summaryrefslogtreecommitdiff
path: root/3776/CH1
diff options
context:
space:
mode:
Diffstat (limited to '3776/CH1')
-rw-r--r--3776/CH1/EX1.1/Ex1_1.sce27
-rw-r--r--3776/CH1/EX1.2/Ex1_2.sce24
-rw-r--r--3776/CH1/EX1.3/Ex1_3.sce44
-rw-r--r--3776/CH1/EX1.6/Ex1_6.sce14
-rw-r--r--3776/CH1/EX1.7/Ex1_7.sce26
-rw-r--r--3776/CH1/EX1.8/Ex1_8.sce19
6 files changed, 154 insertions, 0 deletions
diff --git a/3776/CH1/EX1.1/Ex1_1.sce b/3776/CH1/EX1.1/Ex1_1.sce
new file mode 100644
index 000000000..f0d2002bc
--- /dev/null
+++ b/3776/CH1/EX1.1/Ex1_1.sce
@@ -0,0 +1,27 @@
+clear
+//Given
+//
+d_bolt = 20.0 //mm,diameter,This is not the minimum area
+d_bolt_min = 16.0 //mm This is at the roots of the thread
+//This yealds maximum stress
+A_crossection = (%pi)*(d_bolt**2)/4 //sq.mm
+A_crossection_min = (%pi)*(d_bolt_min**2)/4 //sq.mm ,This is minimum area which yeilds maximum stress
+load1 = 10.0 //KN
+BC = 1.0 //m
+CF = 2.5 //m
+contact_area = 200*200 // sq.mm , The contact area at c
+
+//caliculations
+//Balancing forces in the x direction:
+// Balncing the moments about C and B:
+Fx = 0
+R_cy = load1*(BC+CF) //KN , Reaction at C in y-direction
+R_by = load1*(CF) //KN , Reaction at B in y-direction
+//Because of 2 bolts
+stress_max = (R_by/(2*A_crossection_min))*(10**3) // MPA,maximum stess records at minimum area
+stress_shank = (R_by/(2*A_crossection))*(10**3) // MPA
+Bearing_stress_c = (R_cy/contact_area)*(10**3) //MPA, Bearing stress at C
+
+printf("\n The bearing stress at C is %0.3f MPa",(Bearing_stress_c) )
+printf("\n The maximum normal stress in BD bolt is: %0.0f MPa",stress_max)
+printf("\n The tensile strss at shank of the bolt is: %0.1f MPa",stress_shank)
diff --git a/3776/CH1/EX1.2/Ex1_2.sce b/3776/CH1/EX1.2/Ex1_2.sce
new file mode 100644
index 000000000..90d76b556
--- /dev/null
+++ b/3776/CH1/EX1.2/Ex1_2.sce
@@ -0,0 +1,24 @@
+clear
+//Given
+load_distributed = 20 //kN/sq.m, This is the load distributed over the pier
+H = 2 // m, Total height
+h = 1 //m , point of investigation
+base = 1.5 //m The length of crossection in side veiw
+top = 0.5 //m ,The length where load is distributed on top
+base_inv = 1 //m , the length at the point of investigation
+area = 0.5*1 //m ,The length at a-a crossection
+density_conc = 25 //kN/sq.m
+//caliculation of total weight
+
+v_total = ((top+base)/2)*top*H //sq.m ,The total volume
+w_total = v_total* density_conc //kN , The total weight
+R_top = (top**2)*load_distributed //kN , THe reaction force due to load distribution
+reaction_net = w_total + R_top
+
+//caliculation of State of stress at 1m
+v_inv = ((top+base_inv)/2)*top*h //sq.m ,The total volume from 1m to top
+w_inv = v_inv*density_conc //kN , The total weight from 1m to top
+reaction_net = w_inv + R_top //kN
+Stress = reaction_net/area //kN/sq.m
+printf("\n The total weight of pier is %0.3f kN",w_total)
+printf("\n The stress at 1 m above is %0.1f kN/m**2",Stress)
diff --git a/3776/CH1/EX1.3/Ex1_3.sce b/3776/CH1/EX1.3/Ex1_3.sce
new file mode 100644
index 000000000..05d597de5
--- /dev/null
+++ b/3776/CH1/EX1.3/Ex1_3.sce
@@ -0,0 +1,44 @@
+clear
+//Given
+//
+d_pins = 0.375 //inch
+load1 = 3 //kips
+AB_x = 6 //inch,X-component
+AB_y = 3 //inch,Y-component
+BC_y = 6 //inch,Y-component
+BC_x = 6 //inch,X-component
+area_AB = 0.25*0.5 //inch*2
+area_net = 0.20*2*(0.875-0.375) //inch*2
+area_BC = 0.875*0.25 //inch*2
+area_pin = d_pins*2*0.20 //inch*2
+area_pin_crossection = 2*3.14*((d_pins/2)**2)
+//caliculations
+
+slope = AB_y/ AB_x //For AB
+slope = BC_y/ BC_x //For BC
+
+//momentum at point C:
+F_A_x = (load1*AB_x )/(BC_y + AB_y ) //kips, F_A_x X-component of F_A
