summaryrefslogtreecommitdiff
path: root/3802/CH1
diff options
context:
space:
mode:
Diffstat (limited to '3802/CH1')
-rw-r--r--3802/CH1/EX1.1/Ex1_1.jpgbin0 -> 27273 bytes
-rw-r--r--3802/CH1/EX1.1/Ex1_1.sce35
-rw-r--r--3802/CH1/EX1.10/Ex1_10.jpgbin0 -> 77489 bytes
-rw-r--r--3802/CH1/EX1.10/Ex1_10.sce75
-rw-r--r--3802/CH1/EX1.11/Ex1_11.jpgbin0 -> 40362 bytes
-rw-r--r--3802/CH1/EX1.11/Ex1_11.sce40
-rw-r--r--3802/CH1/EX1.2/Ex1_2.jpgbin0 -> 3859 bytes
-rw-r--r--3802/CH1/EX1.2/Ex1_2.sce15
-rw-r--r--3802/CH1/EX1.3/Ex1_3.pngbin0 -> 4294 bytes
-rw-r--r--3802/CH1/EX1.3/Ex1_3.sce15
-rw-r--r--3802/CH1/EX1.4/Ex1_4.jpgbin0 -> 29361 bytes
-rw-r--r--3802/CH1/EX1.4/Ex1_4.sce21
-rw-r--r--3802/CH1/EX1.5/Ex1_5.jpgbin0 -> 94020 bytes
-rw-r--r--3802/CH1/EX1.5/Ex1_5.sce96
-rw-r--r--3802/CH1/EX1.6/Ex1_6.sce42
-rw-r--r--3802/CH1/EX1.6/Ex1_6_a.jpgbin0 -> 53903 bytes
-rw-r--r--3802/CH1/EX1.6/Ex1_6_b.jpgbin0 -> 13167 bytes
-rw-r--r--3802/CH1/EX1.7/Ex1_7.jpgbin0 -> 33193 bytes
-rw-r--r--3802/CH1/EX1.7/Ex1_7.sce16
-rw-r--r--3802/CH1/EX1.8/Ex1_8.jpgbin0 -> 35339 bytes
-rw-r--r--3802/CH1/EX1.8/Ex1_8.sce36
-rw-r--r--3802/CH1/EX1.9/Ex1_9.jpgbin0 -> 27471 bytes
-rw-r--r--3802/CH1/EX1.9/Ex1_9.sce22
23 files changed, 413 insertions, 0 deletions
diff --git a/3802/CH1/EX1.1/Ex1_1.jpg b/3802/CH1/EX1.1/Ex1_1.jpg
new file mode 100644
index 000000000..4350d9f02
--- /dev/null
+++ b/3802/CH1/EX1.1/Ex1_1.jpg
Binary files differ
diff --git a/3802/CH1/EX1.1/Ex1_1.sce b/3802/CH1/EX1.1/Ex1_1.sce
new file mode 100644
index 000000000..6ea01ce44
--- /dev/null
+++ b/3802/CH1/EX1.1/Ex1_1.sce
@@ -0,0 +1,35 @@
+//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex1_1.sce.
+
+clc;
+clear;
+P=200; //power rating of lamp in watts
+V=110; //voltage rating of lamp in volts
+
+//case1
+printf("\n(a)")
+I=(P/V);
+printf("\nCurrent in the lamp=%f A",I)
+
+//case2
+printf("\n(b)")
+T=1; //time in hour for electric charge flow through the lamp
+t=T*60*60; //time in seconds for electric charge flow through the lamp
+q=I*t;
+printf("\nElectric charge flowing through the lamp for one hour=%f coloumb",q)
+
+//case3
+printf("\n(c)")
+Numberofdaysinmay=31;
+time=10; //on time of lamp in hour per day
+unitcharge=1.20; //electricity charge in rupees (1kwhr = 1unit)
+t1=time*Numberofdaysinmay; //on time of lamp in hour per month
+Energyconsumed=P*t1; //consumption of energy in watt-hour
+Energyconsumedinkwhr=Energyconsumed/(1e3);//consumption of energy in kilowatt-hour
+charges=Energyconsumedinkwhr*unitcharge;
+printf("\nCharge for electricity=%f rupees",charges)
+
diff --git a/3802/CH1/EX1.10/Ex1_10.jpg b/3802/CH1/EX1.10/Ex1_10.jpg
new file mode 100644
index 000000000..73db358b8
--- /dev/null
+++ b/3802/CH1/EX1.10/Ex1_10.jpg
Binary files differ
diff --git a/3802/CH1/EX1.10/Ex1_10.sce b/3802/CH1/EX1.10/Ex1_10.sce
new file mode 100644
index 000000000..49d7070a2
--- /dev/null
+++ b/3802/CH1/EX1.10/Ex1_10.sce
@@ -0,0 +1,75 @@
+//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex1_10.sce.
