diff options
Diffstat (limited to '3731/CH7')
-rw-r--r-- | 3731/CH7/EX7.1/Ex7_1.sce | 57 | ||||
-rw-r--r-- | 3731/CH7/EX7.2/Ex7_2.sce | 53 | ||||
-rw-r--r-- | 3731/CH7/EX7.3/Ex7_3.sce | 105 | ||||
-rw-r--r-- | 3731/CH7/EX7.4/Ex7_4.sce | 60 |
4 files changed, 275 insertions, 0 deletions
diff --git a/3731/CH7/EX7.1/Ex7_1.sce b/3731/CH7/EX7.1/Ex7_1.sce new file mode 100644 index 000000000..820ce94cf --- /dev/null +++ b/3731/CH7/EX7.1/Ex7_1.sce @@ -0,0 +1,57 @@ +//Chapter 7:Synchronous Motor and Brushless DC Motor Drives +//Example 1 +clc; + +//Variable Initialization + +//Ratings of the synchronous motor +Pm1=500*1000 // power rating in W +f=50 // frequency in HZ +Vl=3.3*1000 // line voltage in V +pf=0.8 // power factor lagging +P=4 // number of poles +I=10 // field current in A +Xs=15 // reactance of the windings in ohm +Rs=0 // resistance of the windings in ohm +Wms=50*%pi // synchronous speed in rad/sec +Pm=Pm1/2 // power at half the rated torque when the losses are neglected + +//Solution +V=Vl/sqrt(3) //phase voltage +Is=Pm1/(sqrt(3)*Vl*pf) //rated current +rad=acos(pf) + +Is=Is * (cos(-rad) + sin(-rad)*%i) //rated current in vector form +V=V * (cos(0) + sin(0)) //rated phase voltage in rectangular form +E=V-Is*%i*Xs //back emf + +//(i) When field current has not changed +sin_delta=Pm*Xs/(3*abs(V)*abs(E)) +delta=asin(sin_delta) //angle delta +Is=(V-(abs(E) * (cos(-delta) + sin(-delta)*%i)))/(%i*Xs) //armature current +Is1=[] +Is1(1)=abs(Is) +Isp=phasemag(Is) +x=Isp +n1=x*%pi/180 +power_factor=cos(n1) //power factor + +//(ii) At unity power factor and rated torque +cos_phi=1 +Is=Pm1/(3*V) //since Pm1=3*V*Is +E1=V-Is*%i*Xs +If=abs(E1)/abs(E)*I //field current + +//(iii) At the field current of 12.5 A +If1=12.5 //field current +E2=If1/I*abs(E) +Is=sqrt(E2**2-abs(V)**2)/Xs //since E2=abs(V-Is*1j*Xs) +Pm=3*abs(V)*Is*cos_phi //power output at the given field current +T=Pm/Wms //required torque + +//results +mprintf("i)Armature current :%.2f %.1f ° A",abs(Is1),x) +mprintf("\nPower factor:%.2f lagging",power_factor) +mprintf("\nii)Field current at unity power factor at rated torque:%.2f A",If) +mprintf("\niii)Required torque is:%.1f N-m",T) +//There is a slight difference in the answer diff --git a/3731/CH7/EX7.2/Ex7_2.sce b/3731/CH7/EX7.2/Ex7_2.sce new file mode 100644 index 000000000..f2c3297ed --- /dev/null +++ b/3731/CH7/EX7.2/Ex7_2.sce @@ -0,0 +1,53 @@ +//Chapter 7:Synchronous Motor and Brushless DC Motor Drives +//Example 2 +clc; + +//Variable Initialization + +//Ratings of the synchronous motor is same as that of Example-7.1 +Pm1=500*1000 // power rating in W +f=50 // frequency in HZ +Vl=3.3*1000 // line voltage in V +pf=0.8 // power factor lagging +P=4 // number of poles +I=10 // field current in A +Xs=15 // reactance of the windings in ohm +Rs=0 // resistance of the windings in ohm +Pm=Pm1/2 // power at half the rated torque when the losses are neglected + +//Solution +Wms=50*%pi // synchronous speed in rad/sec +V=Vl/sqrt(3) // phase voltage +Is=Pm1/(sqrt(3)*Vl*pf) //rated current +rad=acos(pf) + +Is=Is * (cos(-rad) + sin(-rad)*%i) //rated current in vector form +V=V * (cos(0) + sin(0)) //rated phase voltage in rectangular form +E=V-Is*%i*Xs //back emf + +//(i) at rated current and unity power factor +E1=V-abs(Is)*%i*Xs +delta=phasemag(E1) //phase angle