summaryrefslogtreecommitdiff
path: root/3681/CH6/EX6.8/Ex6_8.sce
diff options
context:
space:
mode:
Diffstat (limited to '3681/CH6/EX6.8/Ex6_8.sce')
-rw-r--r--3681/CH6/EX6.8/Ex6_8.sce23
1 files changed, 23 insertions, 0 deletions
diff --git a/3681/CH6/EX6.8/Ex6_8.sce b/3681/CH6/EX6.8/Ex6_8.sce
new file mode 100644
index 000000000..640a265ef
--- /dev/null
+++ b/3681/CH6/EX6.8/Ex6_8.sce
@@ -0,0 +1,23 @@
+// Calculating the maximum permissible specific electric loading
+clc;
+disp('Example 6.8, Page No. = 6.13')
+// Given Data
+p_20 = 1.734*10^(-8);// Resistivity of copper at 20 degree celsius (in ohm*meter)
+alpha = 0.00393;// Resistance temperature co-efficient of copper at 20 degree celsius (in per degree celsius)
+s = 3.5;// Current density (in A per mm square)
+c = 0.03;// Cooling co-efficient
+Tm_ambient = 40;// Maximum ambient temperature (in degree celsius)
+Tm_rise_A = 50;// Maximum temperature rise for Class A insulation (in degree celsius)
+Tm_rise_E = 65;// Maximum temperature rise for Class E insulation (in degree celsius)
+// Calculation of the maximum permissible specific electric loading
+//for Class A insulation
+T_A = Tm_ambient+Tm_rise_A;// Operating temperature of copper conductors (in degree celsius)
+p = p_20*(1+alpha*(T_A-20));// Resistivity at operating temperature (in ohm*meter)
+ac = Tm_rise_A/(p*s*10^(6)*c);// Maximum permissible specific electric loading
+disp(ac,'Maximum allowable specific electric loading (ampere conductors per meter)=');
+T_E = Tm_ambient+Tm_rise_E;// Operating temperature of copper conductors (in degree celsius)
+//for Class E insulation
+p = p_20*(1+alpha*(T_E-20));// Resistivity at operating temperature (in ohm*meter)
+ac = Tm_rise_E/(p*s*10^(6)*c);// Maximum permissible specific electric loading
+disp(ac,'Maximum allowable specific electric loading (ampere conductors per meter)=');
+//in book answers are 21600 (ampere conductors per meter) and 26700 (ampere conductors per meter) respectively. The answers vary due to round off error