+
+clc;
+clear;
+subplot(2,2,1)
+t=[0:0.001:8];
+x=length(t);
+v=ones(1,x);
+for n=1:x;
+ L=5;
+ if t(n)<=2
+ v(n)=6.25;
+ else if t(n)>=6 & t(n)<8
+ v(n)=-6.25;
+ else
+ v(n)=0;
+ end
+ end
+ end
+xlabel("Time in seconds")
+ylabel("voltage in volts")
+title("voltage waveform")
+plot(t,v)
+subplot(2,2,2)
+t=[0:0.001:8];
+x=length(t);
+p=ones(1,x);
+for n=1:x;
+ if t(n)<=2
+ v(n)=6.25;
+ i(n)=1.25;
+ p(n)=v(n)*t(n)*i(n);
+ else if t(n)>=6 & t(n)<8
+ v(n)=-6.25;
+ i(n)=10;
+ p(n)=(i(n)-(1.25*t(n)))*v(n);
+ else
+ v(n)=0;
+ i(n)=2.5;
+ p(n)=v(n)*t(n)*i(n);
+ end
+ end
+ end
+xlabel("Time in seconds")
+ylabel("power in watts")
+title("power waveform")
+plot(t,p)
+subplot(2,2,3)
+t=[0:0.001:8];
+x=length(t);
+e=ones(1,x);
+L=5;
+for n=1:x;
+ if t(n)<=2
+ i(n)=1.25;
+ e(n)=(1/2)*L*(t(n)*i(n))^2;
+ else if t(n)>=6 & t(n)<8
+ i(n)=10;
+ e(n)=(1/2)*L*(i(n)-(1.25*t(n)))^2;
+ else
+ i(n)=2.5;
+ e(n)=(1/2)*L*(i(n))^2;
+ end
+ end
+ end
+xlabel("Time in seconds")
+ylabel("Energy in joules")
+title("Energy waveform")
+plot(t,e)
+
diff --git a/3802/CH1/EX1.11/Ex1_11.jpg b/3802/CH1/EX1.11/Ex1_11.jpg
new file mode 100644
index 000000000..6e63d80fe
--- /dev/null
+++ b/3802/CH1/EX1.11/Ex1_11.jpg
Binary files differ
diff --git a/3802/CH1/EX1.11/Ex1_11.sce b/3802/CH1/EX1.11/Ex1_11.sce
new file mode 100644
index 000000000..46838ac0e
--- /dev/null
+++ b/3802/CH1/EX1.11/Ex1_11.sce
@@ -0,0 +1,40 @@
+//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex1_11.sce.
+clc;
+clear;
+R=10; //resistance in ohms
+L=5; //inductance in henry
+V=100; //supply voltage in volts
+t1=2; //time at which k1 switch opened in seconds
+//CASE1
+printf("\n (a)")
+i=(V*(1-exp(-((R*t1)/L))))/R;
+printf("\n The inductive current at the time k1 is opened=%1.2f A",i)
+
+//CASE2
+printf("\n (b)")
+v1=V*exp(-((R*t1))/L);
+printf("\n The voltage across the inductor at t=2second=%1.2f V",v1)
+
+//CASE3
+printf("\n (c)")
+t2=3; //time in seconds
+Imax=(V/R);
+v2=Imax*R*(exp(-((R*t2))/L));
+printf("\n The voltage across the inductor at t=3 second=%1.4f V",v2)
+//For v2 calculation ,the answer in the book is wrong
+
+//CASE4
+printf("\n (d)")
+t3=0; //initial time in seconds
+it=(-R*(-Imax)*exp(-(R*t3)/L))/L; //rate of decay of inductor current in amphere per seconds
+printf("\n The initial value of rate of decay of inductor current=%d A/s",it)
+
+//CASE5
+printf("\n (e)")
+Energy=(1/2)*L*Imax^2;
+printf("\n The energy dissipated in the resistor=%d J",Energy)
diff --git a/3802/CH1/EX1.2/Ex1_2.jpg b/3802/CH1/EX1.2/Ex1_2.jpg
new file mode 100644
index 000000000..71f2ef76b
--- /dev/null
+++ b/3802/CH1/EX1.2/Ex1_2.jpg
Binary files differ
diff --git a/3802/CH1/EX1.2/Ex1_2.sce b/3802/CH1/EX1.2/Ex1_2.sce
new file mode 100644
index 000000000..b5435d336
--- /dev/null
+++ b/3802/CH1/EX1.2/Ex1_2.sce
@@ -0,0 +1,15 @@
+//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex1_2.sce.
