diff options
Diffstat (limited to '3689/CH6')
-rw-r--r-- | 3689/CH6/EX6.1/6_1.sce | 17 | ||||
-rw-r--r-- | 3689/CH6/EX6.12/6_12.sce | 29 | ||||
-rw-r--r-- | 3689/CH6/EX6.13/6_13.sce | 16 | ||||
-rw-r--r-- | 3689/CH6/EX6.14/6_14.sce | 27 | ||||
-rw-r--r-- | 3689/CH6/EX6.15/6_15.sce | 27 | ||||
-rw-r--r-- | 3689/CH6/EX6.16/6_16.sce | 17 | ||||
-rw-r--r-- | 3689/CH6/EX6.17/6_17.sce | 16 | ||||
-rw-r--r-- | 3689/CH6/EX6.2/6_2.sce | 17 | ||||
-rw-r--r-- | 3689/CH6/EX6.4/6_4.sce | 14 | ||||
-rw-r--r-- | 3689/CH6/EX6.5/6_5.sce | 20 | ||||
-rw-r--r-- | 3689/CH6/EX6.6/6_6.sce | 15 | ||||
-rw-r--r-- | 3689/CH6/EX6.7/6_7.sce | 20 | ||||
-rw-r--r-- | 3689/CH6/EX6.8/6_8.sce | 16 | ||||
-rw-r--r-- | 3689/CH6/EX6.9/6_9.sce | 19 |
14 files changed, 270 insertions, 0 deletions
diff --git a/3689/CH6/EX6.1/6_1.sce b/3689/CH6/EX6.1/6_1.sce new file mode 100644 index 000000000..488e93074 --- /dev/null +++ b/3689/CH6/EX6.1/6_1.sce @@ -0,0 +1,17 @@ +////Variable Declaration
+dHcCH4 = -891.0 //Std. heat of combustion for CH4, kJ/mol
+dHcC8H18 = -5471.0 //Std. heat of combustion for C8H18, kJ/mol
+
+T = 298.15
+[SmCO2,SmCH4,SmH2O,SmO2,SmC8H18] = (213.8,186.3,70.0,205.2,316.1)
+dnCH4 = -2.
+dnC8H18 = 4.5
+R = 8.314
+//Calculations
+dACH4 = dHcCH4*1e3 - dnCH4*R*T - T*(SmCO2 + 2*SmH2O - SmCH4 - 2*SmO2)
+dAC8H18 = dHcC8H18*1e3 - dnC8H18*R*T - T*(8*SmCO2 + 9*SmH2O - SmC8H18 - 25.*SmO2/2)
+//Results
+printf("\n Maximum Available work through combustion of CH4 %4.1f kJ/mol",dACH4/1000)
+
+printf("\n Maximum Available work through combustion of C8H18 %4.1f kJ/mol",dAC8H18/1000)
+
diff --git a/3689/CH6/EX6.12/6_12.sce b/3689/CH6/EX6.12/6_12.sce new file mode 100644 index 000000000..44db193d7 --- /dev/null +++ b/3689/CH6/EX6.12/6_12.sce @@ -0,0 +1,29 @@ +////
+//Variable Declaration
+dGfCaCO3 = -1128.8 //Std. Gibbs energy of formation for CaCO3 (s), kJ/mol
+dGfCaO = -603.3 //Std. Gibbs energy of formation for CaO (s), kJ/mol
+dGfCO2 = -394.4 //Std. Gibbs energy of formation for O2 (g), kJ/mol
+dHfCaCO3 = -1206.9 //Std. Enthalpy Change of formation for CaCO3 (s), kJ/mol
+dHfCaO = -634.9 //Std. Enthalpy Change of formation for CaO (s), kJ/mol
+dHfCO2 = -393.5 //Std. Enthalpy Change of formation for O2 (g), kJ/mol
+T0 = 298.15 //Temperature in K
+R = 8.314
+[nCaCO3,nCaO,nO2] = (-1,1,1)
+
+//Calculations
+dGR = nCaO*dGfCaO + nO2*dGfCO2 + nCaCO3*dGfCaCO3
+dHR = nCaO*dHfCaO + nO2*dHfCO2 + nCaCO3*dHfCaCO3
+
+deff('[x]=func(T)','x=exp(-dGR*1e3/(R*T0) - dHR*1e3*(1/T - 1/T0)/R)')
