diff options
Diffstat (limited to '3772/CH14')
-rw-r--r-- | 3772/CH14/EX14.1/Ex14_1.sce | 49 | ||||
-rw-r--r-- | 3772/CH14/EX14.10/Ex14_10.sce | 48 | ||||
-rw-r--r-- | 3772/CH14/EX14.11/Ex14_11.sce | 57 | ||||
-rw-r--r-- | 3772/CH14/EX14.12/Ex14_12.sce | 52 | ||||
-rw-r--r-- | 3772/CH14/EX14.13/Ex14_13.sce | 55 | ||||
-rw-r--r-- | 3772/CH14/EX14.2/Ex14_2.sce | 28 | ||||
-rw-r--r-- | 3772/CH14/EX14.3/Ex14_3.sce | 50 | ||||
-rw-r--r-- | 3772/CH14/EX14.4/Ex14_4.sce | 50 | ||||
-rw-r--r-- | 3772/CH14/EX14.5/Ex14_5.sce | 65 | ||||
-rw-r--r-- | 3772/CH14/EX14.6/Ex14_6.sce | 55 | ||||
-rw-r--r-- | 3772/CH14/EX14.7/Ex14_7.sce | 49 | ||||
-rw-r--r-- | 3772/CH14/EX14.8/Ex14_8.sce | 36 |
12 files changed, 594 insertions, 0 deletions
diff --git a/3772/CH14/EX14.1/Ex14_1.sce b/3772/CH14/EX14.1/Ex14_1.sce new file mode 100644 index 000000000..ece91e449 --- /dev/null +++ b/3772/CH14/EX14.1/Ex14_1.sce @@ -0,0 +1,49 @@ +// Problem no 14.1,Page No.325 + +clc;clear; +close; +b=2 //m //width +FOS=1.5 //Factor of safety +//rho_mason=2.5*rho_w +mu=0.5 //coeffeicient of friction + +//Calculations + +//Let L=1 m (length of dam) +L=1 +//W=b*H*L*rho +//After substituting values and Further simplifying we get +//W=2*H*rho + +//Total Pressure +//P=W*H**2*2**-1 + +x_bar=b*2**-1 //Distance of Line of action of W from waterface + +//Distance of pt where resultant cuts the base measured from Line of action +//x=P*W**-1*H*3**-1 +//After substituting values and Further simplifying we get +//x=H**2*30**-1 + +//x_bar+x=2*b*3**-1 +//After substituting values and Further simplifying we get +//1+H**2*30**-1=2*b*3**-1 +H=(30*(2*b*3**-1-1))**0.5 //height of dam + +//Frictional Resistance offered at the base +//F=mu*W +//After substituting values and Further simplifying we get +//F=3.16*rho + +//Total Lateral Pressure +//P=W*H**2*2**-1 +//P=4.99*W + +//Factor of safety against sliding +//FOS1=F*P**-1=3.16*4.99**-1*rho_mason*rho_w**-1 +FOS1=3.16*4.99**-1*2.5 + +//FOS1>FOS + +//Result +printf("Dam is safe against sliding = %.2f m",FOS1) diff --git a/3772/CH14/EX14.10/Ex14_10.sce b/3772/CH14/EX14.10/Ex14_10.sce new file mode 100644 index 000000000..4bdf26731 --- /dev/null +++ b/3772/CH14/EX14.10/Ex14_10.sce @@ -0,0 +1,48 @@ +// Problem no 14.10,Page No.337 + +clc;clear; +close; +H=6 //m //height of dam +a=1 //m //top width +b=3 //m //Bottom width +rho_mason=22 //KN/m**3 //weight of mason +rho_earth=16 //KN/m**3 //density of water +phi=30 //Degree //angle of repose +mu=0.5 //Coeffecient of friction + +//Calculations + +//Let Length of dam ,L=1 m +L=1 //m + +//weight of dam +W=(a+b)*2**-1*L*H*rho_mason + +//Lateral thrust +P=rho_earth*H**2*L*2**-1*((1-sin(30*%pi*180**-1))*(1+sin(phi*%pi*180**-1))**-1) + +//Distance of Line of action from vertical base +x_bar=(b**2+b*a+a**2)*(3*(b+a))**-1 + +//distance of pt where resultant cuts the base +x=P*W**-1*H*3**-1 + +//Eccentricity +e=x_bar+x-b*2**-1 +e_max=b*6**-1 + +//stress at toe +sigma2=W*10**3*b**-1*(1+6*e*b**-1)*10**-3 + +//Safe agaainst bearing + +//Frictional Resistance +F=mu*W + +if F>P then + //it is safe against sliding + +//Result +printf("Safe against bearing as well as sliding") + +end diff --git