summaryrefslogtreecommitdiff
path: root/3774/CH7
diff options
context:
space:
mode:
Diffstat (limited to '3774/CH7')
-rw-r--r--3774/CH7/EX7.1/Ex7_1.sce100
-rw-r--r--3774/CH7/EX7.10/Ex7_10.sce46
-rw-r--r--3774/CH7/EX7.2/Ex7_2.sce108
-rw-r--r--3774/CH7/EX7.3/Ex7_3.sce19
-rw-r--r--3774/CH7/EX7.4/Ex7_4.sce17
-rw-r--r--3774/CH7/EX7.6/Ex7_6.sce87
-rw-r--r--3774/CH7/EX7.7/Ex7_7.sce17
-rw-r--r--3774/CH7/EX7.8/Ex7_8.sce29
-rw-r--r--3774/CH7/EX7.9/Ex7_9.sce83
9 files changed, 506 insertions, 0 deletions
diff --git a/3774/CH7/EX7.1/Ex7_1.sce b/3774/CH7/EX7.1/Ex7_1.sce
new file mode 100644
index 000000000..bbd4ed075
--- /dev/null
+++ b/3774/CH7/EX7.1/Ex7_1.sce
@@ -0,0 +1,100 @@
+// exa 7.1 Pg 195
+clc;clear;close;
+
+// Given Data
+P=20;// kW
+N=240;// rpm
+tau_s=45;// MPa
+tau_b=30;// MPa
+sigma_b=60;// MPa
+sigma_cs=2*tau_s;// MPa
+tau_ci=15;// MPa
+//Tmax=1.25*Tm
+mu=0.15;// coefficient of friction
+
+//SHAFT DIAMETER
+// P= 2*%pi*N*Tm/60/1000
+Tm=P/(2*%pi*N/60/1000);// N.m
+Tmax=1.25*Tm;// N.m
+// %pi*d**3*tau_s/16= Tmax
+d=(Tmax/(%pi*tau_s/16)*1000)**(1/3);// mm
+printf('shaft diameter = %.2f mm. Use d = 50 mm.',d)
+d=50;// mm
+
+// HUB DIAMETER
+// Tmax=%pi/16*((d1**4-d**4)/d1)*tau_h
+tau_h=tau_ci;// MPa
+//d1*(Tmax/(%pi/16)/tau_h)-d1**4=d**4 -- eqn(1)
+Tmax=Tmax*1000;// N.mm
+p=[1 0 0 -Tmax/(%pi*tau_h/16) -d**4] ;// polynomial coefficients from eqn(1)
+d1=roots(p);// roots of poly
+d1=d1(1);// mm (taking +ve value)
+d1=100;// mm (empirically adopted)
+t1=(d1-d)/2;// mm (thickness of hub)
+printf('\n thickness of hub = %.f mm',t1)
+d4=d+t1;// mm (diameter of recess in flanges)
+printf('\n diameter of recess in flanges = %.f mm',d4)
+d3=4*d;// mm (outside diameter of protecting flange)
+printf('\n outside diameter of protecting flange = %.f mm',d3)
+
+// Hub length
+b=d/4;// mm (width of key)
+l=1.5*d;// mm (length of key)
+printf('\n width of key = %.1f mm. Use b = 15 mm',b)
+b=15;// mm
+printf('\n length of key = %.f mm.',l)
+t=b;// mm (thickness for square key)
+printf('\n thickness for square key = %.f mm',t)
+printf('\n Hub length = %.f mm',l)
+
+//Number of bolts
+n=floor(4*d/150+3);// no. of bolts
+printf('\n Number of bolts = %.f',n)
+
+// Bolt diameter
+r2=1.5*d;// mm
+F=Tmax/r2/n;// N
+//%pi/4*db**2*tau_b=F
+db=sqrt(F/(%pi/4*tau_b));// mm
+printf('\n Bolt diameter = %.2f mm. Use db=12 mm',db)
+bolt_dia=db;//mm
+
+// Bolt diameter based on Tensile load
+r3=d3/2;// mm
+r4=d4/2;// mm
+rf=2/3*((r3**3-r4**3)/(r3**2-r4**2));// mm
+//Tmax=n*mu*Pi*rf;// N
+Pi=Tmax/(n*mu*rf);// N
+// Pi=%pi/4*db**2*sigma_t
+sigma_t=sigma_b;// MPa
+db=sqrt(Pi/(%pi/4*sigma_t));// mm
+printf('\n Bolt diameter (based on Tensile load) = %.1f mm. Use db=15 mm',db)
+db=15;// mm (adopted)
+
+// Flange thickness
+t2=0.5*t1+6;// mm (empirically)
+printf('\n Flange thickness = %.1f mm. Use t=20 mm',t2)
+t2=20;// mm (adopted)
+//F=n*db*t2*sigma_c
+sigma_ci=F/n/db/t2;// MPa
+//2*%pi*d1**2*tau*t2/4=Tmax
+tau=Tmax/(2*%pi*d1**2*t2/4);// MPa
+printf('\n permissible bearing stress in flange = %.2f MPa < 30 MPa',sigma_ci)
+printf('\n shearing of the flange at the junction with hub = %.2f MPa < 15 MPa.',tau)
+printf(' Values are acceptable.')