+
+//momentum at point A:
+F_C_x = -(load1*BC_x)/(BC_y + AB_y ) //kips, F_C_x X-component of F_c
+
+//X,Y components of F_A
+F_A= ((5**0.5)/2)*F_A_x //kips
+F_A_y = 0.5*F_A_x //kips
+
+//X,Y components of F_C
+F_C= (2**0.5)*F_C_x //kips
+F_C_y = F_C_x //kips
+
+T_stress_AB = F_A/area_AB //ksi , Tensile stress in main bar AB
+stress_clevis = F_A/area_net //ksi ,Tensile stress in clevis of main bar AB
+c_strees_BC = F_C/area_BC //ksi , Comprensive stress in main bar BC
+B_stress_pin = F_C/area_pin //ksi , Bearing stress in pin at C
+To_stress_pin = F_C/area_pin_crossection //ksi , torsion stress in pin at C
+
+printf("\n Tensile stress in main bar AB: %0.1f ksi",T_stress_AB)
+printf("\n Tensile stress in clevis of main bar AB: %0.1f ksi",stress_clevis)
+printf("\n Comprensive stress in main bar BC: %0.1f ksi",-c_strees_BC)
+printf("\n Bearing stress in pin at C: %0.2f ksi",-B_stress_pin)
+printf("\n torsion stress in pin at C: %0.2f ksi",-To_stress_pin)
diff --git a/3776/CH1/EX1.6/Ex1_6.sce b/3776/CH1/EX1.6/Ex1_6.sce
new file mode 100644
index 000000000..ba7d7e038
--- /dev/null
+++ b/3776/CH1/EX1.6/Ex1_6.sce
@@ -0,0 +1,14 @@
+clear
+//Given
+mass = 5 //Kg
+frequency = 10 //Hz
+stress_allow = 200 //MPa
+R = 0.5 //m
+
+//caliculations
+//
+w = 2*%pi*frequency //rad/sec
+a = (w**2)*R //sq.m/sec
+F = mass*a //N
+A_req = F/stress_allow //sq.m , The required area for aloowing stress
+printf("\n The required size of rod is: %0.2f sq.m",A_req)
diff --git a/3776/CH1/EX1.7/Ex1_7.sce b/3776/CH1/EX1.7/Ex1_7.sce
new file mode 100644
index 000000000..a9cde7839
--- /dev/null
+++ b/3776/CH1/EX1.7/Ex1_7.sce
@@ -0,0 +1,26 @@
+clear
+//Given
+D_n = 5.0 //kips, dead load
+L_n_1 = 1.0 //kips ,live load 1
+L_n_2 = 15 //kips ,live load 2
+stress_allow = 22 //ksi
+phi = 0.9 //probalistic coefficients
+y_stress = 36 //ksi,Yeild strength
+//According to AISR
+
+//a
+p_1 = D_n + L_n_1 //kips since the total load is sum of dead load and live load
+p_2 = D_n + L_n_2 //kips, For second live load
+
+Area_1 = p_1/stress_allow //in*2 ,the allowable area for the allowed stress
+Area_2 = p_2/stress_allow //in*2
+printf("\n the allowable area for live load %0.3f is %0.3f in*2",L_n_1,Area_1)
+printf("\n the allowable area for live load %0.3f is %0.3f in*2",L_n_2,Area_2)
+
+//b
+//area_crossection= (1.2*D_n +1.6L_n)/(phi*y_stress)
+
+area_crossection_1= (1.2*D_n +1.6*L_n_1)/(phi*y_stress) //in*2,crossection area for first live load
+area_crossection_2= (1.2*D_n +1.6*L_n_2)/(phi*y_stress) //in*2,crossection area for second live load
+printf("\n the crossection area for live load %0.3f is %0.3f in*2",L_n_1,area_crossection_1)
+printf("\n the crossection area for live load %0.3f is %0.3f in*2",L_n_2,area_crossection_2)
diff --git a/3776/CH1/EX1.8/Ex1_8.sce b/3776/CH1/EX1.8/Ex1_8.sce
new file mode 100644
index 000000000..e30f1631e
--- /dev/null
+++ b/3776/CH1/EX1.8/Ex1_8.sce
@@ -0,0 +1,19 @@
+clear
+//Given
+A_angle = 2 //in*2
+stress_allow = 20 //ksi, The maximum alowable stress
+F = stress_allow*A_angle //K, The maximum force
+AD = 3 //in, from the figure
+DC = 1.06 //in, from the figure
+strength_AWS = 5.56 // kips/in,Allowable strength according to AWS
+
+//caliculations
+//momentum at point "d" is equal to 0
+R_1 = (F*DC)/AD //k,Resultant force developed by the weld
+R_2 = (F*(AD-DC))/AD //k,Resultant force developed by the weld
+
+l_1 = R_1/strength_AWS //in,Length of the Weld 1
+l_2 = R_2/strength_AWS //in,Length of the Weld 2
+
+printf("\n Length of the Weld 1: %0.2f in",l_1)
+printf("\n Length of the Weld 2: %0.2f in",l_2)