of E1 +nd=delta*%pi/180 +Pm=3*abs(V)*abs(E1)*sin(nd)/Xs //mechanical power developed +T=Pm/Wms //braking torque +If=abs(E1)/abs(E)*I //field current + +//(ii) at field current of 15A and 500kW output +If1=15 //field current +Pm=-500*1000 //output power +E2=If1/I*abs(E) +sin_delta=Pm*Xs/(3*abs(V)*abs(E2)) +delta=asin(sin_delta) //angle delta +Is=((E2*(cos(abs(delta))+sin(abs(delta))*%i))-V)/(%i*Xs) //armature current +Isn=phasemag(Is) +x=(Isn)*%pi/180 //phase angle of Is +power_factor=cos(x) //power factor + + +//Results +mprintf("i)Braking torque :%.1f N-m",T) +mprintf("\nField current:%.2f A",If) +mprintf("\nii)Armature current :%.2f %.2f ° A",abs(Is),Isn) +mprintf("\nPower factor:%.3f lagging",power_factor) +//Note :There is a slight difference in the answers diff --git a/3731/CH7/EX7.3/Ex7_3.sce b/3731/CH7/EX7.3/Ex7_3.sce new file mode 100644 index 000000000..66b494658 --- /dev/null +++ b/3731/CH7/EX7.3/Ex7_3.sce @@ -0,0 +1,105 @@ +//Chapter 7:Synchronous Motor and Brushless DC Motor Drives +//Example 3 +clc; + +//Variable Initialization + +//Ratings of the synchronous motor +Pm1=6*10**6 // power rating in W +f=50 // frequency in HZ +Vl=11*1000 // line voltage in V +pf=0.9 // power factor leading +P=6 // number of poles +I=10 // rated field current in A +Xs=9 // reactance of the windings in ohm +Rs=0 // resistance of the windings in ohm +N=120*f/P // synchronous speed + +//Solution +V=Vl/sqrt(3) //phase voltage +Is=Pm1/(sqrt(3)*Vl*pf) //rated current +rad=acos(pf) + +//(i)To find torque and field current at rated armature current +// at 750 rpm and 0.8 leading power factor +Is=Is * (cos(rad) + sin(rad)*%i) //rated current in vector form +V=V *(cos(0)+sin(0)*%i) +E=V-Is*%i*Xs //back emf + +N1=750 //speeed in rpm +pf1=0.8 //given leading power factor +f1=N1/N*f //required frequency +V1=abs(V)*f1/f //required voltage +Xs1=Xs*f1/f //required field resistance +E1=V1-Xs1*%i*(abs(Is) * (cos(acos(pf1))+sin(acos(pf1))*%i)) //rated back emf in complex form +E1_polar=abs(E1) //rated back emf in rectangular form + +//At rated field current and 750 rpm +E2=abs(E)*N1/N //back emf at the given speed N1 +If=abs(E1)/E2*f //field current at the given speed N1 +Pm=3*abs(V1)*abs(Is)*pf1 //power input at the given speed N1 +Wm1=2*%pi*N1/60 //angular motor speed in rad/s +T=Pm/Wm1 + +//(ii) At half the rated motor torque and 1500 rpm and rated field current +Pm=6*10**6 //rated power rating in W +N1=1500 //speeed in rpm +f1=N1/N*f //required frequency +Xs1=f1/f*Xs //required field resistance +E1=abs(E)*f1/f //back emf at rated field current + + +Wms=Pm +Wms_=N1/N*Wms +Pm_= (0.5)*Wms_ //required power developed at N1=1500 rpm + +sin_delta=Pm_*Xs1/(3*abs(V)*abs(E1)) //since Pm=3*abs(V)*abs(E1)*sin(delta)/Xs +delta=asin(sin_delta) //angle delta +Is=(abs(V)-(E1 * (cos(-delta)+sin(-delta)*%i)))/(%i*Xs1) //armature current +Is1=polar(Is) //aramture current in rectangular form +x1=phasemag(Is) +x1n=x1*%pi/180 +power_factor1=cos(x1n) //power factor + +//(iii) at 750 rpm and rated field current from part(i) +N1=750 //speeed in rpm +pf1=0.8 //given leading power factor +f1=N1/N*f //required frequency at N1=750 rpm +V1=abs(V)*f1/f //required voltage at N1=750 rpm +Xs1=Xs*f1/f //required field resistance +E2=abs(E)*N1/N + +Pm=-4.2*10**6 //braking power output +sin_delta=Pm*Xs1/(3*abs(V1)*abs(E2)) //since