Ex9_10.jpg diff --git a/3802/CH9/EX9.10/Ex9_10.sce b/3802/CH9/EX9.10/Ex9_10.sce new file mode 100644 index 000000000..2041df3b4 --- /dev/null +++ b/3802/CH9/EX9.10/Ex9_10.sce @@ -0,0 +1,36 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex9_10.sce.
+
+clc;
+clear;
+Pl=1e6;
+Pd=360; //developing power
+Pi=600e3;
+Vl=6600;
+pf=0.8;
+Pin=800e3;
+theta=acosd(pf);
+Il=Pl/(Vl*sqrt(3));
+Ps=(Pd*746)/0.9; // 1HP=746 watt and efficiency is assumed 90% (i.e 0.9)
+phi_s=acosd(Ps/Pi);
+Is=Pi/(Vl*sqrt(3));
+lag_reactive_crt_load=Il*sind(theta);
+lead_reacitve_crt_motor=lag_reactive_crt_load*sind(phi_s);
+lag_reactive_crt_result=lag_reactive_crt_load-lead_reacitve_crt_motor;
+resultant_active_crt=(Il*pf)+(lag_reactive_crt_load*cosd(phi_s));
+
+resultant_line_crt=sqrt(resultant_active_crt^2+lag_reactive_crt_result^2);
+printf("\n Resultant line current=%2.2f A \n",resultant_line_crt);
+
+final_power_factor=resultant_active_crt/resultant_line_crt;
+printf("\n Final power factor=%1.0f \n",final_power_factor);
+
+increase_of_crt=(resultant_line_crt-Il)*100/Il;
+printf("\n The increase of current=%2.1f percentage \n",increase_of_crt)
+
+increase_power_trans=((Pin+Ps)-Pin)*100/Pin;
+printf("\n The increase of power transmitted=%2.1f percentage \n",increase_power_trans)
diff --git a/3802/CH9/EX9.11/Ex9_11.jpg b/3802/CH9/EX9.11/Ex9_11.jpg Binary files differnew file mode 100644 index 000000000..551a351e9 --- /dev/null +++ b/3802/CH9/EX9.11/Ex9_11.jpg diff --git a/3802/CH9/EX9.11/Ex9_11.sce b/3802/CH9/EX9.11/Ex9_11.sce new file mode 100644 index 000000000..3a11b1082 --- /dev/null +++ b/3802/CH9/EX9.11/Ex9_11.sce @@ -0,0 +1,40 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex9_11.sce
+
+clc;
+clear;
+//The input data are taken from the previous example 9.10
+
+Pl=1e6;
+Pd=360; //developing power
+Pi=600e3;
+Vl=6600;
+pf=0.1;
+pf1=0.8;
+Pin=800e3;
+theta=acosd(pf);
+Il=Pl/(Vl*sqrt(3));
+Ps=(Pd*746)/0.9; // 1HP=746 watt and efficiency is assumed 90% (i.e 0.9)
+phi_s=acosd(Ps/Pi);
+Is=Pi/(Vl*sqrt(3));
+lag_reactive_crt_motor=52.5;
+lead_reacitve_crt_motor=lag_reactive_crt_motor*sind(acosd(pf));
+active_crt=lag_reactive_crt_motor*pf;
+lag_reactive_crt_result=lag_reactive_crt_motor-lead_reacitve_crt_motor;
+resultant_active_crt=(Il*pf1)+(active_crt);
+
+resultant_line_crt=sqrt(resultant_active_crt^2+lag_reactive_crt_result^2);
+printf("\n Resultant line current= %2.3f A \n",resultant_line_crt);
+
+pf=resultant_active_crt/resultant_line_crt;
+printf("\n Power factor= %1.0f \n",pf)
+
+increase_of_crt=(Il-resultant_active_crt)*100/Il;
+printf("\n The increase of current= %2.0f percentage \n",increase_of_crt)
+