+
+Kp10 = func(1000)
+Kp11 = func(1100)
+Kp12 = func(1200)
+
+//Results
+printf("\n Std. Gibbs energy change for reaction is %4.1f kJ/mol",dGR)
+
+printf("\n Std. Enthalpy change for reaction is %4.1f kJ/mol",dHR)
+
+printf("\n Equilibrium constants at 1000, 1100, and 1200 K are %4.4f, %4.3fe, and %4.3f",Kp10,Kp11,Kp12)
+
diff --git a/3689/CH6/EX6.13/6_13.sce b/3689/CH6/EX6.13/6_13.sce new file mode 100644 index 000000000..8b0681fff --- /dev/null +++ b/3689/CH6/EX6.13/6_13.sce @@ -0,0 +1,16 @@ +////
+//Variable Declaration
+dGfCG = 0.0 //Std. Gibbs energy of formation for CaCO3 (s), kJ/mol
+dGfCD = 2.90 //Std. Gibbs energy of formation for CaO (s), kJ/mol
+rhoG = 2.25e3 //Density of Graphite, kg/m3
+rhoD = 3.52e3 //Density of dimond, kg/m3
+T0 = 298.15 //Std. Temperature, K
+R = 8.314 //Ideal gas constant, J/(mol.K)
+P0 = 1.0 //Pressure, bar
+M = 12.01 //Molceular wt of Carbon
+//Calculations
+P = P0*1e5 + dGfCD*1e3/((1./rhoG-1./rhoD)*M*1e-3)
+
+//Results
+printf("\n Pressure at which graphite and dimond will be in equilibrium is %4.2e bar",P/1e5)
+
diff --git a/3689/CH6/EX6.14/6_14.sce b/3689/CH6/EX6.14/6_14.sce new file mode 100644 index 000000000..3763f93e9 --- /dev/null +++ b/3689/CH6/EX6.14/6_14.sce @@ -0,0 +1,27 @@ +////
+//Variable Declaration
+beta = 2.04e-4 //Thermal exapansion coefficient, /K
+kapa = 45.9e-6 //Isothermal compressibility, /bar
+T = 298.15 //Std. Temperature, K
+R = 8.206e-2 //Ideal gas constant, atm.L/(mol.K)
+T1 = 320.0 //Temperature, K
+Pi = 1.0 //Initial Pressure, bar
+V = 1.00 //Volume, m3
+a = 1.35 //van der Waals constant a for nitrogen, atm.L2/mol2
+P0 =1
+//Calculations
+dUbydV=(beta*T1-kapa*P0)/kapa
+;Pf=(beta*T1-kapa*P0)/kapa
+;
+dVT = V*kapa*(Pf-Pi)
+dVbyV = dVT*100/V
+Vm = Pi/(R*T1)
+dUbydVm = a/(Vm**2)
+
+//Results
+printf("\n dUbydV = %4.2e bar",dUbydV)
+
+printf("\n dVbyV = %4.3f percent",dVbyV)
+
+printf("\n dUbydVm = %4.0e atm",dUbydVm)
+
diff --git a/3689/CH6/EX6.15/6_15.sce b/3689/CH6/EX6.15/6_15.sce new file mode 100644 index 000000000..1698ede83 --- /dev/null +++ b/3689/CH6/EX6.15/6_15.sce @@ -0,0 +1,27 @@ +////
+//Variable Declaration
+m = 1000.0 //mass of mercury, g
+Pi = 1.00 //Intial pressure and temperature, bar, K
+Ti = 300
+Pf = 300. //Final pressure and temperature, bar, K
+Tf = 600.0
+rho = 13534. //Density of mercury, kg/m3
+beta = 18.1e-4 //Thermal exapansion coefficient for Hg, /K
+kapa = 3.91e-6 //Isothermal compressibility for Hg, /Pa
+Cpm = 27.98 //Molar Specific heat at constant pressure, J/(mol.K)