Pm=3*abs(V)*abs(E1)*math.sin(delta)/Xs +delta=asin(sin_delta) //angle delta +Is=(E2 * (cos(abs(delta))+sin(abs(delta))*%i)-V1)/(%i*Xs1) //armature current +Is2=polar(Is) //aramture current in rectangular form +x2=phasemag(Is) +x2n=x2*%pi/180 +power_factor2=cos(x2n) //power factor + +//(iv)from part (ii) at 1500 rpm and from part(iii) the armature current of 349.9 A is taken +Is=Pm1/(sqrt(3)*Vl*pf) //armature current as given from (i) +N1=1500 //speeed in rpm +f1=N1/N*f //required frequency at N1=1500 rpm +Xs1=f1/f*Xs //required field resistance +E1=abs(E)*f1/f //at rated field current +E2=V-%i*Xs1*Is +E2ph=abs(E2) +E2n=phasemag(E2) +E2na=E2n*%pi/180 +If1=abs(E2ph)/abs(E1)*f //required field current +Pm=3*abs(V)*(E2ph)*sin(abs(E2na))/Xs1 //power input +Wm1=2*%pi*N1/60 //motor speed in rad/sec +T1=Pm/Wm1 + +//Results +mprintf("\ni)Required torque is:%.1f N-m",T) +mprintf("\nField current :%.2f A",If) +mprintf("\nii)Armature current :%.1f %.2f ° A",abs(Is1),x1) +mprintf(" \nPower factor :%.1f leading",power_factor1) +mprintf("\niii)Armature current :%.2f %.2f ° A",abs(Is2),x2) +mprintf("\nPower factor :%.3f lagging",power_factor2) +mprintf("\niv)Field current :%.2f A",If1) +mprintf("\nRequired torque is:%.1f N-m",T1) +//There is a slight difference in the answers diff --git a/3731/CH7/EX7.4/Ex7_4.sce b/3731/CH7/EX7.4/Ex7_4.sce new file mode 100644 index 000000000..ac8a39994 --- /dev/null +++ b/3731/CH7/EX7.4/Ex7_4.sce @@ -0,0 +1,60 @@ +//Chapter 7:Synchronous Motor and Brushless DC Motor Drives +//Example 4 +clc; + +//Variable Initialization + +//Ratings of the synchronous motor +Pm=8*10**6 // power rating in W +f=50 // frequency in HZ +Vl=6600 // line voltage in V +pf=1 // unity power factor +P=6 // number of poles +I=10 // rated field current in A +Xs=2.8 // reactance of the windings in ohm +Rs=0 // resistance of the windings in ohm +Rd=0.1 // Dc link inductor resistance in ohms +alpha=140 // constant firing angle in degrees + +//Solution +N=120*f/P //synchronous speed +V=Vl/sqrt(3) //phase voltage +Is=Pm/(sqrt(3)*Vl*pf) //rated current + +Id=%pi/sqrt(6)*Is //Dc line current +phi=180-alpha //phase angle between Is and V in degrees + +//(i) When motor operates at rated current and 500rpm +N1=500 //motor speed in rpm +f1=N1/N*f //frequency at N1 +V1=f1/f*V //voltge at N1 +phi=phi*%pi/180 +Pm1=3*V1*Is*cos(phi) //power developed by the motor +//for the 3-phase load commutated inverter +alpha=alpha*%pi/180 +Vdl=(3*sqrt(6)/%pi)*V1*cos(alpha) +Vds=-Vdl+Id*Rd +cos_alpha_s=Vds/(3*sqrt(6)/%pi*V) +alpha_s=acos(cos_alpha_s) //in radian +alpha_s1=alpha_s*180/%pi + + +//(ii) Regenerative braking at 500rpm and at rated motor current +alpha=0 //firing angle +//When firng angle is zero then power factor is unity +pf=1 + +Pm2=3*V1*Is*pf //power developed by the motor +Ps=Pm2-Id**2*Rd //power supplied to the source +Vdl=(3*sqrt(6)/%pi)*V1*cos(alpha) +Vds=-Vdl+Id*Rd +cos_alpha_s=Vds/(3*sqrt(6)/%pi*V) +alpha_s=acos(cos_alpha_s) //in radian +alpha_s2=alpha_s*180/%pi //in degrees + +//Results +disp('W',Pm1,"i)Power developed by the motor is:") +disp('°',alpha_s1,"Source side converter firing angle is") +disp('W',Ps,"ii)Power supplied to the source is:") +disp("°",alpha_s2,"Source side converter firing angle is") +//Answer given for firing angle in the book is wrong |