+
+// Check for crushing of bolt
+//n*db*t2*sigma_cb*d2/2=Tmax
+d2=d1+d;// mm
+db=bolt_dia;//mm
+sigma_cb=Tmax/(n*db*t2*d2/2);// MPa
+printf('\n permissible crushing strength of bolts = %.1f MPa < 60 MPa.',sigma_cb)
+printf(' Hence design is safe.')
+
+// Thickness of protecting flange
+t3=0.5*t2;// mm
+printf('\n Thickness of protecting flange = %.f mm', t3)
+// Hub overlap
+ho=3;// mm (min)
+printf('\n Hub overlap = %.f mm (min)',ho)
+//Note - Answer for **Bolt diameter based on Tensile load** is calculated wrong in the textbook(error in Pi calculation).
diff --git a/3774/CH7/EX7.10/Ex7_10.sce b/3774/CH7/EX7.10/Ex7_10.sce
new file mode 100644
index 000000000..459f61a17
--- /dev/null
+++ b/3774/CH7/EX7.10/Ex7_10.sce
@@ -0,0 +1,46 @@
+// exa 7.10 Pg 212
+clc;clear;close;
+
+// Given Data
+d=35;// mm
+d2=125;// mm
+n=6;// factor of safety
+T=800;// N.m
+N=350;// rpm
+tau_s=63;// MPa
+tau_b=56;// MPa
+tau_CI=10;// MPa
+tau_k=46;// MPa
+
+// Diameter of bolts:
+F=2*T*10**3/d2/n;// N
+//%pi/4*db**2*tau_b=F
+db=sqrt(F/(%pi/4*tau_b));// mm
+printf('\n (i) Diameter of bolts = %.2f mm. Use 8 mm.',db)
+
+// Flange thickness
+d1=2*d;// mm
+//T=%pi/2*d1**2*t2*tau_CI
+t2=T*1000/(%pi/2*d1**2*tau_CI);// mm
+printf('\n (ii) Flange thickness = %.1f mm. Use t2 = 12 mm',t2)
+t2=12;// mm
+
+//Key dimensions
+b=10;// mm (width of key)
+t=7;// mm (from tables)
+//T=l*b*tau_k*d/2
+l=T*10**3/(b*tau_k*d/2);// mm
+l=ceil(l);// mm
+printf('\n (iii) Length of key = %.f mm\n\t\td=%.f mm\n\t\tb=%.f mm',l,d,b)
+
+// Hub length
+lh=l;// mm (length of hub)
+printf('\n (iv) Hub length = %.f mm',l)
+tau_c=T*10**3/(%pi/16*(d1**4-d**4)/d1);// N/mm.sq.
+printf('\n shear stress in hub = %.2f N/mm.sq.',tau_c)
+printf('It is nearly equal to %.f N/mm.sq.',tau_CI)
+printf('\n hence design parameters are fine.')