+M = 200.59 //Molecular wt of Hg, g/mol
+
+//Calculations
+Vi = m*1e-3/rho
+Vf = Vi*exp(-kapa*(Pf-Pi))
+Ut = m*Cpm*(Tf-Ti)/M
+Up = (beta*Ti/kapa-Pi)*1e5*(Vf-Vi) + (Vi-Vf+Vf*log(Vf/Vi))*1e5/kapa
+dU = Ut + Up
+Ht = m*Cpm*(Tf-Ti)/M
+Hp = ((1 + beta*(Tf-Ti))*Vi*exp(-kapa*Pi)/kapa)*(exp(-kapa*Pi)-exp(-kapa*Pf))
+dH = Ht + Hp
+//Results
+printf("\n Internal energy change is %6.2e J/mol in which \ncontribution of temperature dependent term %6.4f percent",dU,Ut*100/dH)
+
+printf("\n Enthalpy change is %4.3e J/mol in which \ncontribution of temperature dependent term %4.1f percent",dH,Ht*100/dH)
+
diff --git a/3689/CH6/EX6.16/6_16.sce b/3689/CH6/EX6.16/6_16.sce new file mode 100644 index 000000000..2591a82e3 --- /dev/null +++ b/3689/CH6/EX6.16/6_16.sce @@ -0,0 +1,17 @@ +////Variable Declaration
+T = 300.0 //Temperature of Hg, K
+beta = 18.1e-4 //Thermal exapansion coefficient for Hg, /K
+kapa = 3.91e-6 //Isothermal compressibility for Hg, /Pa
+M = 0.20059 //Molecular wt of Hg, kg/mol
+rho = 13534 //Density of mercury, kg/m3
+Cpm = 27.98 //Experimental Molar specif heat at const pressure for mercury, J/(mol.K)
+
+//Calculations
+Vm = M/rho
+DCpmCv = T*Vm*beta**2/kapa
+Cvm = Cpm - DCpmCv
+//Results
+printf("\n Difference in molar specific heats \nat constant volume and constant pressure %4.2e J/(mol.K)",DCpmCv)
+
+printf("\n Molar Specific heat of Hg at const. volume is %4.2f J/(mol.K)",Cvm)
+
diff --git a/3689/CH6/EX6.17/6_17.sce b/3689/CH6/EX6.17/6_17.sce new file mode 100644 index 000000000..ec9f7fb23 --- /dev/null +++ b/3689/CH6/EX6.17/6_17.sce @@ -0,0 +1,16 @@ +////Variable Declaration
+T = 298.15 //Std. Temperature, K
+P = 1.0 //Initial Pressure, bar
+[Hm0,Sm0] = (0.0,154.8)
+[Sm0H2,Sm0O2] = (130.7,205.2)
+dGfH2O = -237.1 //Gibbs energy of formation for H2O(l), kJ/mol
+[nH2,nO2] = (1,1/2)
+
+//Calculations
+Gm0 = Hm0 - T*Sm0
+dGmH2O = dGfH2O*1000 - T*(nH2*Sm0H2 + nO2*Sm0O2)
+//Results
+printf("\n Molar Gibbs energy of Ar %4.3f kJ/mol",Gm0/1e3)
+
+printf("\n Molar Gibbs energy of Water %4.3f kJ/mol",dGmH2O/1e3)
+
diff --git a/3689/CH6/EX6.2/6_2.sce b/3689/CH6/EX6.2/6_2.sce new file mode 100644 index 000000000..1b6638167 --- /dev/null +++ b/3689/CH6/EX6.2/6_2.sce @@ -0,0 +1,17 @@ +////Variable Declaration
+dHcCH4 = -891.0 //Std. heat of combustion for CH4, kJ/mol
+dHcC8H18 = -5471.0 //Std. heat of combustion for C8H18, kJ/mol
+
+T = 298.15
+[SmCO2,SmCH4,SmH2O,SmO2,SmC8H18] = (213.8,186.3,70.0,205.2,316.1)
+dnCH4 = -2.