+increase_power_trans=(Pi*pf)*100/Pin;
+printf("\n The increase of power transmitted= %2.0f percentage",increase_power_trans)
diff --git a/3802/CH9/EX9.2/Ex9_2.jpg b/3802/CH9/EX9.2/Ex9_2.jpg Binary files differnew file mode 100644 index 000000000..12431458e --- /dev/null +++ b/3802/CH9/EX9.2/Ex9_2.jpg diff --git a/3802/CH9/EX9.2/Ex9_2.sce b/3802/CH9/EX9.2/Ex9_2.sce new file mode 100644 index 000000000..e9998ee9f --- /dev/null +++ b/3802/CH9/EX9.2/Ex9_2.sce @@ -0,0 +1,33 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex9_2.sce
+
+clc;
+clear;
+V=3.6e3;
+phase=3
+f=50;
+N=500;
+m=3;
+c=10;
+
+printf("\n (a)")
+p=(120*f)/N;
+printf("\n The number of poles=%d",p)
+
+printf("\n (b)")
+slots_per_phase=m*p;
+conductor_per_phase=(slots_per_phase)*c;
+turns_per_phase=conductor_per_phase/2;
+emf_per_phase=V/sqrt(3);
+solts_per_pole=m*phase;
+alpha=180/solts_per_pole;
+
+Kd=sind(m*alpha/2)/(m*sind(alpha/2));
+betta=alpha;
+Kp=cosd(betta/2);
+phi=emf_per_phase/(4.44*f*Kd*Kp*turns_per_phase);
+printf("\n The useful flux per pole=%1.3f Wb",phi)
diff --git a/3802/CH9/EX9.3/Ex9_3.jpg b/3802/CH9/EX9.3/Ex9_3.jpg Binary files differnew file mode 100644 index 000000000..425654f8a --- /dev/null +++ b/3802/CH9/EX9.3/Ex9_3.jpg diff --git a/3802/CH9/EX9.3/Ex9_3.sce b/3802/CH9/EX9.3/Ex9_3.sce new file mode 100644 index 000000000..6e8287eff --- /dev/null +++ b/3802/CH9/EX9.3/Ex9_3.sce @@ -0,0 +1,40 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex9_3.sce
+
+clc;
+clear;
+P=45e3;
+E=220;
+phase=3;
+p=6;
+f=50;
+
+I=P/(E*sqrt(3));
+//From SCC ,the excitation current is,
+Isc1=118.1;
+If=2.2;
+//For this If, the corresponding line voltage from the air gap line is,
+V1=202;
+I1=1.0;
+Vph=V1/sqrt(3);
+Xs_unsat=Vph/Isc1; //Unsaturated reactance in ohm
+V=V1/E;
+Xs_unsat_pu=V/I1; //Unsaturated reactance in per unit
+printf("\n Unsaturated value of synchronous reactance=\t %1.4f ohm \t %1.3f p.u \n",Xs_unsat,Xs_unsat_pu)
+
+//For 220 volt from figure,
+If=2.9;
+Isc2=157;
+Vph=E/sqrt(3);
+Xs_sat=Vph/Isc2;
+Xs_sat_pu=I1/(Isc2/Isc1);
+printf("\n Saturated value of synchronous reactance=\t %1.3f ohm \t %1.3f p.u \n",Xs_sat,Xs_sat_pu)
+
+Ie2=2.9;
+Ie1=2.2;
+SCR=Ie2/Ie1;
+printf("\n Short circuit ratio=%1.2f \n",SCR)
diff --git a/3802/CH9/EX9.4/Ex9_4.jpg b/3802/CH9/EX9.4/Ex9_4.jpg Binary files differnew file mode 100644 index 000000000..4458b5b29 --- /dev/null +++ b/3802/CH9/EX9.4/Ex9_4.jpg diff --git a/3802/CH9/EX9.4/Ex9_4.sce b/3802/CH9/EX9.4/Ex9_4.sce new file mode 100644 index 000000000..e41a83159 --- /dev/null +++ b/3802/CH9/EX9.4/Ex9_4.sce @@ -0,0 +1,20 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex9_4.sce.