+
+// Power transmitted
+P=2*%pi*N*T/60/10**3;// kW
+printf('\n (v) Power transmitted = %.2f kW',P)
diff --git a/3774/CH7/EX7.2/Ex7_2.sce b/3774/CH7/EX7.2/Ex7_2.sce
new file mode 100644
index 000000000..bcc5fef40
--- /dev/null
+++ b/3774/CH7/EX7.2/Ex7_2.sce
@@ -0,0 +1,108 @@
+// exa 7.2 Pg 200
+clc;clear;close;
+
+// Given Data
+P=30;// kW
+N=750;// rpm
+//Tmax=1.2*Tm;// MPa
+tau_s=35;// MPa
+tau_b=35;// MPa
+tau_k=35;// MPa
+sigma_cs=70;// MPa
+sigma_ck=70;// MPa
+sigma_cb=70;// MPa
+tau_ci=15;// MPa
+pb=0.8;// MPa
+
+//sigma_cs=2*tau_s;// MPa
+
+//Tmax=1.5*Tm
+mu=0.15;// coefficient of friction
+
+//SHAFT DIAMETER
+// P= 2*%pi*N*Tm/60/1000
+Tm=P/(2*%pi*N/60/1000);// N.m
+Tmax=1.2*Tm;// N.m
+// %pi*d**3*tau_s/16= Tmax
+d=(Tmax/(%pi*tau_s/16)*1000)**(1/3);// mm
+printf('shaft diameter = %.2f mm. Use d = 42 mm.',d)
+d=42;// mm
+
+// HUB DIAMETER
+// Tmax=%pi/16*((d1**4-d**4)/d1)*tau_h
+tau_h=tau_ci;// MPa
+//d1*(Tmax/(%pi/16)/tau_h)-d1**4=d**4 -- eqn(1)
+Tmax=Tmax*1000;// N.mm
+p=[1 0 0 -Tmax/(%pi*tau_h/16) -d**4] ;// polynomial coefficients from eqn(1)
+d1=roots(p);// roots of poly
+d1=d1(1);// mm (taking +ve value)
+d1=2*d;// mm (empirically adopted)
+t1=(d1-d)/2;// mm (thickness of hub)
+printf('\n thickness of hub = %.f mm',t1)
+//d4=d+t1;// mm (diameter of recess in flanges)
+//printf('\n diameter of recess in flanges = %.f mm',d4)
+d3=4*d;// mm (outside diameter of protecting flange)
+printf('\n outside diameter of protecting flange = %.f mm. Use 170 mm',d3)
+d3=170;// mm (adopted)
+
+//Key size & Hub length
+b=d/4;// mm (width of key)
+l=1.5*d;// mm (length of key)
+printf('\n width of key = %.1f mm. Use b = 12 mm',b)
+b=12;// mm
+printf('\n length of key = %.f mm.',l)
+t=b;// mm (thickness for square key)
+printf('\n thickness for square key = %.f mm',t)
+printf('\n Hub length = %.f mm',l)
+
+//Number of bolts
+n=(0.04*d+3);// no. of bolts
+printf('\n Number of bolts = %.2f. Use n=6',n)
+n=6;// adopted
+
+// Bolt diameter
+db=0.5*d/sqrt(n);// mm
+printf('\n Bolt diameter = %.2f mm. Use db=20 mm for design purpose',db)
+db=20;//mm (adopted)
+bolt_dia=db;//mm
+dsb=24;// mm(shank diameter of bolt for design)
+
+// Outer diameter of rubber bush
+trb=2;// mm (thickness of rubber bush)
+tbb=6;// mm (thickness of brass bush)
+d3=dsb+2*trb+2*tbb;// mm
+d2=d1+d3+2*tbb;// mm (pitch circle diameter of bolts)
+printf('\n pitch circle diameter of bolts = %.f mm ',d2)
+
+// Check of shear in bolt
+F=2*Tmax/n/d2;// N
+//%pi/4*db*2*tau=F
+tau=F/(%pi/4*db**2);//MPa
+printf('\n Permissible shear stress in bolts = %.2f MPa < 35 MPa. Hence design is safe.', tau)
+
+// Length of brush
+pb=0.8;// MPa(bearing pressure of brush)
+//F=l2*d3*pb;
+l2=F/d3/pb;// mm
+printf('\n length of bush = %.f mm',l2)
+
+// Check for pin in bending
+c=5;// mm (clearance between two flanges)
+l3=(l2-c)/2+c;//mm
+//M=%pi/32*db**3*sigma_b & M=F*l3
+sigma_b = F*l3/(%pi/32*db**3);// MPa
+printf('\n Bending stress in pin = %.1f MPa',sigma_b)
+
+// Maximum shear stress in pin
+tau_max=sqrt((sigma_b/2)**2+tau**2);//MPa
+printf('\n Maximum shear stress in pin = %.2f MPa < 35 MPa. Hence design is safe.',tau_max)
+
+// Flange thickness
+t2=0.5*t1+6;// mm (empirically)
+printf('\n Flange thickness = %.1f mm. Use t=18 mm',t2)
+t2=18;// mm (adopted)
+tau=Tmax/(2*%pi*d1**2*t2/4);// MPa
+printf('\n shearing of the flange at the junction with hub = %.2f MPa < 15 MPa.',tau)
+printf(' Values are acceptable.')