+
+clc;
+clear;
+R25=120; //resistance of copper wire at 25 degree celsius
+T1=25; //temperature1 in degree celsius
+T2=55; //temperature in degree celsius
+alphazero=4.2e-3; //temperature coefficient
+R55=(R25*(1+(T2*alphazero)))/(1+(T1*alphazero)); //resistance of the copper wire at a temperature of 55 degree celsius
+printf("The resistance value for the resitor(copper wire)=%3.3f ohms",R55)
diff --git a/3802/CH1/EX1.3/Ex1_3.png b/3802/CH1/EX1.3/Ex1_3.png
new file mode 100644
index 000000000..83b16d7c9
--- /dev/null
+++ b/3802/CH1/EX1.3/Ex1_3.png
Binary files differ
diff --git a/3802/CH1/EX1.3/Ex1_3.sce b/3802/CH1/EX1.3/Ex1_3.sce
new file mode 100644
index 000000000..c2bf5fcc1
--- /dev/null
+++ b/3802/CH1/EX1.3/Ex1_3.sce
@@ -0,0 +1,15 @@
+//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex1_3.sce.
+
+clc;
+clear;
+V=20; //voltage rating of the battery in volts
+I=0.2; //current rating of the battery in amphere
+R=V/I; //from ohm's law
+P=(I^2)*R;
+printf("\nThe value of resistance=%d ohms",R)
+printf("\nPower rating or heat dissipated=%d watts",P)
diff --git a/3802/CH1/EX1.4/Ex1_4.jpg b/3802/CH1/EX1.4/Ex1_4.jpg
new file mode 100644
index 000000000..8a890a898
--- /dev/null
+++ b/3802/CH1/EX1.4/Ex1_4.jpg
Binary files differ
diff --git a/3802/CH1/EX1.4/Ex1_4.sce b/3802/CH1/EX1.4/Ex1_4.sce
new file mode 100644
index 000000000..9d4ede65a
--- /dev/null
+++ b/3802/CH1/EX1.4/Ex1_4.sce
@@ -0,0 +1,21 @@
+//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex1_4.sce.
+
+clc;
+clear;
+R1=10; //resistance value in ohms
+R2=15; //resistance value in ohms
+R3=20; //resistance value in ohms
+V=15; //supply voltage in volts
+Rs=R1+R2+R3;
+Rp=(R1*R2*R3)/((R2*R3)+(R3*R1)+(R1*R2));
+printf("\nThe series equivalent resistance=%2.0f ohms \n",Rs)
+printf("\nThe parallel equivalent resistance=%1.3f ohms \n ",Rp)
+Ps=(V^2)/Rs;
+Pp=(V^2)/Rp;
+printf("\nPower dissipated in series connection=%1.0f watts \n",Ps)
+printf("\nPower dissipated in parallel connection=%2.2f watts \n",Pp)
diff --git a/3802/CH1/EX1.5/Ex1_5.jpg b/3802/CH1/EX1.5/Ex1_5.jpg
new file mode 100644
index 000000000..84a7b6bce
--- /dev/null
+++ b/3802/CH1/EX1.5/Ex1_5.jpg
Binary files differ
diff --git a/3802/CH1/EX1.5/Ex1_5.sce b/3802/CH1/EX1.5/Ex1_5.sce
new file mode 100644
index 000000000..6eb2baacc
--- /dev/null
+++ b/3802/CH1/EX1.5/Ex1_5.sce
@@ -0,0 +1,96 @@
+//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex1_5.sce.
