diff options
Diffstat (limited to '3772/CH6')
-rw-r--r-- | 3772/CH6/EX6.1/Ex6_1.sce | 28 | ||||
-rw-r--r-- | 3772/CH6/EX6.10/Ex6_10.sce | 45 | ||||
-rw-r--r-- | 3772/CH6/EX6.11/Ex6_11.sce | 34 | ||||
-rw-r--r-- | 3772/CH6/EX6.12/Ex6_12.sce | 30 | ||||
-rw-r--r-- | 3772/CH6/EX6.13/Ex6_13.sce | 51 | ||||
-rw-r--r-- | 3772/CH6/EX6.14/Ex6_14.sce | 42 | ||||
-rw-r--r-- | 3772/CH6/EX6.15/Ex6_15.sce | 14 | ||||
-rw-r--r-- | 3772/CH6/EX6.16/Ex6_16.sce | 27 | ||||
-rw-r--r-- | 3772/CH6/EX6.2/Ex6_2.sce | 24 | ||||
-rw-r--r-- | 3772/CH6/EX6.3/Ex6_3.sce | 24 | ||||
-rw-r--r-- | 3772/CH6/EX6.4/Ex6_4.sce | 20 | ||||
-rw-r--r-- | 3772/CH6/EX6.5/Ex6_5.sce | 26 | ||||
-rw-r--r-- | 3772/CH6/EX6.6/Ex6_6.sce | 27 | ||||
-rw-r--r-- | 3772/CH6/EX6.7/Ex6_7.sce | 24 | ||||
-rw-r--r-- | 3772/CH6/EX6.8/Ex6_8.sce | 21 | ||||
-rw-r--r-- | 3772/CH6/EX6.9/Ex6_9.sce | 42 |
16 files changed, 479 insertions, 0 deletions
diff --git a/3772/CH6/EX6.1/Ex6_1.sce b/3772/CH6/EX6.1/Ex6_1.sce new file mode 100644 index 000000000..df498a429 --- /dev/null +++ b/3772/CH6/EX6.1/Ex6_1.sce @@ -0,0 +1,28 @@ +// Problem no 6.1,Page No.154 + +clc;clear; +close; + +b=0.12 //m //Width of beam +d=0.2 //m //Depth of beam +dell=0.005 //m //Deflection +E=2*10**5*10**6 //N/m**2 +L=2.5 //m //Length of beam + +//Calculations + +I=b*d**3*12**-1 //m**4 //M.I of rectangular section +w=8*E*I*dell*(L**4)**-1 //N/m //U.d.l + +//Let slope at free end be theta +theta=w*L**3*(6*E*I)**-1 //Radian + +W=dell*3*E*I*(L**3)**-1*10**-3 //kN //Concentrated Load + +theta_2=W*L**2*(2*E*I)**-1 //Slope at free end + +//Result +printf("Uniformly distributed Load beam should carry is %.2f N/m",w) +printf("\n Concentrated Load at free end is %.2f kN",W) + +//Answer is wrong in the textbook. diff --git a/3772/CH6/EX6.10/Ex6_10.sce b/3772/CH6/EX6.10/Ex6_10.sce new file mode 100644 index 000000000..83d0afa26 --- /dev/null +++ b/3772/CH6/EX6.10/Ex6_10.sce @@ -0,0 +1,45 @@ +// Problem no 6.10,Page No.161 + +clc;clear; +close; + +E=200*10**9 //Pa +I=20000*10**-8 //m**4 + +//Calculations + +//Now Taking moment at B +R_a=(1000*3*4.5+1000*2)*6**-1 //Reaction Force at pt A + +//On part BC u.d.l of 1KN/m is introduced both above and below +//consider section at distance x i.e X-X and considering moment at section X-X + +//M=15500*x*6**-1-1000*x**2*2**-1-1000(x-4)+1000*2**-1*(x-3)**2 +//EI*d**2y*d**x=-M=15500*x*6**-1-1000*x**2*2**-1-1000(x-4)+1000*2**-1*(x-3)**2 + +//Now Integrating above Equation we get Equation of slope +//EI*dy*dx**-1=-15500*x**2*12**-1+1000*x**3*6**-1+1000*(x-4)**2*2**-1+1000*6**-1*(x-3)**3+C_1 + +//Now Integrating