diff options
Diffstat (limited to '3776/CH1')
-rw-r--r-- | 3776/CH1/EX1.1/Ex1_1.sce | 27 | ||||
-rw-r--r-- | 3776/CH1/EX1.2/Ex1_2.sce | 24 | ||||
-rw-r--r-- | 3776/CH1/EX1.3/Ex1_3.sce | 44 | ||||
-rw-r--r-- | 3776/CH1/EX1.6/Ex1_6.sce | 14 | ||||
-rw-r--r-- | 3776/CH1/EX1.7/Ex1_7.sce | 26 | ||||
-rw-r--r-- | 3776/CH1/EX1.8/Ex1_8.sce | 19 |
6 files changed, 154 insertions, 0 deletions
diff --git a/3776/CH1/EX1.1/Ex1_1.sce b/3776/CH1/EX1.1/Ex1_1.sce new file mode 100644 index 000000000..f0d2002bc --- /dev/null +++ b/3776/CH1/EX1.1/Ex1_1.sce @@ -0,0 +1,27 @@ +clear +//Given +// +d_bolt = 20.0 //mm,diameter,This is not the minimum area +d_bolt_min = 16.0 //mm This is at the roots of the thread +//This yealds maximum stress +A_crossection = (%pi)*(d_bolt**2)/4 //sq.mm +A_crossection_min = (%pi)*(d_bolt_min**2)/4 //sq.mm ,This is minimum area which yeilds maximum stress +load1 = 10.0 //KN +BC = 1.0 //m +CF = 2.5 //m +contact_area = 200*200 // sq.mm , The contact area at c + +//caliculations +//Balancing forces in the x direction: +// Balncing the moments about C and B: +Fx = 0 +R_cy = load1*(BC+CF) //KN , Reaction at C in y-direction +R_by = load1*(CF) //KN , Reaction at B in y-direction +//Because of 2 bolts +stress_max = (R_by/(2*A_crossection_min))*(10**3) // MPA,maximum stess records at minimum area +stress_shank = (R_by/(2*A_crossection))*(10**3) // MPA +Bearing_stress_c = (R_cy/contact_area)*(10**3) //MPA, Bearing stress at C + +printf("\n The bearing stress at C is %0.3f MPa",(Bearing_stress_c) ) +printf("\n The maximum normal stress in BD bolt is: %0.0f MPa",stress_max) +printf("\n The tensile strss at shank of the bolt is: %0.1f MPa",stress_shank) diff --git a/3776/CH1/EX1.2/Ex1_2.sce b/3776/CH1/EX1.2/Ex1_2.sce new file mode 100644 index 000000000..90d76b556 --- /dev/null +++ b/3776/CH1/EX1.2/Ex1_2.sce @@ -0,0 +1,24 @@ +clear +//Given +load_distributed = 20 //kN/sq.m, This is the load distributed over the pier +H = 2 // m, Total height +h = 1 //m , point of investigation +base = 1.5 //m The length of crossection in side veiw +top = 0.5 //m ,The length where load is distributed on top +base_inv = 1 //m , the length at the point of investigation +area = 0.5*1 //m ,The length at a-a crossection +density_conc = 25 //kN/sq.m +//caliculation of total weight + +v_total = ((top+base)/2)*top*H //sq.m ,The total volume +w_total = v_total* density_conc //kN , The total weight +R_top = (top**2)*load_distributed //kN , THe reaction force due to load distribution +reaction_net = w_total + R_top + +//caliculation of State of stress at 1m +v_inv = ((top+base_inv)/2)*top*h //sq.m ,The total volume from 1m to top +w_inv = v_inv*density_conc //kN , The total weight from 1m to top +reaction_net = w_inv + R_top //kN +Stress = reaction_net/area //kN/sq.m +printf("\n The total weight of pier is %0.3f kN",w_total) +printf("\n The stress at 1 m above is %0.1f kN/m**2",Stress) diff --git a/3776/CH1/EX1.3/Ex1_3.sce b/3776/CH1/EX1.3/Ex1_3.sce new file mode 100644 index 000000000..05d597de5 --- /dev/null +++ b/3776/CH1/EX1.3/Ex1_3.sce @@ -0,0 +1,44 @@ +clear +//Given +// +d_pins = 0.375 //inch +load1 = 3 //kips +AB_x = 6 //inch,X-component +AB_y = 3 //inch,Y-component +BC_y = 6 //inch,Y-component +BC_x = 6 //inch,X-component +area_AB = 0.25*0.5 //inch*2 +area_net = 0.20*2*(0.875-0.375) //inch*2 +area_BC = 0.875*0.25 //inch*2 +area_pin = d_pins*2*0.20 //inch*2 +area_pin_crossection = 2*3.14*((d_pins/2)**2) +//caliculations + +slope = AB_y/ AB_x //For AB +slope = BC_y/ BC_x //For BC + +//momentum at point C: +F_A_x = (load1*AB_x )/(BC_y + AB_y ) //kips, F_A_x X-component of F_A + +//momentum at point A: +F_C_x = -(load1*BC_x)/(BC_y + AB_y ) //kips, F_C_x X-component of F_c + +//X,Y components of F_A +F_A= ((5**0.5)/2)*F_A_x //kips +F_A_y = 0.5*F_A_x //kips + +//X,Y components of F_C +F_C= (2**0.5)*F_C_x //kips +F_C_y = F_C_x //kips + +T_stress_AB = F_A/area_AB //ksi , Tensile stress in main bar AB +stress_clevis = F_A/area_net //ksi ,Tensile stress in clevis of main bar AB +c_strees_BC = F_C/area_BC //ksi , Comprensive stress in main bar BC +B_stress_pin = F_C/area_pin //ksi , Bearing stress in pin at C +To_stress_pin = F_C/area_pin_crossection //ksi , torsion stress in pin at C + +printf("\n Tensile stress in main bar AB: %0.1f ksi",T_stress_AB) +printf("\n Tensile stress in clevis of main bar AB: %0.1f ksi",stress_clevis) +printf("\n Comprensive stress in main bar BC: %0.1f ksi",-c_strees_BC) +printf("\n Bearing stress in pin at C: %0.2f ksi",-B_stress_pin) +printf("\n torsion stress in pin at C: %0.2f ksi",-To_stress_pin) diff --git a/3776/CH1/EX1.6/Ex1_6.sce b/3776/CH1/EX1.6/Ex1_6.sce new file mode 100644 index 000000000..ba7d7e038 --- /dev/null +++ b/3776/CH1/EX1.6/Ex1_6.sce @@ -0,0 +1,14 @@ +clear +//Given +mass = 5 //Kg +frequency = 10 //Hz +stress_allow = 200 //MPa +R = 0.5 //m + +//caliculations +// +w = 2*%pi*frequency //rad/sec +a = (w**2)*R //sq.m/sec +F = mass*a //N +A_req = F/stress_allow //sq.m , The required area for aloowing stress +printf("\n The required size of rod is: %0.2f sq.m",A_req) diff --git a/3776/CH1/EX1.7/Ex1_7.sce b/3776/CH1/EX1.7/Ex1_7.sce new file mode 100644 index 000000000..a9cde7839 --- /dev/null +++ b/3776/CH1/EX1.7/Ex1_7.sce @@ -0,0 +1,26 @@ +clear +//Given +D_n = 5.0 //kips, dead load +L_n_1 = 1.0 //kips ,live load 1 +L_n_2 = 15 //kips ,live load 2 +stress_allow = 22 //ksi +phi = 0.9 //probalistic coefficients +y_stress = 36 //ksi,Yeild strength +//According to AISR + +//a +p_1 = D_n + L_n_1 //kips since the total load is sum of dead load and live load +p_2 = D_n + L_n_2 //kips, For second live load + +Area_1 = p_1/stress_allow //in*2 ,the allowable area for the allowed stress +Area_2 = p_2/stress_allow //in*2 +printf("\n the allowable area for live load %0.3f is %0.3f in*2",L_n_1,Area_1) +printf("\n the allowable area for live load %0.3f is %0.3f in*2",L_n_2,Area_2) + +//b +//area_crossection= (1.2*D_n +1.6L_n)/(phi*y_stress) + +area_crossection_1= (1.2*D_n +1.6*L_n_1)/(phi*y_stress) //in*2,crossection area for first live load +area_crossection_2= (1.2*D_n +1.6*L_n_2)/(phi*y_stress) //in*2,crossection area for second live load +printf("\n the crossection area for live load %0.3f is %0.3f in*2",L_n_1,area_crossection_1) +printf("\n the crossection area for live load %0.3f is %0.3f in*2",L_n_2,area_crossection_2) diff --git a/3776/CH1/EX1.8/Ex1_8.sce b/3776/CH1/EX1.8/Ex1_8.sce new file mode 100644 index 000000000..e30f1631e --- /dev/null +++ b/3776/CH1/EX1.8/Ex1_8.sce @@ -0,0 +1,19 @@ +clear +//Given +A_angle = 2 //in*2 +stress_allow = 20 //ksi, The maximum alowable stress +F = stress_allow*A_angle //K, The maximum force +AD = 3 //in, from the figure +DC = 1.06 //in, from the figure +strength_AWS = 5.56 // kips/in,Allowable strength according to AWS + +//caliculations +//momentum at point "d" is equal to 0 +R_1 = (F*DC)/AD //k,Resultant force developed by the weld +R_2 = (F*(AD-DC))/AD //k,Resultant force developed by the weld + +l_1 = R_1/strength_AWS //in,Length of the Weld 1 +l_2 = R_2/strength_AWS //in,Length of the Weld 2 + +printf("\n Length of the Weld 1: %0.2f in",l_1) +printf("\n Length of the Weld 2: %0.2f in",l_2) |