diff options
Diffstat (limited to '3772/CH11')
-rw-r--r-- | 3772/CH11/EX11.1/Ex11_1.sce | 24 | ||||
-rw-r--r-- | 3772/CH11/EX11.2/Ex11_2.sce | 38 | ||||
-rw-r--r-- | 3772/CH11/EX11.3/Ex11_3.sce | 29 | ||||
-rw-r--r-- | 3772/CH11/EX11.4/Ex11_4.sce | 22 | ||||
-rw-r--r-- | 3772/CH11/EX11.5/Ex11_5.sce | 61 | ||||
-rw-r--r-- | 3772/CH11/EX11.6/Ex11_6.sce | 46 |
6 files changed, 220 insertions, 0 deletions
diff --git a/3772/CH11/EX11.1/Ex11_1.sce b/3772/CH11/EX11.1/Ex11_1.sce new file mode 100644 index 000000000..728cd48ab --- /dev/null +++ b/3772/CH11/EX11.1/Ex11_1.sce @@ -0,0 +1,24 @@ +// Problem 11.1,Page no.273 + +clc;clear; +close; + +P=10 //KN //Load +e=0.06 //m //eccentricity +b=0.240 //m //width of column +d=0.150 //m //depth of column + +//Calculations + +sigma_d=P*(b*d)**-1 //KN/m**2 +M=P*e //KN*m //Moment due to eccentricity +Z=(d*(b)**2)*6**-1 //mm**3 + +sigma_b=M*Z**-1 //KN/m**2 + +sigma_CD=sigma_d+sigma_b +sigma_AB=sigma_d-sigma_b + +//Result +printf("Stress at face CD is %.2f",sigma_CD);printf(" KN/m**2") +printf("\n Stress at face AB is %.2f",sigma_AB);printf(" KN/m**2") diff --git a/3772/CH11/EX11.2/Ex11_2.sce b/3772/CH11/EX11.2/Ex11_2.sce new file mode 100644 index 000000000..35d8aaab2 --- /dev/null +++ b/3772/CH11/EX11.2/Ex11_2.sce @@ -0,0 +1,38 @@ +// Problem 11.2,Page no.274 + +clc;clear; +close; + +d=2 //cm //Diameter of specimen + +//Calculations + +//Let P be the Load on the section + +A=%pi*4**-1*d**2 //cm**2 //Area of section +I=%pi*64**-1*d**4 //cm**4 //M.I of the section +y=d*2**-1 //cm +Z=I*y**-1 //cm**3 //Section modulus +//M=P.e //Moment + +//Stress due to direct load +//sigma_d=(4*P)*(%pi*d**2)**-1 //N/cm**2 + +//stress due to moment +//sigma_b=(32*P*e)*(%pi*d**3)**-1 N/cm**2 + +//Maximum stress +//sigma_r_max=(((4*P)*(%pi*d**2)**-1)+((32*P*e)*(%pi*d**3)**-1)) + +//Mean stress +//sigma_r_mean=((4*P)*(%pi*d**2)**-1) + +//Since the maximum stress is 20% greater than the mean stress +//(((4*P)*(%pi*d**2))+((32*P*e)*(%pi*d**3)))=1.2*4*P*(%pi*d**2)**-1 + +//After substituing values and simplifyinf we get + +e=0.2*d*8**-1 //cm //distance of line of thrust from the axis + +//Result +printf("The distance of line of thrust from the axis is %.2f",e);printf(" cm") diff --git a/3772/CH11/EX11.3/Ex11_3.sce b/3772/CH11/EX11.3/Ex11_3.sce new file mode 100644 index 000000000..80df0134d --- /dev/null +++ b/3772/CH11/EX11.3/Ex11_3.sce @@ -0,0 +1,29 @@ +// Problem 11.3,Page no.274 + +clc;clear; +close; + +A=300 //cm**2 //Area of column +e=5 //cm //eccentricity + +//Calculations + +//sigma_d=P*A**-1 //Direct compressive stress +//M=P*e //Bending Moment +Z=((20**4-10**4)*(6*20)**-1) //cm**3 //Section modulus + +//sigma_b=M*Z**-1=P*250**-1 + +//Now sigma_d+sigma_b=60*10**2 + +//P*300**-1+P*250**-1=6000 + +//After simplifying we get +P_1=6000*300*250*550**-1 //N //Load + +//sigma_b-sigma_d=300 + +P_2=300*300*250*50**-1 //N //Load + +//Result +printf("The maximum load column can carry %.2f",P_2);printf(" N") diff --git a/3772/CH11/EX11.4/Ex11_4.sce b/3772/CH11/EX11.4/Ex11_4.sce new file mode 100644 index 000000000..a29739d07 --- /dev/null +++ b/3772/CH11/EX11.4/Ex11_4.sce @@ -0,0 +1,22 @@ +// Problem 11.4,Page no.275 + +clc;clear; +close; + +D=40 //cm //External diameter of column +d=30 //cm //Internal diameter of column +e=20 //cm //Eccentricity +P=150 //KN //Load + +//calculations + +A=%pi*4**-1*(D**2-d**2) //cm**2 //Area of the column +Z=%pi*32**-1*((D**4-d**4)*D**-1) //cm**3 //Section modulus +M=P*10**3*e //N*cm //Moment + +sigma_r_max=((P*10**3*A**-1)+(M*Z**-1)) //N/cm**2 //Max stress +sigma_r_min=((P*10**3*A**-1)-(M*Z**-1)) //N/cm**2 //Min stress + +//Result +printf("Max intensities of stress in the section is %.2f",sigma_r_max);printf(" N/cm**2") +printf("\n Min intensities of stress in the section is %.2f",sigma_r_min);printf(" N/cm**2(tension)") diff --git a/3772/CH11/EX11.5/Ex11_5.sce b/3772/CH11/EX11.5/Ex11_5.sce new file mode 100644 index 000000000..782ff05cb --- /dev/null +++ b/3772/CH11/EX11.5/Ex11_5.sce @@ -0,0 +1,61 @@ +// Problem 11.5,Page no.277 + +clc;clear; +close; + +b=4 //m //width of %pier +d=3 //m //depth of %pier +e_x=1 //m //distance from y axis +e_y=0.5 //m //distance from x axis +P=80 //KN //Load + +//Calculations + +A=b*d //m**2 //Area of %pier +I_x_x=b*d**3*12**-1 //m**4 //M.I about x-x axis +I_y_y=d*b**3*12**-1 //m**4 //M.I about y-y axis +M_x=P*e_y //KN*m //Moment about x-x axis +M_y=P*e_x //KN*m //Moment about y-y axis + +x=2 //m //Distance between y-y axis and corners A and B +y=1.5 //m ////Distance between x-x axis and corners A and D + +//Part-1 +//Stress developed at each corner + + +sigma_A=P*A**-1+M_x*y*I_x_x**-1-M_y*x*I_y_y**-1 //KN/m**2 //stress at A +sigma_B=P*A**-1+M_x*y*I_x_x**-1+M_y*x*I_y_y**-1 //KN/m**2 //stress at B +sigma_C=P*A**-1-M_x*y*I_x_x**-1+M_y*x*I_y_y**-1 //KN/m**2 //stress at C +sigma_D=P*A**-1-M_x*y*I_x_x**-1-M_y*x*I_y_y**-1 //KN/m**2 //stress at D + +//Part-2 +//Let f be the additional load that should be placed at centre + +//sigma_c=F*A**-1 //KN/m**2 //compressive stress + +//For no tension in %pier section, compressive stress is equal to tensile stress +sigma_c=10 //KN/m**2 +F=sigma_c*A //KN + +//Part-3 + +sigma=F*A**-1 //KN/m**2 //stress due to additional load of 120 KN + +sigma_A_1=sigma_A+10 //stress at A +sigma_B_1=sigma_B+10 //stress at B +sigma_C_1=sigma_C+10 //stress at C +sigma_D_1=sigma_D+10 //stress at D + +//Result +printf("Stress at each corner are as follows:stress_A %.2f",sigma_A);printf(" KN/m**2") +printf("\n :stress_B %.2f",sigma_B);printf(" KN/m**2") +printf("\n :stress_C %.2f",sigma_C);printf(" KN/m**2") +printf("\n :stress_D %.2f",sigma_D);printf(" KN/m**2(tensile)") + +printf("\n\n Additional load that should be placed at centre is %.2f",F);printf(" KN") + +printf("\n\n Stresses at the corners with the additional load in centre are as follows:Stress_A_1 %.2f",sigma_A_1);printf(" KN/m**2") +printf("\n :Stress_B_1 %.2f",sigma_B_1);printf(" KN/m**2") +printf("\n :Stress_C_1 %.2f",sigma_C_1);printf(" KN/m**2") +printf("\n :Stress_D_1 %.2f",sigma_D_1);printf(" KN/m**2") diff --git a/3772/CH11/EX11.6/Ex11_6.sce b/3772/CH11/EX11.6/Ex11_6.sce new file mode 100644 index 000000000..404574e14 --- /dev/null +++ b/3772/CH11/EX11.6/Ex11_6.sce @@ -0,0 +1,46 @@ +// Problem 11.11.6,Page no.278 + +clc;clear; +close; + +//d=Diameter of rod +P=500 //KN +e=0.75 //cm //eccentricity + +//calculation + +//A=%pi*d**2*4**-1 //cm**2 //Area of rod +//sigma_d=P*A**-1 //KN/cm**2 //stress due to direct load + +//After substituting value and simplifying we get, +//sigma_d=2000*(%pi*d**2)**-1 //KN/cm**2 + +M=P*e //Kn*cm //Moment + +//Z=%pi*d**3*32**-1 //cm**3 //section modulus +//sigma_b=M*Z**-1 //KN/cm**2 //Stress due to moment + +//After substituting value and simplifying we get, +//sigma_b=12000*(%pi*d**3)**-1 //KN/cm**2 + +//Max stress +//sigma=sigma_d+sigma_b + +//After substituting value and simplifying we get, +//2000*(%pi*d**2)**-1+12000*(%pi*d**3)**-1=12.5 + +//After simplifying we get, +//d**3-53.05*d-318.3=0 + +//From Synthetic Division we get d**2+4.73*d-42.918 +a=1 +b=-4.73 +c=-42.918 + +X=b**2-(4*a*c) + +d_1=(-b+X**0.5)*(2*a)**-1 +d_2=(-b-X**0.5)*(2*a)**-1 + +//Result +printf("The minimum diameter of the rod is %.2f",d_1);printf(" cm") |