summaryrefslogtreecommitdiff
path: root/3681/CH3
diff options
context:
space:
mode:
Diffstat (limited to '3681/CH3')
-rw-r--r--3681/CH3/EX3.1/Ans3_1.PNGbin0 -> 4722 bytes
-rw-r--r--3681/CH3/EX3.1/Ex3_1.sce16
-rw-r--r--3681/CH3/EX3.11/Ans3_11.PNGbin0 -> 5382 bytes
-rw-r--r--3681/CH3/EX3.11/Ex3_11.sce16
-rw-r--r--3681/CH3/EX3.12/Ans3_12.PNGbin0 -> 6485 bytes
-rw-r--r--3681/CH3/EX3.12/Ex3_12.sce21
-rw-r--r--3681/CH3/EX3.13/Ans3_13.PNGbin0 -> 6181 bytes
-rw-r--r--3681/CH3/EX3.13/Ex3_13.sce19
-rw-r--r--3681/CH3/EX3.15/Ans3_15.PNGbin0 -> 9505 bytes
-rw-r--r--3681/CH3/EX3.15/Ex3_15.sce28
-rw-r--r--3681/CH3/EX3.2/Ans3_2.PNGbin0 -> 4767 bytes
-rw-r--r--3681/CH3/EX3.2/Ex3_2.sce22
-rw-r--r--3681/CH3/EX3.3/Ans3_3.PNGbin0 -> 5368 bytes
-rw-r--r--3681/CH3/EX3.3/Ex3_3.sce29
-rw-r--r--3681/CH3/EX3.4/Ans3_4.PNGbin0 -> 5887 bytes
-rw-r--r--3681/CH3/EX3.4/Ex3_4.sce28
-rw-r--r--3681/CH3/EX3.7/Ans3_7.PNGbin0 -> 5386 bytes
-rw-r--r--3681/CH3/EX3.7/Ex3_7.sce20
-rw-r--r--3681/CH3/EX3.8/Ans3_8.PNGbin0 -> 5467 bytes
-rw-r--r--3681/CH3/EX3.8/Ex3_8.sce19
20 files changed, 218 insertions, 0 deletions
diff --git a/3681/CH3/EX3.1/Ans3_1.PNG b/3681/CH3/EX3.1/Ans3_1.PNG
new file mode 100644
index 000000000..3c3bac712
--- /dev/null
+++ b/3681/CH3/EX3.1/Ans3_1.PNG
Binary files differ
diff --git a/3681/CH3/EX3.1/Ex3_1.sce b/3681/CH3/EX3.1/Ex3_1.sce
new file mode 100644
index 000000000..56cd7d9c8
--- /dev/null
+++ b/3681/CH3/EX3.1/Ex3_1.sce
@@ -0,0 +1,16 @@
+// Calculating effective length of air gap
+clc;
+disp('Example 3.1, Page No. = 3.12')
+// Given Data
+Ws = 12;// Slot width in mm
+Wt = 12;// Tooth width in mm
+lg = 2;// Length of air gap in mm
+Kcs = 1/(1+(5*lg/Ws));//Carter's co-efficient for slots
+// Calculation of effective length of air gap
+ys=Ws+Wt;//Slot Pitch in mm
+Kgs=ys/(ys-(Kcs*Ws));//Gap contraction for slots
+Kgd=1;//Gap contracion factor for ducts//Since there are no ducts
+Kg=Kgs*Kgd;//Total gap contracion factor
+lgs=Kg*lg;//Effective gap length in mm
+disp(lgs,'Effective gap length(mm)=');
+//in book answer is 2.74 mm. The answers vary due to round off error
diff --git a/3681/CH3/EX3.11/Ans3_11.PNG b/3681/CH3/EX3.11/Ans3_11.PNG
new file mode 100644
index 000000000..988470971
--- /dev/null
+++ b/3681/CH3/EX3.11/Ans3_11.PNG
Binary files differ
diff --git a/3681/CH3/EX3.11/Ex3_11.sce b/3681/CH3/EX3.11/Ex3_11.sce
new file mode 100644
index 000000000..9f9d8a124
--- /dev/null
+++ b/3681/CH3/EX3.11/Ex3_11.sce
@@ -0,0 +1,16 @@
+// Calculating the specific iron loss
+clc;
+disp('Example 3.11, Page No. = 3.34')
+// Given Data
+Bm = 3.2;// Maximum flux density in Wb per meter square
+f = 50;// Frequency in Hz
+t = 0.5*10^(-3);// Thickness of sheet in mm
+p = .3*10^(-6);// Resistivity of alloy steel in ohm*meter
+D = 7.8*10^(3);// Density in kg per meter cube
+ph_each = 400;// Hysteresis loss in each cycle in Joule per meter cube
+// Calculation of total iron loss
