summaryrefslogtreecommitdiff
path: root/3731/CH7/EX7.3/Ex7_3.sce
diff options
context:
space:
mode:
Diffstat (limited to '3731/CH7/EX7.3/Ex7_3.sce')
-rw-r--r--3731/CH7/EX7.3/Ex7_3.sce105
1 files changed, 105 insertions, 0 deletions
diff --git a/3731/CH7/EX7.3/Ex7_3.sce b/3731/CH7/EX7.3/Ex7_3.sce
new file mode 100644
index 000000000..66b494658
--- /dev/null
+++ b/3731/CH7/EX7.3/Ex7_3.sce
@@ -0,0 +1,105 @@
+//Chapter 7:Synchronous Motor and Brushless DC Motor Drives
+//Example 3
+clc;
+
+//Variable Initialization
+
+//Ratings of the synchronous motor
+Pm1=6*10**6 // power rating in W
+f=50 // frequency in HZ
+Vl=11*1000 // line voltage in V
+pf=0.9 // power factor leading
+P=6 // number of poles
+I=10 // rated field current in A
+Xs=9 // reactance of the windings in ohm
+Rs=0 // resistance of the windings in ohm
+N=120*f/P // synchronous speed
+
+//Solution
+V=Vl/sqrt(3) //phase voltage
+Is=Pm1/(sqrt(3)*Vl*pf) //rated current
+rad=acos(pf)
+
+//(i)To find torque and field current at rated armature current
+// at 750 rpm and 0.8 leading power factor
+Is=Is * (cos(rad) + sin(rad)*%i) //rated current in vector form
+V=V *(cos(0)+sin(0)*%i)
+E=V-Is*%i*Xs //back emf
+
+N1=750 //speeed in rpm
+pf1=0.8 //given leading power factor
+f1=N1/N*f //required frequency
+V1=abs(V)*f1/f //required voltage
+Xs1=Xs*f1/f //required field resistance
+E1=V1-Xs1*%i*(abs(Is) * (cos(acos(pf1))+sin(acos(pf1))*%i)) //rated back emf in complex form
+E1_polar=abs(E1) //rated back emf in rectangular form
+
+//At rated field current and 750 rpm
+E2=abs(E)*N1/N //back emf at the given speed N1
+If=abs(E1)/E2*f //field current at the given speed N1
+Pm=3*abs(V1)*abs(Is)*pf1 //power input at the given speed N1
+Wm1=2*%pi*N1/60 //angular motor speed in rad/s
+T=Pm/Wm1
+
+//(ii) At half the rated motor torque and 1500 rpm and rated field current
+Pm=6*10**6 //rated power rating in W
+N1=1500 //speeed in rpm
+f1=N1/N*f //required frequency
+Xs1=f1/f*Xs //required field resistance
+E1=abs(E)*f1/f //back emf at rated field current
+
+
+Wms=Pm
+Wms_=N1/N*Wms
+Pm_= (0.5)*Wms_ //required power developed at N1=1500 rpm
+
+sin_delta=Pm_*Xs1/(3*abs(V)*abs(E1)) //since Pm=3*abs(V)*abs(E1)*sin(delta)/Xs
+delta=asin(sin_delta) //angle delta
+Is=(abs(V)-(E1 * (cos(-delta)+sin(-delta)*%i)))/(%i*Xs1) //armature current
+Is1=polar(Is) //aramture current in rectangular form
+x1=phasemag(Is)
+x1n=x1*%pi/180
+power_factor1=cos(x1n) //power factor
+
+//(iii) at 750 rpm and rated field current from part(i)
+N1=750 //speeed in rpm
+pf1=0.8 //given leading power factor
+f1=N1/N*f //required frequency at N1=750 rpm
+V1=abs(V)*f1/f //required voltage at N1=750 rpm
+Xs1=Xs*f1/f //required field resistance
+E2=abs(E)*N1/N
+
+Pm=-4.2*10**6 //braking power output
+sin_delta=Pm*Xs1/(3*abs(V1)*abs(E2)) //since Pm=3*abs(V)*abs(E1)*math.sin(delta)/Xs
+delta=asin(sin_delta) //angle delta
+Is=(E2 * (cos(abs(delta))+sin(abs(delta))*%i)-V1)/(%i*Xs1) //armature current
+Is2=polar(Is) //aramture current in rectangular form
+x2=phasemag(Is)
+x2n=x2*%pi/180
+power_factor2=cos(x2n) //power factor
+
+//(iv)from part (ii) at 1500 rpm and from part(iii) the armature current of 349.9 A is taken
+Is=Pm1/(sqrt(3)*Vl*pf) //armature current as given from (i)
+N1=1500 //speeed in rpm
+f1=N1/N*f //required frequency at N1=1500 rpm
+Xs1=f1/f*Xs //required field resistance
+E1=abs(E)*f1/f //at rated field current
+E2=V-%i*Xs1*Is
+E2ph=abs(E2)
+E2n=phasemag(E2)
+E2na=E2n*%pi/180
+If1=abs(E2ph)/abs(E1)*f //required field current
+Pm=3*abs(V)*(E2ph)*sin(abs(E2na))/Xs1 //power input
+Wm1=2*%pi*N1/60 //motor speed in rad/sec
+T1=Pm/Wm1
+
+//Results
+mprintf("\ni)Required torque is:%.1f N-m",T)
+mprintf("\nField current :%.2f A",If)
+mprintf("\nii)Armature current :%.1f %.2f ° A",abs(Is1),x1)
+mprintf(" \nPower factor :%.1f leading",power_factor1)
+mprintf("\niii)Armature current :%.2f %.2f ° A",abs(Is2),x2)
+mprintf("\nPower factor :%.3f lagging",power_factor2)
+mprintf("\niv)Field current :%.2f A",If1)
+mprintf("\nRequired torque is:%.1f N-m",T1)
+//There is a slight difference in the answers