a/3772/CH14/EX14.11/Ex14_11.sce b/3772/CH14/EX14.11/Ex14_11.sce new file mode 100644 index 000000000..24ce862aa --- /dev/null +++ b/3772/CH14/EX14.11/Ex14_11.sce @@ -0,0 +1,57 @@ +// Problem no 14.11,Page No.338 + +clc;clear; +close; +H=8 //m //height of dam +a=1 //m //top width +b=4.5 //m //Bottom width +rho_mason=24 //KN/m**3 //weight of mason +rho_earth=20 //KN/m**3 //density of water +phi=30 //Degree //angle of repose +mu=0.5 //Coeffecient of friction +BC=120 //KN/m**2 + + +//Calculations + +//Let Length of dam ,L=1 m +L=1 //m + +//weight of dam +W=(a+b)*2**-1*L*H*rho_mason + +//Rankine's coeff earth pressure +K=((1-sin(30*%pi*180**-1))*(1+sin(phi*%pi*180**-1))**-1) + +//Lateral thrust +P=rho_earth*H**2*L*2**-1*K + +//Distance of Line of action from vertical base +x_bar=(b**2+b*a+a**2)*(3*(b+a))**-1 + +//distance of pt where resultant cuts the base +x=P*W**-1*H*3**-1 + +//Eccentricity +e=x_bar+x-b*2**-1 + +//Pressure at heel B +sigma1=W*b**-1*(1-6*e*b**-1) + +//Pressure at heel C +sigma2=W*b**-1*(1+6*e*b**-1) + +//sigma2>120 //KN/m**2,so it is unsafe against bearing capacity of the soil + +//result +printf("Unsafe against the bearing capacity of soil") + +//Plotting the Shear Force Diagram + +X1=[0,L,L] +Y1=[sigma2,sigma1,0] +Z1=[0,0,0] +plot(X1,Y1,X1,Z1) +xlabel("Length x in m") +ylabel("Shear Force in kN") +title("the Shear Force Diagram") diff --git a/3772/CH14/EX14.12/Ex14_12.sce b/3772/CH14/EX14.12/Ex14_12.sce new file mode 100644 index 000000000..a3c5c5884 --- /dev/null +++ b/3772/CH14/EX14.12/Ex14_12.sce @@ -0,0 +1,52 @@ +// Problem no 14.12,Page No.340 + +clc;clear; +close; +H=6 //m //height of dam +a=1.5 //m //top width +b=3.5 //m //Bottom width +rho_s=16 //KN/m**3 //density of soil +rho_mason=22.5 //KN/m**3 //density of mason +phi=30 //Degree //angle of repose + +//Calculations + +//Let Length of dam ,L=1 m +L=1 //m + +//weight of dam +W=(a+b)*2**-1*L*H*rho_mason + +//Rankine's coeff earth pressure +K=((1-sin(30*%pi*180**-1))*(1+sin(phi*%pi*180**-1))**-1) + +//Lateral thrust +P=rho_s*H**2*L*2**-1*K + +//Distance of Line of action from vertical base +x_bar=(b**2+b*a+a**2)*(3*(b+a))**-1 + +//distance of pt where resultant cuts the base +x=P*W**-1*H*3**-1 + +//Eccentricity +e=x_bar+x-b*2**-1 + +//Pressure at heel B +sigma1=W*b**-1*(1-6*e*b**-1) + +//Pressure at heel C +sigma2=W*b**-1*(1+6*e*b**-1) + +//Result +printf("The Max Intensities of soil at the wall is %.2f",sigma2);printf(" KN/m**2") +printf("\n The Min Intensities of soil at the wall is %.2f",sigma1);printf(" KN/m**2") + +//Plotting the Shear Force Diagram +X1=[0,L,L] +Y1=[sigma2,sigma1,0] +Z1=[0,0,0] +plot(X1,Y1,X1,Z1) +xlabel("Length x in m") +ylabel("Shear Force in kN") +title("the Shear Force Diagram") diff --git a/3772/CH14/EX14.13/Ex14_13.sce b/3772/CH14/EX14.13/Ex14_13.sce new file mode 100644 index 000000000..64e5d892c --- /dev/null +++ b/3772/CH14/EX14.13/Ex14_13.sce @@ -0,0 +1,55 @@ +// Problem no 14.13,Page No.341 + +clc;clear; +close; +H=6 //m //height of dam +a=1 //m //top width +b=3 //m //Bottom width +rho_s=18 //KN/m**3 //density of soil +rho_mason=24 //KN/m**3 //density of mason +alpha=20 +phi=30 + +//Calculations + +//Let Length of dam ,L=1 