+dnC8H18 = 4.5
+R = 8.314
+//Calculations
+dGCH4 = dHcCH4*1e3 - T*(SmCO2 + 2*SmH2O - SmCH4 - 2*SmO2)
+dGC8H18 = dHcC8H18*1e3 - T*(8*SmCO2 + 9*SmH2O - SmC8H18 - 25.*SmO2/2)
+//Results
+printf("\n Maximum nonexpansion work through combustion of CH4 %4.1f kJ/mol",dGCH4/1000)
+
+printf("\n Maximum nonexpansion work through combustion of C8H18 %4.1f kJ/mol",dGC8H18/1000)
+
diff --git a/3689/CH6/EX6.4/6_4.sce b/3689/CH6/EX6.4/6_4.sce new file mode 100644 index 000000000..14fd1bf6f --- /dev/null +++ b/3689/CH6/EX6.4/6_4.sce @@ -0,0 +1,14 @@ +////Variable Declaration
+dGf298 = 370.7 //Std. free energy of formation for Fe (g), kJ/mol
+dHf298 = 416.3 //Std. Enthalpy of formation for Fe (g), kJ/mol
+T0 = 298.15 //Temperature in K
+T = 400. //Temperature in K
+R = 8.314
+
+//Calculations
+
+dGf = T*(dGf298*1e3/T0 + dHf298*1e3*(1./T - 1./T0))
+
+//Results
+printf("\n Std. free energy of formation for Fe(g at 400 K is %4.1f kJ/mol",dGf/1000)
+
diff --git a/3689/CH6/EX6.5/6_5.sce b/3689/CH6/EX6.5/6_5.sce new file mode 100644 index 000000000..db2ced49c --- /dev/null +++ b/3689/CH6/EX6.5/6_5.sce @@ -0,0 +1,20 @@ +////
+//Variable Declaration
+nHe = 1.0 //Number of moles of He
+nNe = 3.0 //Number of moles of Ne
+nAr = 2.0 //Number of moles of Ar
+nXe = 2.5 //Number of moles of Xe
+T = 298.15 //Temperature in K
+P = 1.0 //Pressure, bar
+R = 8.314
+
+//Calculations
+n = nHe + nNe + nAr + nXe
+dGmix = n*R*T*((nHe/n)*log(nHe/n) + (nNe/n)*log(nNe/n) +(nAr/n)*log(nAr/n) + (nXe/n)*log(nXe/n))
+dSmix = n*R*((nHe/n)*log(nHe/n) + (nNe/n)*log(nNe/n) +(nAr/n)*log(nAr/n) + (nXe/n)*log(nXe/n))
+
+//Results
+printf("\n Std. free energy Change on mixing is %3.1e J",dGmix)
+
+printf("\n Std. entropy Change on mixing is %4.1f J",dSmix)
+
diff --git a/3689/CH6/EX6.6/6_6.sce b/3689/CH6/EX6.6/6_6.sce new file mode 100644 index 000000000..b3ce8012e --- /dev/null +++ b/3689/CH6/EX6.6/6_6.sce @@ -0,0 +1,15 @@ +////Variable Declaration
+dGfFe = 0.0 //Std. Gibbs energy of formation for Fe (S), kJ/mol
+dGfH2O = -237.1 //Std. Gibbs energy of formation for Water (g), kJ/mol
+dGfFe2O3 = -1015.4 //Std. Gibbs energy of formation for Fe2O3 (s), kJ/mol
+dGfH2 = 0.0 //Std. Gibbs energy of formation for Hydrogen (g), kJ/mol
+T0 = 298.15 //Temperature in K
+R = 8.314
+[nFe,nH2,nFe2O3,nH2O] = (3,-4,-1,4)
+
+//Calculations
+dGR = nFe*dGfFe + nH2O*dGfH2O + nFe2O3*dGfFe2O3 + nH2*dGfH2
+
+//Results
+printf("\n Std. Gibbs energy change for reaction is %4.2f kJ/mol",dGR)
+
