diff options
Diffstat (limited to '3753/CH5')
-rw-r--r-- | 3753/CH5/EX5.1/Ex5_1.sce | 17 | ||||
-rw-r--r-- | 3753/CH5/EX5.10/Ex5_10.sce | 14 | ||||
-rw-r--r-- | 3753/CH5/EX5.11/Ex5_11.sce | 17 | ||||
-rw-r--r-- | 3753/CH5/EX5.12/Ex5_12.sce | 19 | ||||
-rw-r--r-- | 3753/CH5/EX5.13/Ex5_13.sce | 16 | ||||
-rw-r--r-- | 3753/CH5/EX5.14/Ex5_14.sce | 17 | ||||
-rw-r--r-- | 3753/CH5/EX5.15/Ex5_15.sce | 19 | ||||
-rw-r--r-- | 3753/CH5/EX5.2/Ex5_2.sce | 16 | ||||
-rw-r--r-- | 3753/CH5/EX5.3/Ex5_3.sce | 17 | ||||
-rw-r--r-- | 3753/CH5/EX5.4/Ex5_4.sce | 14 | ||||
-rw-r--r-- | 3753/CH5/EX5.5/Ex5_5.sce | 17 | ||||
-rw-r--r-- | 3753/CH5/EX5.6/Ex5_6.sce | 15 | ||||
-rw-r--r-- | 3753/CH5/EX5.7/Ex5_7.sce | 14 | ||||
-rw-r--r-- | 3753/CH5/EX5.8/Ex5_8.sce | 15 | ||||
-rw-r--r-- | 3753/CH5/EX5.9/Ex5_9.sce | 16 |
15 files changed, 243 insertions, 0 deletions
diff --git a/3753/CH5/EX5.1/Ex5_1.sce b/3753/CH5/EX5.1/Ex5_1.sce new file mode 100644 index 000000000..6bb23718f --- /dev/null +++ b/3753/CH5/EX5.1/Ex5_1.sce @@ -0,0 +1,17 @@ +//Example 5.1, Page number 5.28 + +clc;clear;close + +//variable declaration +n1=1.50 //Core refractive index +n2=1.47 //Cladding refractive index + +//Calculations +C_a=asin(n2/n1) //Critical angle +N_a=(n1**2-n2**2)**(1/2) // Numerical Aperture +A_a=asin(N_a) // degree + +//Results +printf("The Critical angle = %0.1f degrees",(C_a*180/%pi)) +printf("\nThe numerical aperture = %0.2f",N_a) +printf("\nThe acceptance angle = %0.1f degress",(A_a*180/%pi)) diff --git a/3753/CH5/EX5.10/Ex5_10.sce b/3753/CH5/EX5.10/Ex5_10.sce new file mode 100644 index 000000000..10e637860 --- /dev/null +++ b/3753/CH5/EX5.10/Ex5_10.sce @@ -0,0 +1,14 @@ +//Example 5.10, Page number 5.30 + +clc;clear;close + +// variable declaration +n1=1.53 //unitless +delta=0.0196//unitless + +// Calculations +N_a=n1*(2*delta)**(1/2) // numerical aperture +A_a=asin(N_a)//degree +// Result +printf("Numerical aperture = %.3f",N_a) +printf("\nAcceptance angle = %.2f degrees",(A_a*180/%pi)) diff --git a/3753/CH5/EX5.11/Ex5_11.sce b/3753/CH5/EX5.11/Ex5_11.sce new file mode 100644 index 000000000..59409b312 --- /dev/null +++ b/3753/CH5/EX5.11/Ex5_11.sce @@ -0,0 +1,17 @@ +//Example 5.11, Page number 5.30 + +clc;clear;close + +// variable declaration +n1=1.480 //unitless +n2=1.465 //unitless +V=2.405 //unitless +lamda=850*10**-9 // in m + +// Calculations +delta=(n1**2-n2**2)/(2*n1**2) //unitless +a=(V*lamda*10**-9)/(2*%pi*n1*sqrt(2*delta)) // in m + +// Results +printf("delta = %.2f",(delta)) +printf("\nCore radius,a = %.2f micro-m",(a*10**15)) diff --git a/3753/CH5/EX5.12/Ex5_12.sce b/3753/CH5/EX5.12/Ex5_12.sce new file mode 100644 index 000000000..43703e00f --- /dev/null +++ b/3753/CH5/EX5.12/Ex5_12.sce @@ -0,0 +1,19 @@ +//Example 5.12, Page number 5.31 + +clc;clear;close + +// variable declaration +n1=1.5 //unitless +n2=1.49//unitless +a=25 // in m + +// Calculations +C_a=asin(n2/n1) // Critical angle +L=2*a*tan(C_a) // in m +N_r=10**6/L // reflections/m + +// Result +printf("Critical angle = %.2f degrees",(C_a*180/%pi)) +printf("\nFiber length covered in one reflection = %.2f micro-m",(L)) +printf("\nTotal no.of reflections per meter = %.f",(N_r)) +printf("\nSince L=1m, Total dist. travelled by light over one metre of fiber = %.4f m",(1/sin(C_a))) diff --git a/3753/CH5/EX5.13/Ex5_13.sce b/3753/CH5/EX5.13/Ex5_13.sce new file mode 100644 index 000000000..53ee26a98 --- /dev/null +++ b/3753/CH5/EX5.13/Ex5_13.sce @@ -0,0 +1,16 @@ +//Example 5.13, Page number 5.31 + +clc;clear;close + +// variable declaration +alpha=1.85//unitless +lamda=1.3*10**-6 // in m +a=25*10**-6 // in m +N_a=0.21 // numerical aperture + +// Calculations +V_n=((2*%pi**2)*a**2*N_a**2)/lamda**2 // V number +N_m=(alpha/(alpha+2))*V_n //unitless + +printf("No.of modes = %.2f =155(approx)",N_m) +printf("\nTaking the two possible polarizations, Total No.of nodes = %.2f",(N_m*2)) diff --git a/3753/CH5/EX5.14/Ex5_14.sce b/3753/CH5/EX5.14/Ex5_14.sce new file mode 100644 index 000000000..9cf1347f8 --- /dev/null +++ b/3753/CH5/EX5.14/Ex5_14.sce @@ -0,0 +1,17 @@ +//Example 5.14, Page number 5.32 + +clc;clear;close + +// variable declaration +P_i=100 // input +P_o=2 // output +L=10 // in km + +// Calculations +S=(10/L)*log(P_i/P_o) // dB/km +O=S*L // dB + +// Result +printf("a)Signal attention per unit length = %.1f dB-km^-1",S) +printf("\nb)Overall signal attenuation = %.f dB",O) +// Answer given in the textbook is wrong diff --git a/3753/CH5/EX5.15/Ex5_15.sce b/3753/CH5/EX5.15/Ex5_15.sce new file mode 100644 index 000000000..9e4a8dfb9 --- /dev/null +++ b/3753/CH5/EX5.15/Ex5_15.sce @@ -0,0 +1,19 @@ +//Example 5.15, Page number 5.32 + +clc;clear;close + +// variable declaration +L=10 // in km +n1=1.55 //unitless +delta=0.026//unitless +C=3*10**5 + +// Calculations +delta_T=(L*n1*delta)/C //unitless +B_W=10/(2*delta_T) // Hz/km + +// Result +printf("Total dispersion = %.1f ns",(delta_T/10**-9)) +printf("\nBandwidth length product = %.2f Hz-km",(B_W/10**5)) + +// Answer given in the text book is wrong" diff --git a/3753/CH5/EX5.2/Ex5_2.sce b/3753/CH5/EX5.2/Ex5_2.sce new file mode 100644 index 000000000..129fe58a0 --- /dev/null +++ b/3753/CH5/EX5.2/Ex5_2.sce @@ -0,0 +1,16 @@ +//Example 5.2, Page number 5.28 + +clc;clear;close + +//variable declaration +d=50 //diameter +N_a=0.2 //Numerical aperture +lamda=1 //wavelength + +//Calculations +N=4.9*(((d*10**-6*N_a)/(lamda*10**-6))**2)// unitless + +//Result +printf("N = %.f ",N) +printf("\nFiber can support: %d guided modes",N) +printf("\nIn graded index fiber, No.of modes propagated inside the fiber = %.f only",(N/2)) diff --git a/3753/CH5/EX5.3/Ex5_3.sce b/3753/CH5/EX5.3/Ex5_3.sce new file mode 100644 index 000000000..213df0c1d --- /dev/null +++ b/3753/CH5/EX5.3/Ex5_3.sce @@ -0,0 +1,17 @@ +//Example 5.3, Page number 5.29 + +clc;clear;close + +// variable declaration +d=50 // diameter +n1=1.450// unitless +n2=1.447// unitless +lamda=1 // wavelength + +// Calculations +N_a=(n1**2-n2**2) // Numerical aperture +N=4.9*(((d*10**-6*N_a)/(lamda*10**-6))**2)// Numerical aperture + +// Results +printf("Numerical aperture = %.5f",N_a) +printf("\nNo. of modes that can be propogated = %.f",N) diff --git