+pe = %pi*%pi*f*f*Bm*Bm*t*t/(6*p*D);// Eddy current loss in W per Kg
+ph = ph_each*f/D;// Hysterseis loss in W per Kg
+Pi = pe+ph;// Total iron loss in W per Kg
+disp(Pi,'Specific iron loss(W per Kg)=');
+//in book answer is 3.2 W per Kg. The provided in the textbook is wrong
diff --git a/3681/CH3/EX3.12/Ans3_12.PNG b/3681/CH3/EX3.12/Ans3_12.PNG
new file mode 100644
index 000000000..6e5250863
--- /dev/null
+++ b/3681/CH3/EX3.12/Ans3_12.PNG
Binary files differ
diff --git a/3681/CH3/EX3.12/Ex3_12.sce b/3681/CH3/EX3.12/Ex3_12.sce
new file mode 100644
index 000000000..8d64df9fa
--- /dev/null
+++ b/3681/CH3/EX3.12/Ex3_12.sce
@@ -0,0 +1,21 @@
+// Calculating the specific iron loss
+clc;
+disp('Example 3.12, Page No. = 3.35')
+// Given Data
+Bm = 1.0;// Maximum flux density in Wb per meter square
+f = 100;// Frequency in Hz
+t = 0.3*10^(-3);// Thickness of sheet in mm
+p = .5*10^(-6);// Resistivity of alloy steel in ohm*meter
+D = 7650;// Density in kg per meter cube
+pi_quoted = 1.2;// Quoted iron loss in W per Kg
+// Calculation of total iron loss
+S1 = 2*12;// Sides of hysteresis loop in A/m
+S2 = 2*1;// Sides of hysteresis loop in Wb per meter square
+A = S1*S2;// Area of hysteresis loop in W-s per meter cube
+ph_each = A;// Hysteresis loss in each cycle in Joule per meter cube
+ph = ph_each*f/D;// Hysterseis loss in W per Kg
+pe = %pi*%pi*f*f*Bm*Bm*t*t/(6*p*D);// Eddy current loss in W per Kg
+pi = pe+ph;// Total iron loss in W per Kg
+disp(pi,'Specific iron loss(W per Kg)=');
+disp('The calculated iron loss is smaller than the quoted.')
+//in book answer is 1.014 W per Kg. The answers vary due to round off error
diff --git a/3681/CH3/EX3.13/Ans3_13.PNG b/3681/CH3/EX3.13/Ans3_13.PNG
new file mode 100644
index 000000000..997c16eff
--- /dev/null
+++ b/3681/CH3/EX3.13/Ans3_13.PNG
Binary files differ
diff --git a/3681/CH3/EX3.13/Ex3_13.sce b/3681/CH3/EX3.13/Ex3_13.sce
new file mode 100644
index 000000000..be0189b29
--- /dev/null
+++ b/3681/CH3/EX3.13/Ex3_13.sce
@@ -0,0 +1,19 @@
+// Calculating the hysteresis loss
+clc;
+disp('Example 3.13, Page No. = 3.35')
+// Given Data
+Bm = 1.0;// Maximum flux density in Wb per meter square
+f = 50;// Frequency in Hz
+SGi = 7.5;// Specific gravity of iron
+ph = 4.9;// Hysterseis loss in W per Kg
+// Calculation of co-efficient 'n'
+Di = 7500;// Density of iron
+n = ph/(Di*f*(Bm^(1.7)));//
+disp(n,'(a) co-efficient (n)=');
+//in book answer is 1307*10^(-6). The answers vary due to round off error
+// Calculation of hysteresis loss
+Bm = 1.8;// Maximum flux density in Wb per meter square
+f = 25;// Frequency in Hz
+ph = n*f*Di*Bm^(1.7);// Hysterseis loss in W per Kg
+disp(ph,'(b) Hysterseis loss(W per Kg)=');
+//in book answer is 6.66 W per Kg. The answers vary due to round off error
diff --git a/3681/CH3/EX3.15/Ans3_15.PNG b/3681/CH3/EX3.15/Ans3_15.PNG
new file mode 100644