+
+//Note - Answer in llast part is calculated wrong in the textbook(error in calculation).
diff --git a/3774/CH7/EX7.3/Ex7_3.sce b/3774/CH7/EX7.3/Ex7_3.sce
new file mode 100644
index 000000000..681ceb911
--- /dev/null
+++ b/3774/CH7/EX7.3/Ex7_3.sce
@@ -0,0 +1,19 @@
+// exa 7.3 Pg 204
+clc;clear;close;
+
+// Given Data
+n=8;// no. of spline
+d=52;// mm
+D=60;// mm
+pm=6;// MPa
+mu=0.06;// coefficient of friction
+N=320;// rpm
+P=20;// kW
+
+T=60*10**3*P/2/%pi/N;// N.m
+l=8*T*10**3/pm/n/(D**2-d**2);// mm
+printf('length of hub = %.f mm',l)
+Rm=(D+d)/4;// mm
+F=T*10**3/Rm;// N
+Ff=mu*F;//N (Force of friction)
+printf('\n Force required to shift the connection = %.1f N',Ff)
diff --git a/3774/CH7/EX7.4/Ex7_4.sce b/3774/CH7/EX7.4/Ex7_4.sce
new file mode 100644
index 000000000..112ac9a80
--- /dev/null
+++ b/3774/CH7/EX7.4/Ex7_4.sce
@@ -0,0 +1,17 @@
+// exa 7.4 Pg 204
+clc;clear;close;
+
+// Given Data
+d=75;// mm
+tau=50;// MPa
+sigma_c=75;// MPa
+printf('for key to be equally strong in shear & crushing - \n')
+b=d/4;// mm
+printf(' b= %.2f mm. Use b=20 mm.',b)
+b=20;//mm
+//2*b/t=sigma_c/tau for key to be equally strong in shear & crushing
+t=2*b/(sigma_c/tau);// mm
+printf('\n t=%.2f mm. Use t=27 mm',t)
+l= %pi*d**2/8/b;// mm (for key to be equally strong in shear as shaft)
+printf('for key to be equally strong in shear as shaft - \n')
+printf(' l=%.1f mm. Use l=115 mm',l)
diff --git a/3774/CH7/EX7.6/Ex7_6.sce b/3774/CH7/EX7.6/Ex7_6.sce
new file mode 100644
index 000000000..915d8510a
--- /dev/null
+++ b/3774/CH7/EX7.6/Ex7_6.sce
@@ -0,0 +1,87 @@
+// exa 7.6 Pg 205
+clc;clear;close;
+
+// Given Data
+P=135;// kW
+N=120;// rpm
+tau_s=55;// MPa
+tau_b=45;// MPa
+tau_ci=175;// MPa
+sigma_ci=75;// MPa
+
+//sigma_cs=2*tau_s;// MPa
+
+//Tmax=1.5*Tm
+mu=0.15;// coefficient of friction
+
+//SHAFT DIAMETER
+// P= 2*%pi*N*Tm/60/1000
+Tm=P/(2*%pi*N/60/1000);// N.m
+// %pi*d**3*tau_s/16= Tm
+d=(Tm/(%pi*tau_s/16)*1000)**(1/3);// mm
+d=ceil(d)
+printf('shaft diameter = %.2f mm.',d)
+Tmax=Tm;// N.m
+
+// HUB DIAMETER
+// Tmax=%pi/16*((d1**4-d**4)/d1)*tau_h
+tau_h=tau_ci;// MPa
+//d1*(Tmax/(%pi/16)/tau_h)-d1**4=d**4 -- eqn(1)
+Tmax=Tmax*1000;// N.mm
+p=[1 0 0 -Tmax/(%pi*tau_h/16) -d**4] ;// polynomial coefficients from eqn(1)
+d1=roots(p);// roots of poly
+d1=d1(1);// mm (taking +ve value)
+d1=2*d;// mm (empirically adopted)
+t1=(d1-d)/2;// mm (thickness of hub)
+printf('\n thickness of hub = %.f mm',t1)
+d4=d+t1;// mm (diameter of recess in flanges)
+printf('\n diameter of recess in flanges = %.f mm',d4)
+d3=4*d;// mm (outside diameter of protecting flange)
+printf('\n outside diameter of protecting flange = %.f mm.',d3)
+
+//Key size & Hub length
+b=d/4;// mm (width of key)