a/3753/CH5/EX5.4/Ex5_4.sce b/3753/CH5/EX5.4/Ex5_4.sce new file mode 100644 index 000000000..e7aaa1a42 --- /dev/null +++ b/3753/CH5/EX5.4/Ex5_4.sce @@ -0,0 +1,14 @@ +//Example 5.4, Page number 5.29 + + +clc;clear;close + +// variable declaration +delta=0.05 //unitless +n1=1.46//unitless + +// Calculation +N_a=n1*(2*delta)**(1/2) // Numerical aperture + +// Result +printf("Numerical aperture = %.2f",N_a) diff --git a/3753/CH5/EX5.5/Ex5_5.sce b/3753/CH5/EX5.5/Ex5_5.sce new file mode 100644 index 000000000..084842ed0 --- /dev/null +++ b/3753/CH5/EX5.5/Ex5_5.sce @@ -0,0 +1,17 @@ +//Example 5.5, Page number 5.29 + +clc;clear;close + +// variable declaration +a=50 //unitless +n1=1.53 //unitless +n2=1.50 //unitless +lamda=1 // wavelength + +// Calculations +N_a=(n1**2-n2**2) // Numerical aperture +V=((2*%pi*a)/lamda)*N_a**(1/2) // V number + +// Result +printf("V number = %.2f",V) +printf("\nmaximum no.of modes propagating through fiber = %.f",V) diff --git a/3753/CH5/EX5.6/Ex5_6.sce b/3753/CH5/EX5.6/Ex5_6.sce new file mode 100644 index 000000000..f0c906ce0 --- /dev/null +++ b/3753/CH5/EX5.6/Ex5_6.sce @@ -0,0 +1,15 @@ +//Example 5.6, Page number 5.29 + +clc;clear;close + +// variable declaration +a=100//unitless +N_a=0.3 // Numerical aperture +lamda=850 // wavelength + +// Calculations +V_n=(2*(%pi)**2*a**2*10**-12*N_a**2)/lamda**2*10**-18 // number of modes +// Result +printf("Number of modes = %d modes",round(V_n/10**-36)) +printf("\nNo.of modes is doubled to account for the two possible polarisations") +printf("\nTotal No.of modes = %d",round(V_n/10**-36)*2) diff --git a/3753/CH5/EX5.7/Ex5_7.sce b/3753/CH5/EX5.7/Ex5_7.sce new file mode 100644 index 000000000..5566aeb17 --- /dev/null +++ b/3753/CH5/EX5.7/Ex5_7.sce @@ -0,0 +1,14 @@ +//Example 5.7, Page number 5.29 + +clc;clear;close +// variable declaration +a=5;//unitless +n1=1.48;//unitless +delta=0.01;//unitless +V=25;// V number + +// Calculation +lamda=(%pi*(a*10**-6)*n1*sqrt(2*delta))/V // Cutoff Wavelength + +// Result +printf("Cutoff Wavellength = %.3f micro-m",(lamda*10**7)) diff --git a/3753/CH5/EX5.8/Ex5_8.sce b/3753/CH5/EX5.8/Ex5_8.sce new file mode 100644 index 000000000..bab31cff6 --- /dev/null +++ b/3753/CH5/EX5.8/Ex5_8.sce @@ -0,0 +1,15 @@ +//Example 5.8, Page number 5.30 + +clc;clear;close + +// variable declaration +V=2.405//unitless +lamda=1.3 // in m +N_a=0.05//unitless + +// Calculations +a_max=(V*lamda)/(2*%pi*N_a) // in m + +// Result +printf("Maximum core radius = %.2f micro-m",(a_max)) + diff --git a/3753/CH5/EX5.9/Ex5_9.sce b/3753/CH5/EX5.9/Ex5_9.sce new file mode 100644 index 000000000..e49074771 --- /dev/null +++ b/3753/CH5/EX5.9/Ex5_9.sce @@ -0,0 +1,16 @@ +//Example 5.9, Page number 5.30 + +clc;clear;close + +// variable declaration +N_a=0.3 // numerical aperture +Gamma=45 // coefficient + +// Calculations +theta_a=asin(N_a) // degree +theta_as=asin((N_a)/cos(Gamma)) // degree + +// Results +printf("Acceptance angle, theta_a = %.2f degrees",(theta_a*180/%pi)) +printf("\nFor skew rays,theta_as = %.2f degrees",(theta_as*180/%pi)) +// Answer given in the textbook is wrong |