index 000000000..e30d422fe
--- /dev/null
+++ b/3681/CH3/EX3.15/Ans3_15.PNG
Binary files differ
diff --git a/3681/CH3/EX3.15/Ex3_15.sce b/3681/CH3/EX3.15/Ex3_15.sce
new file mode 100644
index 000000000..8cbf2f11f
--- /dev/null
+++ b/3681/CH3/EX3.15/Ex3_15.sce
@@ -0,0 +1,28 @@
+// Calculating the magnetic pull, unbalanced magnetic pull and ratio of unbalanced magnetic pull to useful force
+clc;
+disp('Example 3.15, Page No. = 3.71')
+// Given Data
+Power = 75000;// Power rating in W
+f = 50;// Frequency in Hz
+p = 2;// Number of poles
+D = 0.5;// Stator bore in meter
+L = 0.2;// Axial length of core in meter
+lg = 5;// Length of air gap
+ATm = 4500;// Peak magnetizing mmf per pole
+Bm = ATm*4*%pi*10^(-7)/(lg*10^(-3));// Peak value of flux density in Wb per meter square
+// Calculation of magnetic pull per pole
+MP = Bm*Bm*D*L/(3*4*%pi*10^(-7));// Magnetic pull per pole (Flux Distribution is sinusoidal)
+disp(MP,'(a) Magnetic pull per pole (N)=');
+//in book answer is 33.9 in kN The answers vary due to round off error
+// Calculation of unbalanced magnetic pull
+e = 1;// Displacement of rotor axis in mm
+Pp = %pi*D*L*Bm*Bm*e/(lg*4*4*%pi*10^(-7));// Unbalanced magnetic pull per pair of poles
+disp(Pp,'(b) Unbalanced magnetic pull per pair of poles (N)=');
+//in book answer is 16000 in N The answers vary due to round off error
+// Calculation of Ratio of unbalanced magnetic pull to useful force
+Speed = 2*f/p;// Speed in r.p.s.
+T = Power/(2*%pi*Speed);// Useful torque in Nm
+F = T/(D/2);// Useful force in N
+Ratio = Pp/F;// Ratio of unbalanced magnetic pull to useful force
+disp(Ratio,'(c) Ratio of unbalanced magnetic pull to useful force=');
+//in book answer is 16.8 The answers vary due to round off error
diff --git a/3681/CH3/EX3.2/Ans3_2.PNG b/3681/CH3/EX3.2/Ans3_2.PNG
new file mode 100644
index 000000000..250a98a07
--- /dev/null
+++ b/3681/CH3/EX3.2/Ans3_2.PNG
Binary files differ
diff --git a/3681/CH3/EX3.2/Ex3_2.sce b/3681/CH3/EX3.2/Ex3_2.sce
new file mode 100644
index 000000000..7b462963a
--- /dev/null
+++ b/3681/CH3/EX3.2/Ex3_2.sce
@@ -0,0 +1,22 @@
+// Calculating the mmf required for the air gap of a machine
+clc;
+disp('Example 3.2, Page No. = 3.12')
+// Given Data
+L = 0.32;// Core length in meter
+nd = 4;// Number of ducts
+Wd = 10;// Duct width in mm
+Pa = 0.19;// Pole arc in meter
+ys=65.4;//Slot Pitch in mm
+lg = 5;// Length of air gap in mm
+Wo = 5;// Slot opening in mm
+Fpp = 52;// Flux per pole in mWb
+Kcs = 0.18;//Carter's co-efficient for slots
+Kcd = 0.28;//Carter's co-efficient for ducts
+// Calculation of mmf required for the air gap
+Kgs=ys/(ys-(Kcs*Wo));//Gap contraction for slots
+Kgd=L/(L-(Kcd*nd*Wd*10^(-3)));//Gap contraction for ducts
+Kg=Kgs*Kgd;//Total gap contracion factor
+Bg=Fpp*10^(-3)/(Pa*L);//Flux density at the centre of pole in Wb per meter square
+ATg=800000*Kg*Bg*lg*10^(-3);//mmf required for air gap in A
