summaryrefslogtreecommitdiff
path: root/3753/CH6
diff options
context:
space:
mode:
Diffstat (limited to '3753/CH6')
-rw-r--r--3753/CH6/EX6.1/Ex6_1.sce16
-rw-r--r--3753/CH6/EX6.10/Ex6_10.sce17
-rw-r--r--3753/CH6/EX6.11/Ex6_11.sce15
-rw-r--r--3753/CH6/EX6.12/Ex6_12.sce16
-rw-r--r--3753/CH6/EX6.2/Ex6_2.sce20
-rw-r--r--3753/CH6/EX6.3/Ex6_3.sce17
-rw-r--r--3753/CH6/EX6.4/Ex6_4.sce17
-rw-r--r--3753/CH6/EX6.5/Ex6_5.sce17
-rw-r--r--3753/CH6/EX6.6/Ex6_6.sce21
-rw-r--r--3753/CH6/EX6.7/Ex6_7.sce19
-rw-r--r--3753/CH6/EX6.8/Ex6_8.sce17
-rw-r--r--3753/CH6/EX6.9/Ex6_9.sce28
12 files changed, 220 insertions, 0 deletions
diff --git a/3753/CH6/EX6.1/Ex6_1.sce b/3753/CH6/EX6.1/Ex6_1.sce
new file mode 100644
index 000000000..af0634043
--- /dev/null
+++ b/3753/CH6/EX6.1/Ex6_1.sce
@@ -0,0 +1,16 @@
+//Example number 6.1, Page number 6.46
+
+clc;clear;close
+
+
+// Variable declaration
+El=10**-2*50; // energy loss(J)
+H=El*60; // heat produced(J)
+d=7.7*10**3; // iron rod(kg/m**3)
+s=0.462*10**-3; // specific heat(J/kg K)
+
+// Calculation
+theta=H/(d*s); // temperature rise(K)
+
+// Result
+printf("temperature rise is %.2f K",(theta))
diff --git a/3753/CH6/EX6.10/Ex6_10.sce b/3753/CH6/EX6.10/Ex6_10.sce
new file mode 100644
index 000000000..69eb863f5
--- /dev/null
+++ b/3753/CH6/EX6.10/Ex6_10.sce
@@ -0,0 +1,17 @@
+//Example number 6.10, Page number 6.50
+
+clc;clear;close
+
+// variable declaration
+n=4 // unitless
+M=58.5 // Molecular wt. of NaCl
+N=6.02*10^26 // Avagadro number
+rho=2180 // density
+
+// Calculations
+a=((n*M)/(N*rho))^(1/3) // in m
+s=a/2 // in m
+
+// Result
+printf("a= %.3e m",a)
+printf("\nspacing between the nearest neighbouring ions = %.4f nm",(s/10^-9))
diff --git a/3753/CH6/EX6.11/Ex6_11.sce b/3753/CH6/EX6.11/Ex6_11.sce
new file mode 100644
index 000000000..ff3205109
--- /dev/null
+++ b/3753/CH6/EX6.11/Ex6_11.sce
@@ -0,0 +1,15 @@
+//Example number 6.11, Page number 6.51
+
+clc;clear;close
+
+// variable declaration
+n=4 // unitless
+A=63.55 // Atomic wt. of NaCl
+N=6.02*10^26 // Avagadro number
+rho=8930 // density
+
+// Calculations
+a=((n*A)/(N*rho))^(1/3) // Lattice Constant
+
+// Result
+printf("lattice constant, a = %.2f nm",(a*10^9))
diff --git a/3753/CH6/EX6.12/Ex6_12.sce b/3753/CH6/EX6.12/Ex6_12.sce
new file mode 100644
index 000000000..6e23f7183
--- /dev/null
+++ b/3753/CH6/EX6.12/Ex6_12.sce
@@ -0,0 +1,16 @@
+//Example number 6.12, Page number 6.51
+
+clc;clear;close
+
+// variable declaration
+r=0.123 // Atomic radius
+n=4
+A=55.8 // Atomic wt
+a=2*sqrt(2)
+N=6.02*10**26 // Avagadro number
+
+// Calculations
+rho=(n*A)/((a*r*10**-9)**3*N) // kg/m^3
+
+// Result
+printf("Density of iron = %.f kg/m^-3",rho)
diff --git a/3753/CH6/EX6.2/Ex6_2.sce b/3753/CH6/EX6.2/Ex6_2.sce
new file mode 100644