+
+clc;
+clear;
+//From figure 9.26
+EG=25;
+P=45e3;
+E=220;
+I=P/(E*sqrt(3));
+Xl=EG/(sqrt(3)*I);
+printf("\n Leakage reactance=%1.4f ohm \n",Xl)
+
+//From fig 9.26 armature reaction amphere is equal to the field current
+If=1.925;
+printf("\n Field amphere current=%1.3f A \n",If)
diff --git a/3802/CH9/EX9.5/Ex9_5.jpg b/3802/CH9/EX9.5/Ex9_5.jpg Binary files differnew file mode 100644 index 000000000..12a50d150 --- /dev/null +++ b/3802/CH9/EX9.5/Ex9_5.jpg diff --git a/3802/CH9/EX9.5/Ex9_5.sce b/3802/CH9/EX9.5/Ex9_5.sce new file mode 100644 index 000000000..9b755bf9e --- /dev/null +++ b/3802/CH9/EX9.5/Ex9_5.sce @@ -0,0 +1,31 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex9_5.sce
+
+clc;
+clear;
+V=1+%i*0;
+Xd=1.0;
+Xq=0.6;
+pf=0.8;
+theta=acosd(pf);
+Ia1=pf-%i*sind(acosd(pf));
+Ia=1.0; //phase magnitude of Ia
+
+tan_del=(Ia*Xq*cosd(theta))/(V+(Ia*Xq*sind(theta)));
+del=atand(real(tan_del));
+Ef_dash=((V+(Ia*Xq*sind(theta)))^2+(Ia*Xq*cosd(theta))^2)^(1/2);
+
+Ef=real(Ef_dash)+(Ia*sind(theta+del)*(Xd-Xq));
+disp(Ef,'Magnitude excitation voltage in p.u is')
+
+Ef_double_dash=V*(1+%i*0)+%i*((cosd(theta)-%i*sind(theta))*Xd);
+disp(Ef_double_dash,'The rectangular value of double excited voltage in p.u is')
+
+Ef_double_dash_mag=sqrt(real(Ef_double_dash)^2+imag(Ef_double_dash)^2);
+Ef_double_dash_ang=atand(imag(Ef_double_dash)/real(Ef_double_dash));
+printf("\n The polar form of double excited voltage=%1.2f angle%2.3f degree \n",Ef_double_dash_mag,Ef_double_dash_ang)
+
diff --git a/3802/CH9/EX9.6/Ex9_6.jpg b/3802/CH9/EX9.6/Ex9_6.jpg Binary files differnew file mode 100644 index 000000000..5e6a69a37 --- /dev/null +++ b/3802/CH9/EX9.6/Ex9_6.jpg diff --git a/3802/CH9/EX9.6/Ex9_6.sce b/3802/CH9/EX9.6/Ex9_6.sce new file mode 100644 index 000000000..bd72adc8a --- /dev/null +++ b/3802/CH9/EX9.6/Ex9_6.sce @@ -0,0 +1,36 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex9_6.sce.
+
+clc;
+clear;
+P=500e3;
+Vl=3.3e3
+Il=P/(sqrt(3)*Vl);
+Vph=Vl/sqrt(3);
+Iph=Il;
+Rph=0.4;
+Xsyn=4.2;
+
+printf("\n (a)")
+pf=1; //unity
+Ef=((Vph+(Iph*Rph))^2+(Iph*Xsyn)^2)^(1/2);
+reg=((Ef/Vph)-1)*100;
+printf("\n Voltage Regulation for unity power factor=%1.2f percentage \n",reg)
+
+printf("\n (b)")
+pf=0.8; //lagging
+theta=acosd(pf);
+Ef=((Vph+(Iph*Rph*cosd(theta))+(Iph*Xsyn*sind(theta)))^2+((Iph*Xsyn*cosd(theta))-(Iph*Rph*sind(theta)))^2)^(1/2);
+reg=((Ef/Vph)-1)*100;
+printf("\n Voltage Regulation for 0.8 lagging power factor=%2.3f percentage \n",reg)
+
+printf("\n (c)")
+pf=0.8; //leading
+theta=acosd(pf);
+Ef=((Vph+(Iph*Rph*cosd(theta))-(Iph*Xsyn*sind(theta)))^2+((Iph*Xsyn*cosd(theta))+(Iph*Rph*sind(theta)))^2)^(1/2);
+reg=((Ef/Vph)-1)*100;
+printf("\n Voltage Regulation for 0.8 leading power factor=%1.1f percentage \n",reg)
diff --git a/3802/CH9/EX9.7/Ex9_7.jpg b/3802/CH9/EX9.7/Ex9_7.jpg Binary files differnew file mode 100644 index 000000000..bc5f30ff9 --- /dev/null +++ b/3802/CH9/EX9.7/Ex9_7.jpg diff --git a/3802/CH9/EX9.7/Ex9_7.sce b/3802/CH9/EX9.7/Ex9_7.sce new file mode 100644 index 000000000..2e9cf9898 --- /dev/null +++ b/3802/CH9/EX9.7/Ex9_7.sce @@ -0,0 +1,33 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex9_7.sce.