+disp(ATg,'mmf required for air gap(A)=');
+//in book answer is 3587 A. The answers vary due to round off error
diff --git a/3681/CH3/EX3.3/Ans3_3.PNG b/3681/CH3/EX3.3/Ans3_3.PNG
new file mode 100644
index 000000000..1a8131954
--- /dev/null
+++ b/3681/CH3/EX3.3/Ans3_3.PNG
Binary files differ
diff --git a/3681/CH3/EX3.3/Ex3_3.sce b/3681/CH3/EX3.3/Ex3_3.sce
new file mode 100644
index 000000000..0461e961a
--- /dev/null
+++ b/3681/CH3/EX3.3/Ex3_3.sce
@@ -0,0 +1,29 @@
+// Estimating the effective air gap area per pole
+clc;
+disp('Example 3.3, Page No. = 3.13')
+// Given Data
+P = 10;// Number of pole
+Sb = 0.65;// Stator bore in meter
+L = 0.25;// Core length in meter
+Nss = 90;// Number of stator slots
+Wos = 3;// Stator slot opening in mm
+Nrs = 120;// Number of rotor slots
+Wor = 3;// Rotor slot opening in mm
+lg = 0.95;// Length of air gap in mm
+Kcs = 0.46;//Carter's co-efficient for slots
+Kcd = 0.68;//Carter's co-efficient for ducts
+nd = 3;// Number of ventilating ducts
+Wd = 10;// Width of each ventilating Duct in mm
+// Estimation of effective air gap area per pole
+ys = 3.141592654*Sb*10^(3)/Nss;// Stator slot pitch
+Kgss=ys/(ys-(Kcs*Wos));//Gap contraction factor for stator slots
+Rd = Sb-2*lg*10^(-3);// Rotor diameter in meter
+yr = 3.141592654*Rd*10^(3)/Nrs;// Rotor slot pitch
+Kgsr=yr/(yr-(Kcs*Wor));//Gap contraction factor for rotor slots
+Kgs=Kgss*Kgsr;//Gap contraction factor for slots
+Kgd=L*10^(3)/(L*10^(3)-(Kcd*nd*Wd));//Gap contraction for ducts
+Kg=Kgs*Kgd;//Total gap contracion factor
+Ag = 3.141592654*Sb*L/P;// Actual area of air gap per pole in meter square
+Age = Ag/Kg;// Effective air gap area per pole in meter square
+disp(Age,'Effective air gap area per pole(meter square)=');
+//in book answer is .04052 A. The answers vary due to round off error
diff --git a/3681/CH3/EX3.4/Ans3_4.PNG b/3681/CH3/EX3.4/Ans3_4.PNG
new file mode 100644
index 000000000..885c591b7
--- /dev/null
+++ b/3681/CH3/EX3.4/Ans3_4.PNG
Binary files differ
diff --git a/3681/CH3/EX3.4/Ex3_4.sce b/3681/CH3/EX3.4/Ex3_4.sce
new file mode 100644
index 000000000..999571179
--- /dev/null
+++ b/3681/CH3/EX3.4/Ex3_4.sce
@@ -0,0 +1,28 @@
+// Estimating the average flux density in the air gap
+clc;
+disp('Example 3.4, Page No. = 3.14')
+// Given Data
+MVA = 172;// MVA rating
+P = 20;// Number of pole
+D = 6.5;// Diameter in meter
+L = 1.72;// Core length in meter
+ys = 64;//Slot Pitch in mm
+Ws = 22;// Stator slot (open) width in mm
+lg = 30;// Length of air gap in mm
+nd = 41;// Number of ventilating ducts
+Wd = 6;// Width of each ventilating Duct in mm
+mmf = 27000// Total mmf per pole in A
+Kf = 0.7;// Field form factor
+// Estimation of effective air gap area per pole
+y=Ws/(2*lg);//Ratio for slots
+Kcs= (2/%pi)*(atan(y)-log10(sqrt(1+y^2))/y);//Carter's co-efficient for slots
+Kgs=ys/(ys-(Kcs*Ws));//Gap contraction for slots