index 000000000..30d26fc6e
--- /dev/null
+++ b/3753/CH6/EX6.2/Ex6_2.sce
@@ -0,0 +1,20 @@
+//Example number 6.2, Page number 6.46
+
+clc;clear;close
+
+
+// Variable declaration
+e=1.6*10**-19; // charge(coulomb)
+new=6.8*10**15; // frequency(revolutions per second)
+mew0=4*%pi*10**-7; // coefficient
+R=5.1*10**-11; // radius(m)
+
+// Calculation
+i=(e*new); // current(ampere)
+B=mew0*i/(2*R); // magnetic field at the centre(weber/m**2)
+A=%pi*R**2; // in m^2
+d=i*A; // dipole moment(ampere/m**2)
+
+// Result
+printf("magnetic field at the centre is : %.f weber/m**2",B)
+printf("\ndipole moment is : %.e Ampere/m**2",(d))
diff --git a/3753/CH6/EX6.3/Ex6_3.sce b/3753/CH6/EX6.3/Ex6_3.sce
new file mode 100644
index 000000000..550e966c2
--- /dev/null
+++ b/3753/CH6/EX6.3/Ex6_3.sce
@@ -0,0 +1,17 @@
+//Example number 6.3, Page number 6.46
+
+clc;clear;close
+
+
+// Variable declaration
+chi=0.5*10**-5; // magnetic susceptibility
+H=10**6; // field strength(ampere/m)
+mew0=4*%pi*10**-7; // coefficient
+
+// Calculation
+I=chi*H; // intensity of magnetisation(ampere/m)
+B=mew0*(I+H); // flux density in material(weber/m**2)
+
+// Result
+printf("intensity of magnetisation is : %.f Ampere/m",I)
+printf("\nflux density in material is : %.3f weber/m^2",B)
diff --git a/3753/CH6/EX6.4/Ex6_4.sce b/3753/CH6/EX6.4/Ex6_4.sce
new file mode 100644
index 000000000..c15b44a49
--- /dev/null
+++ b/3753/CH6/EX6.4/Ex6_4.sce
@@ -0,0 +1,17 @@
+//Example number 6.4, Page number 6.47
+
+clc;clear;close
+
+
+// Variable declaration
+B=9.27*10**-24; // bohr magneton(ampere m**2)
+a=2.86*10**-10; // edge(m)
+Is=1.76*10**6; // saturation value of magnetisation(ampere/m)
+
+// Calculation
+N=2/a**3;
+mew_bar=Is/N; // number of Bohr magnetons(ampere m**2)
+mew_bar=mew_bar/B; // number of Bohr magnetons(bohr magneon/atom)
+
+// Result
+printf("number of Bohr magnetons is : %.2f"+" bohr magneon/atom",(mew_bar))
diff --git a/3753/CH6/EX6.5/Ex6_5.sce b/3753/CH6/EX6.5/Ex6_5.sce
new file mode 100644
index 000000000..2a10d3b23
--- /dev/null
+++ b/3753/CH6/EX6.5/Ex6_5.sce
@@ -0,0 +1,17 @@
+//Example number 6.5, Page number 6.47
+
+clc;clear;close
+
+
+// Variable declaration
+mew0=4*%pi*10**-7; // coefficient
+H=9.27*10**-24; // bohr magneton(ampere m**2)
+Beta=10**6; // field(ampere/m)
+k=1.38*10**-23; // boltzmann constant
+T=303; // temperature(K)
+
+// Calculation
+mm=mew0*H*Beta/(k*T); // average magnetic moment(bohr magneton/spin)
+
+// Result
+printf("average magnetic moment is: %.2e bohr magneton/spin",(mm))
diff --git a/3753/CH6/EX6.6/Ex6_6.sce b/3753/CH6/EX6.6/Ex6_6.sce
new file mode 100644
index 000000000..9b19cbb81
--- /dev/null
+++ b/3753/CH6/EX6.6/Ex6_6.sce
@@ -0,0 +1,21 @@
+//Example number 6.6, Page number 6.48
+
+clc;clear;close
+
+
+// Variable declaration