+
+clc;
+clear;
+subplot(2,2,1)
+t=[0:0.00001:2];
+x=length(t);
+i=ones(1,x);
+for n=1:x;
+if t(n)<=1
+ i(n)=2
+else
+ i(n)=0
+end
+end
+xlabel("Time in seconds")
+ylabel("Current in amphere")
+title("current wavefrom")
+plot(t,i)
+subplot(2,2,2)
+t=[0:0.00001:2];
+x=length(t);
+v=ones(1,x);
+c=0.1;
+for n=1:x;
+ i(n)=2;
+if t(n)<=1
+ v(n)=i(n)*t(n)/c;
+else
+ v(n)=i(n)/c;
+end
+end
+xlabel("Time in seconds")
+ylabel("voltaget in volts")
+title("voltage wavefrom")
+plot(t,v)
+subplot(2,3,4)
+t=[0:0.00001:2];
+x=length(t);
+q=ones(1,x);
+c=0.1;
+for n=1:x;
+ v(n)=20;
+if t(n)<=1
+ q(n)=v(n)*t(n)*c;
+else
+ q(n)=v(n)*c;
+end
+end
+xlabel("Time in seconds")
+ylabel("capacitance in coloumbs")
+title("charge waveform")
+plot(t,q)
+subplot(2,3,5)
+t=[0:0.00001:2];
+x=length(t);
+p=ones(1,x);
+for n=1:x;
+ v(n)=20;
+if t(n)<=1
+ i(n)=2;
+ p(n)=v(n)*t(n)*i(n);
+else
+ i(n)=0;
+ p(n)=v(n)*i(n);
+end
+end
+xlabel("Time in seconds")
+ylabel("power in watts")
+title("power waveform")
+plot(t,p)
+subplot(2,3,6)
+t=[0:0.00001:2];
+x=length(t);
+e=ones(1,x);
+c=0.1;
+for n=1:x;
+ v(n)=20;
+if t(n)<=1
+ e(n)=((v(n)*t(n))^2*c)/2;
+else
+ e(n)=((v(n)^2)*c)/2;
+end
+end
+xlabel("Time in seconds")
+ylabel("Energy in joules")
+title("Energy waveform")
+plot(t,e)
+
+
+
diff --git a/3802/CH1/EX1.6/Ex1_6.sce b/3802/CH1/EX1.6/Ex1_6.sce
new file mode 100644
index 000000000..b1eb7ae8c
--- /dev/null
+++ b/3802/CH1/EX1.6/Ex1_6.sce
@@ -0,0 +1,42 @@
+//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex1_6.sce.
+
+clc;
+clear;
+t=[0:0.0001:4];
+x=length(t);
+p=ones(1,x);
+for n=1:x;
+ if t(n)<=2
+ v(n)=3;
+ i(n)=10;
+ p(n)=v(n)*t(n)*i(n);
+ else if t(n)>2
+ v(n)=12;
+ i(n)=-5;
+ p(n)=(v(n)-(3*t(n)))*i(n);
+ else
+ p(n)=0;
+ end
+ end
+ end
+xlabel("Time in seconds")
+ylabel("Power in watts")
+title("Power waveform")
+plot(t,p)
+
+
+//Case(b)
+printf("\n (b)")
+area_OAB=(1/2)*max(p)*max(t)/2;
+area_BCD=(1/2)*abs(min(p))*max(t)/2;
+energy=area_OAB-area_BCD;
+avg_power=energy/max(t);
+printf("\n The average power=%1.1f W \n",avg_power)
+
+
+
diff --git a/3802/CH1/EX1.6/Ex1_6_a.jpg b/3802/CH1/EX1.6/Ex1_6_a.jpg
new file mode 100644
index 000000000..def8ae34a
--- /dev/null
+++ b/3802/CH1/EX1.6/Ex1_6_a.jpg
Binary files differ
diff --git a/3802/CH1/EX1.6/Ex1_6_b.jpg b/3802/CH1/EX1.6/Ex1_6_b.jpg
new file mode 100644
index 000000000..d402afcd7
--- /dev/null
+++ b/3802/CH1/EX1.6/Ex1_6_b.jpg
Binary files differ
diff --git a/3802/CH1/EX1.7/Ex1_7.jpg b/3802/CH1/EX1.7/Ex1_7.jpg
new file mode 100644
index 000000000..758625ca7
--- /dev/null
+++ b/3802/CH1/EX1.7/Ex1_7.jpg
Binary files differ
diff --git a/3802/CH1/EX1.7/Ex1_7.sce b/3802/CH1/EX1.7/Ex1_7.sce
new file mode 100644