+l=1.5*d;// mm (length of key)
+printf('\n width of key = %.1f mm.',b)
+printf('\n length of key = %.f mm.',l)
+t=b;// mm (thickness for square key)
+printf('\n thickness for square key = %.f mm',t)
+printf('\n Hub length = %.f mm',l)
+
+//Number of bolts
+n=ceil(4*d/150+3);// no. of bolts
+printf('\n Number of bolts = %.2f.',n)
+
+// Bolt diameter
+r2=1.5*d;// mm
+F=Tm*1000/r2/n;//N
+//(%pi/4)*db**2*tau_b=F
+db=sqrt(F/((%pi/4)*tau_b));// mm
+printf('\n Bolt diameter = %.2f mm. Use db=20 mm for design purpose',db)
+db=20;// mm (adopted for design)
+bolt_dia=db;//mm
+
+// Flange thickness
+t2=0.5*t1+6;// mm (empirically)
+printf('\n Flange thickness = %.1f mm. Use t=20 mm',t2)
+//F=n*db*t2*sigma_c
+sigma_ci=F/n/db/t2;// MPa
+//2*%pi*d1**2*tau*t2/4=Tmax
+tau=Tmax/(2*%pi*d1**2*t2/4);// MPa
+printf('\n permissible bearing stress in flange = %.2f MPa < 75 MPa',sigma_ci)
+printf('\n shearing of the flange at the junction with hub = %.2f MPa < 175 MPa.',tau)
+printf(' Values are acceptable.')
+
+// Check for crushing of bolt
+//n*db*t2*sigma_cb*d2/2=Tmax
+d2=d1+d;// mm
+db=bolt_dia;//mm
+sigma_cb=Tmax/(n*db*t2*d2/2);// MPa
+printf('\n permissible crushing strength of bolts = %.2f MPa < 60 MPa.',sigma_cb)
+printf(' Hence design is safe.')
+// Thickness of protecting flange
+t3=0.5*t2;// mm
+printf('\n Thickness of protecting flange = %.f mm', t3)
+// Hub overlap
+ho=3;// mm (min)
+printf('\n Hub overlap = %.f mm (min)',ho)
diff --git a/3774/CH7/EX7.7/Ex7_7.sce b/3774/CH7/EX7.7/Ex7_7.sce
new file mode 100644
index 000000000..8ec7ff5b3
--- /dev/null
+++ b/3774/CH7/EX7.7/Ex7_7.sce
@@ -0,0 +1,17 @@
+// exa 7.7 Pg 208
+clc;clear;close;
+
+// Given Data
+d=50;// mm
+tau=42;// MPa
+sigma_c=72;// MPa
+printf('for key to be equally strong in shear & crushing - \n')
+b=d/4;// mm
+printf(' b= %.2f mm. Use b=15 mm.',b)
+b=15;//mm
+//2*b/t=sigma_c/tau for key to be equally strong in shear & crushing
+t=2*b/(sigma_c/tau);// mm
+printf('\n t=%.2f mm. Use t=20 mm',t)
+l= %pi*d**2/8/b;// mm (for key to be equally strong in shear as shaft)
+printf('\n for key to be equally strong in shear as shaft - \n')
+printf(' l=%.2f mm. Use l=70 mm',l)
diff --git a/3774/CH7/EX7.8/Ex7_8.sce b/3774/CH7/EX7.8/Ex7_8.sce
new file mode 100644
index 000000000..161af8ede
--- /dev/null
+++ b/3774/CH7/EX7.8/Ex7_8.sce
@@ -0,0 +1,29 @@
+// exa 7.8 Pg 208
+clc;clear;close;
+
+// Given Data
+d=25;// mm
+N=550;// rpm
+P=12;// kW
+sigma_yt=400;// N/mm.sq.
+sigma_yc=400;// N/mm.sq.
+n=2.5;// factor of safety
+
+// P= 2*%pi*N*T/(60*10**3)
+T=P/(2*%pi*N/(60*10**3));// N.m
+tau=0.5*sigma_yt;// MPa
+tau_d=tau/n;// N/mm.sq.
+printf('design shear stress = %.f N/mm.sq.',tau_d)
+sigma_d=sigma_yc/n;// N/mm.sq.