+A=94; // area(m**2)
+vy=0.1; // value of length(weber/m**2)
+vx=20; // value of unit length
+n=50; // number of magnetization cycles
+d=7650; // density(kg/m**3)
+
+// Calculation
+h=A*vy*vx; // hysteresis loss per cycle(J/m**3)
+hs=h*n; // hysteresis loss per second(watt/m**3)
+pl=hs/d; // power loss(watt/kg)
+
+// Result
+printf("hysteresis loss per cycle is : %.f J/m^3",h)
+printf("\nhysteresis loss per second is: %.f watt/m**3",hs)
+printf("\npower loss is : %.2f watt/kg",(pl))
diff --git a/3753/CH6/EX6.7/Ex6_7.sce b/3753/CH6/EX6.7/Ex6_7.sce
new file mode 100644
index 000000000..6ec68311e
--- /dev/null
+++ b/3753/CH6/EX6.7/Ex6_7.sce
@@ -0,0 +1,19 @@
+//Example number 6.7, Page number 6.48
+
+clc;clear;close
+
+// variable declaration
+d=2.351 // bond length
+N=6.02*10^26 // Avagadro number
+n=8 // number of atoms in unit cell
+A=28.09 // Atomin mass of silicon
+m=6.02*10^26 // 1mole
+
+// Calculations
+a=(4*d)/sqrt(3) // in m
+p=(n*A)/((a*10^-10)*m) // density
+
+// Result
+printf("a=%.2f Angstorm",(a))
+printf("\ndensity = %.2f kg/m^3",(p*10^16))
+// Answer given in the textbook is wrong"
diff --git a/3753/CH6/EX6.8/Ex6_8.sce b/3753/CH6/EX6.8/Ex6_8.sce
new file mode 100644
index 000000000..9ec548571
--- /dev/null
+++ b/3753/CH6/EX6.8/Ex6_8.sce
@@ -0,0 +1,17 @@
+//Example number 6.8, Page number 6.48
+
+clc;clear;close
+
+// Variable declaration
+r=poly([0],'r')
+
+// Calculation
+a1=4*r/sqrt(3); // in m
+R1=(a1/2)-r; // radius of largest sphere
+a2=4*r/sqrt(2); //in m
+R2=(a2/2)-r; // maximum radius of sphere
+
+
+// Result
+disp(R1,"radius of largest sphere is")
+disp(R2,"maximum radius of sphere is")
diff --git a/3753/CH6/EX6.9/Ex6_9.sce b/3753/CH6/EX6.9/Ex6_9.sce
new file mode 100644
index 000000000..fe957d3f5
--- /dev/null
+++ b/3753/CH6/EX6.9/Ex6_9.sce
@@ -0,0 +1,28 @@
+//Example number 6.9, Page number 6.49
+
+clc;clear;close
+
+// variable declaration
+r1=1.258 // Atomic radius of BCC
+r2=1.292 // Atomic radius of FCC
+
+// calculations
+a1=(4*r1)/sqrt(3) // in BCC
+b1=((a1)^3)*10^-30 // Unit cell volume
+v1=(b1)/2 // Volume occupied by one atom
+a2=2*sqrt(2)*r2 // in FCC
+b2=(a2)^3*10^-30 // Unit cell volume
+v2=(b2)/4 // Volume occupied by one atom
+v_c=((v1)-(v2))*100/(v1) // Volume Change in %
+d_c=((v1)-(v2))*100/(v2) // Density Change in %
+
+// Results
+printf("a1=%.3f Angstrom" ,(a1))
+printf("\nUnit cell volume = a1^3 = %.3e m^3",b1)
+printf("\nVolume occupied by one atom = %.2e m^3",v1)
+printf("\na2 = %.3f Angstrom",a2)
+printf("\nUnit cell volume =a2^3 = %.3e m^3",b2)
+printf("\nVolume occupied by one atom = %.2e m^3",v2)
+printf("\nVolume Change in %% = %.3f",v_c)
+printf("\nDensity Change in %% = %.2f",d_c)
+printf("\nThus the increase of density or the decrease of volume is about 0.5%%")