+
+clc;
+clear;
+//input data are taken from example 9.5
+V=1+%i*0;
+Xd=1.0;
+Xq=0.6;
+pf=0.8;
+theta=acosd(pf);
+Ia1=pf-%i*sind(acosd(pf));
+Ia=1.0; //phase magnitude of Ia
+
+printf("\n (a)")
+//lagging power factor
+tan_del=(Ia*Xq*cosd(theta))/(V+(Ia*Xq*sind(theta)));
+del=atand(real(tan_del));
+Ef_dash=((V+(Ia*Xq*sind(theta)))^2+(Ia*Xq*cosd(theta))^2)^(1/2);
+Ef=real(Ef_dash)+(Ia*sind(theta+del)*(Xd-Xq));
+reg=((Ef-V)/1.0)*100;
+printf("\n Voltage Regulation for 0.8 lagging power factor=%d percentage \n",reg)
+
+printf("\n (b)")
+tan_del=(Ia*Xq*cosd(theta))/(V-(Ia*Xq*sind(theta)));
+del=atand(real(tan_del));
+Ef=((V-(Ia*Xq*sind(theta)))^2+(Ia*Xq*cosd(theta))^2)^(1/2);
+reg=((Ef-V)/1.0)*100;
+printf("\n Voltage Regulation for 0.8 leading power factor=%2.0f percentage",reg)
diff --git a/3802/CH9/EX9.8/Ex9_8.jpg b/3802/CH9/EX9.8/Ex9_8.jpg Binary files differnew file mode 100644 index 000000000..19fe22f41 --- /dev/null +++ b/3802/CH9/EX9.8/Ex9_8.jpg diff --git a/3802/CH9/EX9.8/Ex9_8.sce b/3802/CH9/EX9.8/Ex9_8.sce new file mode 100644 index 000000000..b5022b47f --- /dev/null +++ b/3802/CH9/EX9.8/Ex9_8.sce @@ -0,0 +1,16 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex9_8.sce.
+
+clc;
+clear;
+VI1=10e6;
+phi1=acosd(0.75);
+phip=acosd(0.9);
+phic=90-asind(7/100); //given loss is 7% of KVA output
+KVAc=VI1*(((sind(phi1)*cosd(phip))-(cosd(phi1)*sind(phip)))/((sind(phic)*cosd(phip))+(cosd(phic)*sind(phip))))*1e-3;
+MVAc=KVAc*1e-3;
+printf("\n The capacity of the synchronous condenser= %1.2f MVA",MVAc)
diff --git a/3802/CH9/EX9.9/Ex9_9.jpg b/3802/CH9/EX9.9/Ex9_9.jpg Binary files differnew file mode 100644 index 000000000..c5103cb30 --- /dev/null +++ b/3802/CH9/EX9.9/Ex9_9.jpg diff --git a/3802/CH9/EX9.9/Ex9_9.sce b/3802/CH9/EX9.9/Ex9_9.sce new file mode 100644 index 000000000..086d9b0a7 --- /dev/null +++ b/3802/CH9/EX9.9/Ex9_9.sce @@ -0,0 +1,16 @@ +//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex9_9.sce.
+
+//input data are taken from example 9.8
+clc;
+clear;
+VI1=10e6;
+pf1=0.75;
+pfc=cosd(90-asind(7/100));
+KVAc=VI1*((sqrt(1-pf1^2))/(sqrt(1-pfc^2)))*1e-3;
+MVAc=KVAc*1e-3;
+printf("\n The capacity of synchronous condenser which is desired to raise the power factor to unity=%1.2f MVA",MVAc);
|