above Equation we get Equation of Deflection +//EI*y=-15500*x**3*36**-1+1000*x**4*24**-1+1000*(x-4)**3*6**-1+1000*24**-1*(x-3)**3+C_1*x+C_2 + +//At x=0,deflection is zero,i.e y=0 C_2=0 +//At x=6,deflection is zero,i.e y=0 +x=6 +C_1=-(-15500*x**3*36**-1+1000*x**4*24**-1+1000*(x-4)**3*6**-1+1000*(x-3)**4*24**-1)*x**-1 //Constant + +//Answer for constant C_1 is incorrect in Book + +//Now Deflection at C,put x=3 m +x=3 +y_C=1*(E*I)**-1*(-15500*x**3*36**-1+1000*x**4*24**-1+1000*(x-4)**3*6**-1+1000*24**-1*(x-3)**3+C_1*x)*10**3 + +//Now Deflection at D,put x=4 m +x=4 +y_D=1*(E*I)**-1*(-15500*x**3*36**-1+1000*x**4*24**-1+1000*(x-4)**3*6**-1+1000*24**-1*(x-3)**3+C_1*x)*10**3 + +//Answers for y_C & y_D are incorrect in book + +//Result +printf("Deflection at pt C is %.2f mm",y_C) +printf("\n Deflection at pt D is %.2f mm",y_D) diff --git a/3772/CH6/EX6.11/Ex6_11.sce b/3772/CH6/EX6.11/Ex6_11.sce new file mode 100644 index 000000000..c583a5429 --- /dev/null +++ b/3772/CH6/EX6.11/Ex6_11.sce @@ -0,0 +1,34 @@ +// Problem no 6.11,Page No.162 + +clc;clear; +close; + +L=2.5 //m //Length of beam +L_1=1.5 //m //Length from Fixed end +W=50*10**3 //N //Load + +//Calculations + +//Case-1 +y=W*L**3*3**-1 //Deflection of the cantilever at free end + +//Case-2 +//Deflection of cantilever at free end is +//y_1=W_1*L**3*3**-1+W_1*L_1**3*3**-1+W_1*L_1**3*3**-1*(L-L_1) +//After substituting values in above equation and simplifying further we get + +//y_1=22.375*W_1*3**-1 + +W_1=y*3*22.375**-1*10**-3 //Magnitude of equal Loads +M_1=W*L*10**-3 +M_2=W_1*L+W_1*L_1 + +//Let M_1=sigma_1*z and M_2=sigma_2*z +//Dividing above two equations we get + +//Let X=sigma_1*sigma_2**-1 +X=M_2*M_1**-1*100 + +//Result +printf("Magnitude of equal Loads is %.2f kN",W_1) +printf("\n Max Bending stress is %.2f %%",X) diff --git a/3772/CH6/EX6.12/Ex6_12.sce b/3772/CH6/EX6.12/Ex6_12.sce new file mode 100644 index 000000000..a5cbe7c4b --- /dev/null +++ b/3772/CH6/EX6.12/Ex6_12.sce @@ -0,0 +1,30 @@ +// Problem no 6.12,Page No.163 + +clc;clear; +close; + +L=4 //m //Length of Beam + +//calculations + +//Consider a section at distance x from A and B.M at this section is +//M=P*(3-x)-10*x**2+90*x-195 + +//Now //EI*d**2*y*d**2*x=-P*(3-x)+10*x**2-90*x+195 + +//On Integrating above equation we get +//E*I*dy*dx**-1=-P*(3*x-x**2*2**-1)+10*x**3*2**-1-45*x**2+195*x+C_1 + +//Again On Integrating above equation we get +//E*I*y=-P*(3*x**2*2**-1-x**3*6**-1)+10*x**4*12**-1-15*x**3+195*x**2*2**-1+C_1*x+C_2 + +//But at x=0,dy*dx**-1=0 we get ,C_1=0 +// x=0,y=0 we get ,C_2=0 +//At x=3 m,y=0 +x=3 +C_1=0 +C_2=0 +P=(10*x**4*12**-1-15*x**3+195*x**2*2**-1+C_1*x+C_2)*(3*x**2*2**-1-x**3*6**-1)**-1 + +//Result +printf("Load taken by prop is %.2f",P);printf(" KN") diff --git a/3772/CH6/EX6.13/Ex6_13.sce b/3772/CH6/EX6.13/Ex6_13.sce new file mode 100644 index 000000000..fcaa46c63 --- /dev/null +++ b/3772/CH6/EX6.13/Ex6_13.sce @@ -0,0 +1,51 @@ +// Problem no 6.13,Page No.163 + +clc;clear; +close; + +L=6 //m //Span of Beam +sigma=100*10**6 //Pa //Bending stress +E=210*10**9 +y=0.45 //m //Depth + +//Calculations + +//Taking moment at B +R_a=20*6*3+6*40*2*2**-1 + +//At a section x from A the rate of Loading=20+2*3**-1*x //KN/m +//S.F=100-20*x-x**2*3**-1 +//M=100*x-10*x**2-x**3*9**-1 + +//Thus B.M will be max where S.F is zero,we get equation as +//x**2+60*x-300=0 +a=1 +b=60 +c=-300 + +X=b**2-4*a*c +x_1=(-b+X**0.5)*(2*a)**-1 +x_2=(-b-X**0.5)*(2*a)**-1 + +x=4.641 +M=100*x-10*x**2-x**3*9**-1 //KN*m //Max bending moment +I=M*sigma**-1*y*1000*2**-1 //m**4 //M.I + +//E*I*d**2*y*(d*x**2)**-1=-100*x+10*x**2+x**3*9**-1 + +//AFter Integrating above EquATION WE get +//E*I*dy*(dx)**-1=-50*x**2+10*3**-1*x**3+x**4*36**-1+C_1 +//Again Integrating above EquATION WE get +//E*I*y=-50*x**3*3**-1+10*12**-1*x**4+x**5*180**-1+C_1*x+C_2 + +//At x=0,y=0 ,C_2=0 +//At x=6,y=0 +x=6 +C_2=0 +C_1=-(-50*x**3*3**-1+10*12**-1*x**4+x**5*180**-1)*x**-1 + +x=3 //m +y=1*(E*I)**-1*(-50*x**3*3**-1+10*12**-1*x**4+x**5*180**-1+C_1*x+C_2)*1000*100 + +//Result +printf("The central Deflection is %.2f",y);printf(" cm") diff --git a/3772/CH6/EX6.14/Ex6_14.sce b/3772/CH6/EX6.14/Ex6_14.sce new file mode 100644 index 000000000..eaba57222 --- /dev/null +++ b/3772/CH6/EX6.14/Ex6_14.sce @@ -0,0 +1,42 @@ +// Problem no 6.14,Page No.168 + +clc;clear; +close; + +L=10 //m //Lenght of cantilever beam +P_1=20*10**3 //N //Load at free end +P_2=20*10**3 //N //Load at middle of beam +E=200*10**9 //Pa +I=20000*10**-8 //m**4 + +//Calculations + +//Taking moment at pt B we get +R_a=20*5*10**-1 //Force at pt A + +//Now B.M at b=0,at C=-100,at A=-300 KN*m + +//Now Area of B.M +A_1=2**-1*5*100 //KN*m**2 +A_2=5*100 //KN*m**2 +A_3=2**-1*5*200 //KN*m**2 + +//Total Area of B.M diagram is given by A +A=A_1+A_2+A_3 + +theta=A*10**3*(E*I)**-1 //radian + +x_1=2*3**-1*5 +x_2=3*2**-1*5 +x_3=5*3**-1*5 +M_1=A_1*x_1 +M_2=A_2*x_2 +M_3=A_3*x_3 + +M=M_1+M_2+M_3 //Total moments of B.M about B + +y_B=M*10**3*(E*I)**-1 //Deflection a tfree end + +//REsult +printf("Slope of cantilever at free end is %.2f",theta);printf(" radian") +printf("\n Deflection of cantilever at free end is %.2f",y_B);printf(" m") diff --git a/3772/CH6/EX6.15/Ex6_15.sce b/3772/CH6/EX6.15/Ex6_15.sce