+printf('\n design crushing strength = %.f N/mm.sq.',sigma_d)
+b=d/4;//mm
+printf('\n width of key = %.f mm. Use 7mm',b)
+b=ceil(d/4);// mm
+t=b;// mm
+printf('\n thickness of key = %.f mm.',t)
+l_s=2*T*10**3/(d*b*tau_d);// mm (length of key based on shear failure)
+printf('\n length of key based on shear failure = %.2f mm or %.f mm',l_s, l_s)
+l_c=4*T*10**3/(d*t*sigma_d);// mm (length of key based on crushing failure)
+printf('\n length of key based on crushing failure = %.2f mm or %.f mm',l_c, l_c)
+
+
diff --git a/3774/CH7/EX7.9/Ex7_9.sce b/3774/CH7/EX7.9/Ex7_9.sce
new file mode 100644
index 000000000..c800ac040
--- /dev/null
+++ b/3774/CH7/EX7.9/Ex7_9.sce
@@ -0,0 +1,83 @@
+// exa 7.9 Pg 209
+clc;clear;close;
+
+// Given Data
+d=36;// mm
+P=15;// kW
+N=720;// rpm
+//Tmax=1.25*Tm
+sigma_yt=245;// MPa (for C20 steel)
+n=3;// factor of safety
+sigma=82;// MPa (Design tensile stress)
+
+tau=0.577*sigma;// MPa (shear stress)
+sigma_u=200;// MPa (for FG 200 cast Iron)
+n2=5;// factor of safety (for FG 200 cast Iron)
+tau2=20;// MPa shear stress (for FG 200 cast Iron)
+
+// Max. torque transmitted
+//P=2*%pi*N*Tm/(60*10**3)
+Tm=P/(2*%pi*N/(60*10**3))*1000;// N.mm
+Tmax=1.25*Tm;// N.mm
+printf('\n Maximum transmitted torque = %.f N.mm',Tmax)
+
+// Hub diameter
+tau_h=20;// MPa (permissible shear stress in hub)
+//Tmax=(%pi/16)*(d1**4-d**4)/d1*tau_h ...eqn(1)
+d1=2*d;//mm (empirically)
+tau_h=Tmax*1000/((%pi/16)*(d1**4-d**4)/d1);// MPa
+t1=(d1-d)/2;// mm (thickness of hub)
+printf('\n Hub diameter = %.f mm',d1)
+printf('\n Thickness of hub = %.f mm',t1)
+d4=d+t1;// mm
+printf('\n Diameter of recess in flanges = %.f mm',d4)
+d3=4*d;//mm
+printf('\n Outside diameter of protecting flange = %.f mm',d3)
+
+//Hub length
+b=d/4;// mm (width of key)
+l=1.5*d;// mm (length of key)
+printf('\n width of key = %.1f mm.',b)
+printf('\n length of key = %.f mm.',l)
+t=b;// mm (thickness for square key)
+printf('\n thickness for square key = %.f mm',t)
+printf('\n Hub length = %.f mm',l)
+
+//Number of bolts
+n=ceil(4*d/150+3);// no. of bolts
+printf('\n Number of bolts = %.2f.',n)
+
+// Bolt diameter
+r2=1.5*d;// mm
+F=Tmax/r2/n;//N
+//(%pi/4)*db**2*tau_b=F
+db=sqrt(F/((%pi/4)*tau));// mm
+printf('\n Bolt diameter = %.2f mm. Use db=6 mm for design purpose',db)
+db=6;// mm (adopted for design)
+bolt_dia=db;//mm
+
+// Flange thickness
+t2=0.5*t1+6;// mm (empirically)
+printf('\n Flange thickness = %.1f mm. Use t=20 mm',t2)
+//F=n*db*t2*sigma_c
+sigma_ci=F/n/db/t2;// MPa
+//2*%pi*d1**2*tau*t2/4=Tmax
+tau=Tmax/(2*%pi*d1**2*t2/4);// MPa
+printf('\n permissible bearing stress in flange = %.2f MPa < 40 MPa',sigma_ci)
+printf('\n shearing of the flange at the junction with hub = %.2f MPa < 20 MPa.',tau)
+printf(' Values are acceptable.')
+
+// Check for crushing of bolt
+//n*db*t2*sigma_cb*d2/2=Tmax
+d2=d1+d;// mm
+db=bolt_dia;//mm
+sigma_cb=Tmax/(n*db*t2*d2/2);// MPa
+printf('\n permissible crushing strength of bolts = %.2f MPa < 82 MPa.',sigma_cb)
+printf(' Hence design is safe.')
+// Thickness of protecting flange
+t3=0.5*t2;// mm
+printf('\n Thickness of protecting flange = %.f mm', t3)
+// Hub overlap
+ho=3;// mm (min)
+printf('\n Hub overlap = %.f mm (min)',ho)
+