diff --git a/3689/CH6/EX6.7/6_7.sce b/3689/CH6/EX6.7/6_7.sce new file mode 100644 index 000000000..63c4dddd9 --- /dev/null +++ b/3689/CH6/EX6.7/6_7.sce @@ -0,0 +1,20 @@ +////Variable Declaration
+dGR = 67.0 //Std. Gibbs energy of formation for reaction, kJ, from previous problem
+dHfFe = 0.0 //Enthalpy of formation for Fe (S), kJ/mol
+dHfH2O = -285.8 //Enthalpy of formation for Water (g), kJ/mol
+dHfFe2O3 = -1118.4 //Enthalpy of formation for Fe2O3 (s), kJ/mol
+dHfH2 = 0.0 //Enthalpy of formation for Hydrogen (g), kJ/mol
+T0 = 298.15 //Temperature in K
+T = 525. //Temperature in K
+R = 8.314
+[nFe,nH2,nFe2O3,nH2O] = (3,-4,-1,4)
+
+//Calculations
+dHR = nFe*dHfFe + nH2O*dHfH2O + nFe2O3*dHfFe2O3 + nH2*dHfH2
+dGR2 = T*(dGR*1e3/T0 + dHR*1e3*(1./T - 1./T0))
+
+//Results
+printf("\n Std. Enthalpy change for reactionat %4.1f is %4.2f kJ/mol",T, dHR)
+
+printf("\n Std. Gibbs energy change for reactionat %4.1f is %4.0f kJ/mol",T, dGR2/1e3)
+
diff --git a/3689/CH6/EX6.8/6_8.sce b/3689/CH6/EX6.8/6_8.sce new file mode 100644 index 000000000..77e2ffe75 --- /dev/null +++ b/3689/CH6/EX6.8/6_8.sce @@ -0,0 +1,16 @@ +////
+//Variable Declaration
+dGfNO2 = 51.3 //Std. Gibbs energy of formation for NO2 (g), kJ/mol
+dGfN2O4 = 99.8 //Std. Gibbs energy of formation for N2O4 (g), kJ/mol
+T0 = 298.15 //Temperature in K
+pNO2 = 0.350 //Partial pressure of NO2, bar
+pN2O4 = 0.650 //Partial pressure of N2O4, bar
+R = 8.314
+[nNO2,nN2O4] = (-2,1)
+
+//Calculations
+dGR = nN2O4*dGfN2O4*1e3 + nNO2*dGfNO2*1e3 + R*T0*log(pN2O4/(pNO2)**2)
+
+//Results
+printf("\n Std. Gibbs energy change for reaction is %5.3f kJ/mol",dGR/1e3)
+
diff --git a/3689/CH6/EX6.9/6_9.sce b/3689/CH6/EX6.9/6_9.sce new file mode 100644 index 000000000..80a019ae0 --- /dev/null +++ b/3689/CH6/EX6.9/6_9.sce @@ -0,0 +1,19 @@ +////
+//Variable Declaration
+dGfCO2 = -394.4 //Std. Gibbs energy of formation for CO2 (g), kJ/mol
+dGfH2 = 0.0 //Std. Gibbs energy of formation for H2 (g), kJ/mol
+dGfCO = 237.1 //Std. Gibbs energy of formation for CO (g), kJ/mol
+dGfH2O = 137.2 //Std. Gibbs energy of formation for H24 (l), kJ/mol
+T0 = 298.15 //Temperature in K
+R = 8.314
+[nCO2, nH2, nCO, nH2O] = (1,1,1,1) //Stoichiomentric coeff of CO2,H2,CO,H2O respectively in reaction
+
+//Calculations
+dGR = nCO2*dGfCO2 + nH2*dGfH2 + nCO*dGfCO + nH2O*dGfH2O
+Kp = exp(-dGR*1e3/(R*T0))
+
+//Results
+printf("\n Std. Gibbs energy change for reaction is %5.3f kJ/mol",dGR/1e3)
+
+printf("\n Equilibrium constant for reaction is %5.3f ",Kp)
+
|