new file mode 100644 index 000000000..3172da236 --- /dev/null +++ b/3772/CH6/EX6.15/Ex6_15.sce @@ -0,0 +1,14 @@ +// Problem no.6.15,Page no.169 + +clc;clear; +close; + +//Calculations + +//Slope at A is Zero and deflection at C is zero According to Mohr's second theorem +//Let A_1*x_1=Y +Y=1*30**-1*80*4*(3*4**-1*4+2) +P=200*27**-1 //Reaction at ens D + +//Result +printf("The reaction at end C is %.2f",P);printf(" KN") diff --git a/3772/CH6/EX6.16/Ex6_16.sce b/3772/CH6/EX6.16/Ex6_16.sce new file mode 100644 index 000000000..d11eb4225 --- /dev/null +++ b/3772/CH6/EX6.16/Ex6_16.sce @@ -0,0 +1,27 @@ +// Problem no 6.16,Page No.171 + +clc;clear; +close; + +E=200*10**9 //Pa +I=2500*10**-8 //m**4 + +//Calculations + +//Taking moment about A we get +R_a=(30*5+30*1)*6**-1 //Reaction at pt A +R_b=60-R_a //Reaction at pt B + +M_c=30*1 //B.M at C +M_d=30*1 //B.M at D +M_a=0 //B.M at a +M_b=0 //B.M at b + +//For conjugate beam taking moment about B_dash +R_a_dash=(30*2**-1*(5+1*3**-1)+30*4*3+30*2*3**-1*2**-1)*6**-1 +R_b_dash=150-R_a_dash + +y_e=1*(E*I)**-1*(R_a_dash*3-30*2*1-2**-1*1*30*(2+1*3**-1))*1000 + +//Result +printf("Deflection at the centre is %.2f",y_e);printf(" m") diff --git a/3772/CH6/EX6.2/Ex6_2.sce b/3772/CH6/EX6.2/Ex6_2.sce new file mode 100644 index 000000000..3e26a3c29 --- /dev/null +++ b/3772/CH6/EX6.2/Ex6_2.sce @@ -0,0 +1,24 @@ +// Problem no 6.2,Page No.155 + +clc;clear; +close; + +L=6 //m //Length of beam +y_b=1.5*10**-2 //m //Deflection +E=2*10**7*10**4 +sigma=10*10**3*10**4 +//d=2*b + +//Calculations + +//Let w*I**-1=X //From Deflection at the free end Equation +X=y_b*8*E*(L**4)**-1*10**-3 //Equation 1 + +//Let w*b*I**-1=Y //From Max bending stress at the extreme fibre From N.A +Y=sigma*2*(L**2)**-1 //Equation 2 + +b=Y*X**-1 //width of beam //mm +d=2*b //depth of beam //mm + +//Result +printf("The Dimension of Beam are:\n\t\t\t b=%.2f mm (width)\n\t\t\t d=%.2f mm (depth)",b,d) diff --git a/3772/CH6/EX6.3/Ex6_3.sce b/3772/CH6/EX6.3/Ex6_3.sce new file mode 100644 index 000000000..865c03e6b --- /dev/null +++ b/3772/CH6/EX6.3/Ex6_3.sce @@ -0,0 +1,24 @@ +// Problem no 6.3,Page No.156 + +clc;clear; +close; + +L=3 //m //Length of beam +L_1=1.2 //m //Distance from fixed end +d=0.25 //m //Depth of beam +w=15*10**3 //N //U.d.L +W=40*10**3 //N //Point Load +E=2*10*10**4 //N/m**2 +I=13500*10**-4 //M.I + +//Calculations + +y_b=W*L_1**3*(3*E*I)**-1+W*L_1**2*(2*E*I)**-1*(L-L_1)+w*L**4*(8*E*I)**-1 //Deflection at free end + +M=W*L_1+w*L*L*2**-1 //Max Bending moment at the fixed end A //Nm +y=d*2**-1 +sigma_max=M*y*I**-1 //N/cm**2 //Max