index 000000000..fb1278418
--- /dev/null
+++ b/3802/CH1/EX1.7/Ex1_7.sce
@@ -0,0 +1,16 @@
+//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex1_7.sce
+
+clc;
+clear;
+printf("\n From the given plots the waveform of voltage is the time integral of the current wave.So the electric device must be capacitor\n")
+
+t=2; //time in seconds
+V=100; //voltage of elecric device(capacitor) in volts
+I=5; //capacitance (electric devce) current in amphere
+C=(I*t)/V;
+printf("\n So the value of capacitance=%1.1f farads",C)
diff --git a/3802/CH1/EX1.8/Ex1_8.jpg b/3802/CH1/EX1.8/Ex1_8.jpg
new file mode 100644
index 000000000..9950b106c
--- /dev/null
+++ b/3802/CH1/EX1.8/Ex1_8.jpg
Binary files differ
diff --git a/3802/CH1/EX1.8/Ex1_8.sce b/3802/CH1/EX1.8/Ex1_8.sce
new file mode 100644
index 000000000..8aedf0f5d
--- /dev/null
+++ b/3802/CH1/EX1.8/Ex1_8.sce
@@ -0,0 +1,36 @@
+//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex1_8.sce.
+
+clc;
+clear;
+V=200; //suply voltage in volts
+R1=0.3e6; //resistance value in ohms
+R2=0.5e6; //resistance value in ohms
+C=10e-6; //capacitance value in farad
+t1=5; //time seconds
+t2=2.5; //time in seconds
+
+//case1
+printf("\n (a)")
+v=V*(1-exp(-(t1/(R1*C))));
+printf("\n The voltage across capacitor when k1 is opened=%3.3f V",v)
+//case2
+printf("\n (b)")
+Im=(v/R2);
+printf("\n Initial value of discharge current=%1.5f mA",Im*1e3)
+//case3
+printf("\n (c)")
+i=-Im*exp(-(t2/(R2*C)));
+printf("\n The value of discharge current at 2.5 seconds=%1.3f mA",i*1e3)
+//case4
+printf("\n (d)")
+Vc=v/(R2*C);
+printf("\n Initial rate of decay of capacitor voltage=%2.3f V/s",Vc)
+//case5
+printf("\n (e)")
+E=(1/2)*(C*v^2);
+printf("\n The energy dissipated in resistor=%1.4f J",E)
diff --git a/3802/CH1/EX1.9/Ex1_9.jpg b/3802/CH1/EX1.9/Ex1_9.jpg
new file mode 100644
index 000000000..ff89337f4
--- /dev/null
+++ b/3802/CH1/EX1.9/Ex1_9.jpg
Binary files differ
diff --git a/3802/CH1/EX1.9/Ex1_9.sce b/3802/CH1/EX1.9/Ex1_9.sce
new file mode 100644
index 000000000..85d64f6a2
--- /dev/null
+++ b/3802/CH1/EX1.9/Ex1_9.sce
@@ -0,0 +1,22 @@
+//Book Name:Fundamentals of Electrical Engineering
+//Author:Rajendra Prasad
+//Publisher: PHI Learning Private Limited
+//Edition:Third ,2014
+
+//Ex1_9.sce.
+
+clc;
+clear;
+C1=100; //capacitance value in microfarad
+C2=150; //capacitance value in microfarad
+C3=200; //capacitance value in microfarad
+
+//CASE1
+printf("\n (a)")
+Cs=(C1*C2*C3)/((C2*C3)+(C1*C2)+(C3*C1));
+printf("\n The equivalent capacitance in series connection=%2.3f microfarad",Cs)
+
+//CASE2
+printf("\n (b)")
+Cp=C1+C2+C3;
+printf("\n The equivalent capacitance in parallel connection=%3.0f microfarad",Cp)