m +L=1 //m + +a2=cos(alpha*%pi*180**-1) +b2=(cos(alpha*%pi*180**-1)-((cos(alpha*%pi*180**-1)**2-cos(phi*%pi*180**-1)**2))**0.5) +c2=(cos(alpha*%pi*180**-1)+((cos(alpha*%pi*180**-1)**2-cos(phi*%pi*180**-1)**2)**0.5)) + +X=a2*b2*c2**-1 + +//Total Pressue on the wall +P=rho_s*H**2*2**-1*X + +//The Horizontal component of pressure +P_H=P*cos(20*%pi*180**-1) + +//The Vertical component of pressure +P_V=P*sin(20*%pi*180**-1) + +//weight of wall +W=(a+b)*H*rho_mason*2**-1 + +//TotaL Weight +W1=W+P_V + +//Taking moment of vertical Loads about B,M_B=0 +x_bar=(rho_mason*a*H*0.5+rho_mason*H*2)*W1**-1 + +x=P_H*W1**-1*H*3**-1 + +//eccentricity +e=x_bar+x-b*2**-1 + +//Stress at the toe at C +sigma_max=W1*b**-1*(1+6*e*b**-1) + +//Stress at the heel at B +sigma_min=W1*b**-1*(1-6*e*b**-1) + +//Result +printf("Pressure at the base of the wall:Pressure at the heel %.2f",sigma_min);printf(" KN/m**2") +printf("\n :Pressure at the toe %.2f",sigma_max);printf(" KN/m**2") diff --git a/3772/CH14/EX14.2/Ex14_2.sce b/3772/CH14/EX14.2/Ex14_2.sce new file mode 100644 index 000000000..614d5841f --- /dev/null +++ b/3772/CH14/EX14.2/Ex14_2.sce @@ -0,0 +1,28 @@ +// Problem no 14.2,Page No.327 + +clc;clear; +close; +D=2 //m //External Diameter +d=1.5 //m //Internal Diameter +P=1600 //N/m**2 //N/m**2 //Wind Pressure +W=19200 //N/m**2 //Weight of masonry + +//Calculations + +//Let H be max height of dam + +//W2=%pi*4**-1*(D**2-d**2)*H*W //weight of chimney +//W2=26400*H + +//Eccentricrty +x=(D**2+d**2)*(8*D)**-1 + +//P2=H*D*P //Lateral thrust of wind on chimney +//P2=3200*H + +//Now by using the relation we get P*W**-1=x*(H*2**-1)**-1 +//After substituting values and Further simplifying we get +H=0.39*2*26400*3200**-1 + +//result +printf("The Height of Dam is %.2f",H);printf(" m") diff --git a/3772/CH14/EX14.3/Ex14_3.sce b/3772/CH14/EX14.3/Ex14_3.sce new file mode 100644 index 000000000..ce0752bb6 --- /dev/null +++ b/3772/CH14/EX14.3/Ex14_3.sce @@ -0,0 +1,50 @@ +// Problem no 14.3,Page No.327 + +clc;clear; +close; +rho_w=10 //KN/m**3 //Density of water +rho_mason=22.4 //KN/m**3 //Density of mason +H=6 //m //height of dam +a=1 //m //width of top +b=4 //m //bottom width +h=5.5 //m //Weight of water depth + +//Calculations + +//Let L=1 m (length of dam) +L=1 + +//weight of dam +W=(a+b)*2**-1*H*a*rho_mason + +//Lateral thrust +P=rho_w*h**2*a*2**-1 + +//distance of Line of action of W measured from vertical face +x_bar=(b**2+b*a+a**2)*(3*(b+a))**-1 + +//distance of pt where resultant cuts the base +x=P*W**-1*h*3**-1 + +//Eccentricity +e=x_bar+x-b*2**-1 + +//Stress at Pt B +sigma1=W*b**-1*(1-6*e*b**-1) + +//stress at Pt C +sigma2=W*b**-1*(1+6*e*b**-1) + +//Result +printf("Max stress intensities at the base is %.2f",sigma2);printf(" KN/m**2") +printf("\n Min stress intensities at the base is %.2f",sigma1);printf(" KN/m**2") + +//Plotting the Shear Force Diagram + +X1=[0,L,L] +Y1=[sigma2,sigma1,0] +Z1=[0,0,0] +plot(X1,Y1,X1,Z1) +xlabel("Length x in m") +ylabel("Shear Force in kN") +title("the Shear Force Diagram") diff --git a/3772/CH14/EX14.4/Ex14_4.sce b/3772/CH14/EX14.4/Ex14_4.sce new file mode 100644 index 000000000..bfe3387d7 --- /dev/null +++ b/3772/CH14/EX14.4/Ex14_4.sce @@ -0,0 +1,50 @@ +// Problem no 14.4,Page No.329 + +clc;clear; +close; +H=10 //m //height od dam +a=2 //m //top width +b=5 //m //bottom width +W=25 //KN/m**3 //weight of mason +rho_w=10 //KN/m**3 //density of water + +//Calculations + +//Let L=1 m (length of dam) +L=1 + +//weight of dam +W2=(b+a)*H*L*W*2**-1 + +////Lateral thrust +P=rho_w*H**2*L*2**-1 + +//Resultant thrust +R=(P**2+W**2)**0.5 + +//Distance of Line of action from vertical base +x_bar=(b**2+b*a+a**2)*(3*(b+a))**-1 + +////distance of pt where resultant cuts the base +x=P*W2**-1*H*3**-1 + +//Eccentricity +e=x_bar+x-b*2**-1 + +//Stress at Pt B +sigma1=W2*b**-1*(1-6*e*b**-1) + +//stress at Pt C +sigma2=W2*b**-1*(1+6*e*b**-1) + +//Result +printf("The Resultant Thrust on the base is %.2f",R);printf(" KN") + +//Plotting the Shear Force Diagram +X1=[0,L,L] +Y1=[-sigma2,-sigma1,0] +Z1=[0,0,0] +plot(X1,Y1,X1,Z1) +xlabel("Length x in m") +ylabel("Shear Force in kN") +title("the Shear Force Diagram") diff --git a/3772/CH14/EX14.5/Ex14_5.sce b/3772/CH14/EX14.5/Ex14_5.sce new file mode 100644 index 000000000..26e70beca --- /dev/null +++ b/3772/CH14/EX14.5/Ex14_5.sce @@ -0,0 +1,65 @@ +// Problem no 14.5,Page No.330 + +clc;clear; +close; +H=30 //m //height of Dam +a=2 //m //top width +b=5 //m //bottom width + +h=29 //m //height of water +rho_w=9810 //N/m**3 +rho_mason=22560 //N/m**3 +sigma1=0 //KN/m**3 +sigma2=880 //KN/m**3 + +//Calculations + +//Let L=1 m (length of dam) +L=1 + +//weight of dam +//W=(a+b)*2**-1*L*H*rho_mason*10**-3 +//After substituting values and Further simplifying we get +//W=338.4*(a+b) //equation1 + +//Pressure at B=0, Sinc etension at base has just been avoided + +//Eccentricity +e=b*6**-1 //as sigma1=0 + +//Pressure at C +//sigma2=W2*b**-1*(1+6*e*b**-1) +//After substituting values and Further simplifying we get +//W=440*b + +//From equation1,440*b=338*(a+b) +//b=3.33*a + +//the distance of C.Gof dam +//x_bar=(b**2+b*a+a**2)*(3*(b+a))**-1 +//After substituting values and Further simplifying we get +//x_bar=1.187*a + +//distance of pt where resultant cuts the base +//x=P*W2**-1*H*3**-1 +//After substituting values and Further simplifying we get +//x=27.214*a**-1 + +//Now x_bar+x=2*3**-1*b +//After substituting values and Further simplifying we get +a=(27.17*(2.22-1.187)**-1)**0.5 +b=3.33*a + +//Result +printf("The top width dam is %.2f",a);printf(" m") +printf("\n The bottom width dam is %.2f",b);printf(" m") + + +//Plotting the Shear Force Diagram +X1=[0,L,L] +Y1=[sigma2,sigma1,0] +Z1=[0,0,0] +plot(X1,Y1,X1,Z1) +xlabel("Length x in m") +ylabel("Shear Force in kN") +title("the Shear Force Diagram") diff --git a/3772/CH14/EX14.6/Ex14_6.sce b/3772/CH14/EX14.6/Ex14_6.sce new file mode 100644 index 000000000..254272dc2 --- /dev/null +++ b/3772/CH14/EX14.6/Ex14_6.sce @@ -0,0 +1,55 @@ +// Problem no 14.6,Page No.332 + +clc;clear; +close; +H= 4 //m //height of dam +a=1 //m //Top width +b=3 //m //bottom width +rho1=9810 //N/m**3 //weight of water +rho2=19620 //n/m**3 //Weight of mason + +//Calculations + +//Let L=1 m (length of dam) +L=1 + +//weight of dam +W=(a+b)*2**-1*L*H*rho2*10**-3 + +////Lateral thrust +P=rho1*H**2*L*2**-1*10**-3 + +//Distance of Line of action from vertical base +x_bar=(b**2+b*a+a**2)*(3*(b+a))**-1 + +//distance of pt where resultant cuts the base +x=P*W**-1*H*3**-1 + +//Eccentricity +e=x_bar+x-b*2**-1 + +//Stress at Pt B +sigma1=W*10**3*b**-1*(1-6*e*b**-1) + +//stress at Pt C +sigma2=W*10**3*b**-1*(1+6*e*b**-1) + +//Stresses at the base when resorvoir is empty + +e2=x_bar-b*2**-1 + +//Minus sign indicates sigma_b>sigma_c + +//Stress at C +sigma2_2=W*10**3*b**-1*(1+6*e2*b**-1) + +//Stress at Pt B +sigma1_2=W*10**3*b**-1*(1-6*e2*b**-1) + +//result +printf("When the Reservoir is full :sigma1 %.2f",sigma1);printf(" N/m**2") +printf("\n :sigma2 %.2f",sigma2);printf(" N/m**2") +printf("\n When the Reservoir is empty:sigma1_2 %.2f",sigma1_2);printf(" N/m**2") +printf("\n :sigma2_2 %.2f",sigma2_2);printf(" N/m**2") + +//Answer is wrong in the textbook.////// diff --git a/3772/CH14/EX14.7/Ex14_7.sce b/3772/CH14/EX14.7/Ex14_7.sce new file mode 100644 index 000000000..4fae09483 --- /dev/null +++ b/3772/CH14/EX14.7/Ex14_7.sce @@ -0,0 +1,49 @@ +// Problem no 14.7,Page No.333 + +clc;clear; +close; +H=8 //m //height of dam +h=7.5 //m //Height of water +a=1 //m //top width +mu=0.6 //Coeffeicient of friction +rho_mason=22.4 //KN/m**3 //weight of mason +rho_w=9.81 //KN/m**3 //density of water + +//Calculations + +//weight of dam +//W=(a+b)*2**-1*L*H*rho2*10**-3 +//After substituting values and further simplifying we get +//W=89600*(b+1) + +//Distance of Line of action from vertical base +//x_bar=(b**2+b*a+a**2)*(3*(b+a))**-1 +//After substituting values and further simplifying we get +//x_bar=(1+b+b**2)*(3*(1+b))**-1 + +//Lateral thrust +P=rho_w*h**2*2**-1 + +//Min width to avoid tension at base +//Z=x_bar+P*W**-1*h*3**-1 +//Z=2*3**-1*b +//After substituting values and further simplifying we get +//b**2+b-24.09=0 +a=1 +b=1 +c=-24.09 + +X=b**2-4*a*c + +b1=(-b+X**0.5)*(2*a)**-1 +b2=(-b-X**0.5)*(2*a)**-1 + +//Thus width cannot be negative,b1 is considered + +//Min width to avoid sliding +//mu*W>P +//After substituting values and further simplifying we get +b=P*10**3*(mu*89600)**-1-1 + +//Result +printf("The Min bottom width is %.2f",b);printf(" m") diff --git a/3772/CH14/EX14.8/Ex14_8.sce b/3772/CH14/EX14.8/Ex14_8.sce new file mode 100644 index 000000000..551430d71 --- /dev/null +++ b/3772/CH14/EX14.8/Ex14_8.sce @@ -0,0 +1,36 @@ +// Problem no 14.8,Page No.334 + +clc;clear; +close; +H=10 //m //height of dam +a=1 //m //top width +b=7 //m //Bottom width +rho_mason=19620 //N/m**3 //weight of mason +rho_w=9810 //N/m**3 //density of water + +//Calculations + +//Lateral thrust +P=rho_w*H**2*2**-1 + +//weight of dam +W=(rho_w*H*2**-1*a)+(rho_mason*(a+b)*2**-1*H) + +//Taking Moment at B,M_B=0 +x_bar=((rho_w*H*2**-1*1*3**-1)+(rho_mason*H*2**-1*2*3**-1)+(rho_mason*H*1.5)+(rho_mason*H*5*11*2**-1*3**-1))*W**-1 + +//Now using relation we get +x=P*W**-1*H*3**-1 + +//Eccentricity +e=x_bar+x-b*2**-1 + +//Max stress +sigma_max=W*b**-1*(1+6*e*b**-1) + +//Min stress +sigma_min=W*b**-1*(1-6*e*b**-1) + +//Result +printf("The Max stresses on the base is %.2f",sigma_max);printf(" N/m**2") +printf("\n The Min stresses on the base is %.2f",sigma_min);printf(" N/m**2") |