Bending stress at extreme fibre + +//Result +printf("Deflection at the free end is %.4f cm",y_b) +printf("\n Max stress due to bending is %.2f N/cm^2",sigma_max) diff --git a/3772/CH6/EX6.4/Ex6_4.sce b/3772/CH6/EX6.4/Ex6_4.sce new file mode 100644 index 000000000..6fb9ceb0d --- /dev/null +++ b/3772/CH6/EX6.4/Ex6_4.sce @@ -0,0 +1,20 @@ +// Problem no 6.4,Page No.156 + +clc;clear; +close; + +M=100*10**3 //N //Moment +L=3 //m //Length +d=0.15 //m //Width +b=0.1 //m //width +E=2.1*10**7*10**4 //N/cm**2 + +//Calculations + +I=b*d**3*12**-1 //cm**4 //M.I of beam section +B_1=M*L*(E*I)**-1 //radian //Slope at B +B_2=M*L**2*(2*E*I)**-1*10**2 //cm //Deflection at point B + +//Result +printf("The slope at Point B is %.2f radian",B_1) +printf("\n The Deflection at point B is %.2f cm",B_2) diff --git a/3772/CH6/EX6.5/Ex6_5.sce b/3772/CH6/EX6.5/Ex6_5.sce new file mode 100644 index 000000000..3d7e0a958 --- /dev/null +++ b/3772/CH6/EX6.5/Ex6_5.sce @@ -0,0 +1,26 @@ +// Problem no 6.5,Page No.157 + +clc;clear; +close; + +b=0.1 //m //width +d=0.2 //m //depth +L=2 //m //Length of beam +L_1=1 //m //Length from free end +E=210*10**9 +W=1*10**3 //N //Concentrated Load +w=2*10**3 //N/m + +//Calculations + +I=b*d**3*12**-1 //m**4 //M.I of the beam section + +//Slope at free end +theta=W*L**2*(2*E*I)**-1+w*L**3*(6*E*I)**-1-w*(L-L_1)**3*(6*E*I)**-1 + +//Deflection at free end +y_b=(W*L**3*(3*E*I)**-1+w*L**4*(8*E*I)**-1-w*(L-L_1)**4*(8*E*I)**-1-w*(L-L_1)**3*L_1*(6*E*I)**-1)*10**3 + +//Result +printf("Slope at free end is %.5f radian",theta) +printf("\n Deflection at free end is %.2f mm",y_b) diff --git a/3772/CH6/EX6.6/Ex6_6.sce b/3772/CH6/EX6.6/Ex6_6.sce new file mode 100644 index 000000000..1f80132f7 --- /dev/null +++ b/3772/CH6/EX6.6/Ex6_6.sce @@ -0,0 +1,27 @@ +// Problem no 6.6,Page No.158 + +clc;clear; +close; + +L=10 //m //span of beam +W=10*10**3 //N //Point Load +a=6 //m //Distance from left end of beam to point Load +b=4 //m ////Distance from right end of beam to point Load +E=210*10**9 +I=10**-4 //m //M.I of beam + +//Calculation + +//slope at left end is given by +theta_A=W*b*(L**2-b**2)*(6*E*I*L)**-1 //radian + +//Deflection under Load is +y_c=W*a*b*(L**2-a**2-b**2)*(6*E*I*L)**-1*10**3 //mm + +//Maximum Deflection of the beam is +y_max=W*a*(L**2-a**2)**1.5*(15.588457*E*I*L)**-1*10**3 //mm + +//Result +printf("slope at left end is %.5f radian",theta_A) +printf("\n Deflection under Load is %.2f mm",y_c) +printf("\n #Maximum Deflection of the beam is %.2f mm",y_max) diff --git a/3772/CH6/EX6.7/Ex6_7.sce b/3772/CH6/EX6.7/Ex6_7.sce new file mode 100644 index 000000000..4e53cbaa6 --- /dev/null +++ b/3772/CH6/EX6.7/Ex6_7.sce @@ -0,0 +1,24 @@ +// Problem no 6.7,Page No.158 + +clc;clear; +close; + +L=5 //m //Length of beam +w=40*10**3 //N //U.d.L +y_max=0.01 //Deflection +sigma_s=7*10**6 //Bending stress +E=10.5*10**9 + +//Calculation + +M=w*L*8**-1 //N*m //Max Bending moment + +//From equation of max deflection +I=5*w*L**3*(y_max*384*E)**-1 //m**4 + +d=sigma_s*2*I*M**-1*10**2 //cm +b=12*I*((d*10**-2)**3)**-1*10**2 //cm //Breadth + +//Result +printf("Minimum value of breadth is %.2f cm",b) +printf("\n Minimum value of Depth is %.2f cm",d) diff --git a/3772/CH6/EX6.8/Ex6_8.sce b/3772/CH6/EX6.8/Ex6_8.sce new file mode 100644 index 000000000..337ee732e --- /dev/null +++ b/3772/CH6/EX6.8/Ex6_8.sce @@ -0,0 +1,21 @@ +// Problem no 6.8,Page No.159 + +clc;clear; +close; + +L=6 //m //Length of beam +d=0.15 //m //diameter +y_max=1.035*10**-2 //m //Deflection +E=210*10**9 + +//Calculations + +I=%pi*64**-1*d**4 //M.I of Beam +W=y_max*48*E*(L**3)**-1 //Point Load +theta_A=3*y_max*L**-1 +theta_B=-theta_A + +//Result +printf("The Heaviest central Point Load placed is %.2f N",W) +printf("\n Slope at supports are:theta_A = %.5f radian",theta_A) +printf("\n :theta_B = %.5f radian",theta_B) diff --git a/3772/CH6/EX6.9/Ex6_9.sce b/3772/CH6/EX6.9/Ex6_9.sce new file mode 100644 index 000000000..9e6f934b6 --- /dev/null +++ b/3772/CH6/EX6.9/Ex6_9.sce @@ -0,0 +1,42 @@ +// Problem no 6.9,Page No.160 + +clc;clear; +close; + +L=14 //m //Lenth of steel girder +E=210*10**9 //modulus of Elasticity of steel +I=16*10**4*10**-8 //M.I of girder section + +//Calculations + +//R_a+R_b=200 //R_a & R_b are the Reactions at supports A & B respectively + +//After taking moment at B We get +R_a=(120*11+80*4.5)*14**-1 //KN +R_b=200-R_a + +//After considering section at X-X at a distance x from left end A and taking B.M at X-X +//M=120*x-120(x-3)-80*(x-9.5) + +//After Integrating twice we get +//EI*dy*dx**-1=-60*x**2*+60(x-3)**2+40(x-9.5)**2+C_1 //slope + +//Again on Integrating we get +//EI*y=-20*x**3+20(x-3)**3+40*3**-1*(x-9.5)**3+C_1*x+C_2 //Deflection + +//At A deflection is zero,i.e at x=0,y=0 +//At B deflection is zero,i.e at x=14,y=0 So C_2=0 + +C_1=-(-20*(14)**3+20*(11)**3+40*3**-1*(14-9.5)**3)*14**-1 //constant + +//Now Deflection at D i.e at x=3 m +x=3 +y_D=1*(E*I)**-1*(-20*x**3+20*(x-3)**3+C_1*x)*10**3 + +//Now Deflection at D i.e at x=9.5 m +x=9.5 +y_C=1*(E*I)**-1*(-20*x**3+20*(x-3)**3+40*3**-1*(x-9.5)**3+C_1*x)*10**3 + +//Result +printf("Deflection under points of two Loads are i.e: at pt D = %.4f m",y_D) +printf("\n : at pt C = %.4f m",y_C) |