+y=Wd/(2*lg);//Ratio for ducts
+Kcd= (2/%pi)*(atan(y)-log10(sqrt(1+y^2))/y);//Carter's co-efficient for slots
+Kgd=L*10^(3)/(L*10^(3)-(Kcd*nd*Wd));//Gap contraction for ducts
+Kg=Kgs*Kgd;//Total gap expansion factor
+ATg = 0.87*mmf;// The required for the air gap is 87% of the total mmf per pole in A
+Bg = ATg/(800000*Kg*lg*10^(-3));// Maximum flux density in air gap in Wb per meter square
+Bav= Kf*Bg;// Average flux density in air gap in Wb per meter square
+disp(Bav,'Average flux density in air gap (Wb per meter square)=');
+//in book answer is .615 Wb per meter square. The provided in the textbook is wrong
diff --git a/3681/CH3/EX3.7/Ans3_7.PNG b/3681/CH3/EX3.7/Ans3_7.PNG
new file mode 100644
index 000000000..b7866a133
--- /dev/null
+++ b/3681/CH3/EX3.7/Ans3_7.PNG
Binary files differ
diff --git a/3681/CH3/EX3.7/Ex3_7.sce b/3681/CH3/EX3.7/Ex3_7.sce
new file mode 100644
index 000000000..e16269b3d
--- /dev/null
+++ b/3681/CH3/EX3.7/Ex3_7.sce
@@ -0,0 +1,20 @@
+// Calculating the apparent flux density
+clc;
+disp('Example 3.7, Page No. = 3.22')
+// Given Data
+Ws = 10;// Slot width in mm
+Wt = 12;// Tooth width in mm
+L = .32;// Grass core Length in meter
+nd = 4;// Number of ventilating ducts
+Wd = 10;// Width of each ventilating Duct in mm
+Breal = 2.2;// Real flux density in Wb per meter square
+p = 31.4*10^(-6);// Permeability of teeth corresponding to real flux density in henry per meter
+Ki = 0.9;// Stacking Factor
+// Calculation of apparent flux density
+at = Breal/p;// mmf per meter corresponding to real flux density and permeability
+Li = Ki*(L-nd*Wd*10^(-3));// Net iron length
+ys = Wt+Ws;// Slot pitch
+Ks = L*ys/(Li*Wt);
+Bapp = Breal+4*%pi*10^(-7)*at*(Ks-1);
+disp(Bapp,'Apparent flux density(Wb per meter square)=');
+//in book answer is 2.317 Wb per meter square. The answers vary due to round off error
diff --git a/3681/CH3/EX3.8/Ans3_8.PNG b/3681/CH3/EX3.8/Ans3_8.PNG
new file mode 100644
index 000000000..b73707728
--- /dev/null
+++ b/3681/CH3/EX3.8/Ans3_8.PNG
Binary files differ
diff --git a/3681/CH3/EX3.8/Ex3_8.sce b/3681/CH3/EX3.8/Ex3_8.sce
new file mode 100644
index 000000000..f3b988b8e
--- /dev/null
+++ b/3681/CH3/EX3.8/Ex3_8.sce
@@ -0,0 +1,19 @@
+// Calculating the apparent flux density
+clc;
+disp('Example 3.8, Page No. = 3.23')
+// Given Data
+Ws = 10;// Slot width in mm
+ys = 28;// Slot pitch in mm
+L = .35;// Grass core Length in meter
+nd = 4;// Number of ventilating ducts
+Wd = 10;// Width of each ventilating Duct in mm
+Breal = 2.15;// Real flux density in Wb per meter square
+at = 55000;// mmf per meter corresponding to real flux density and permeability
+Ki = 0.9;// Stacking Factor
+// Calculation of apparent flux density
+Li = Ki*(L-nd*Wd*10^(-3));// Net iron length
+Wt = ys-Ws;// Tooth width in mm
+Ks = L*ys/(Li*Wt);
+Bapp = Breal+4*%pi*10^(-7)*at*(Ks-1);
+disp(Bapp,'Apparent flux density(Wb per meter square)=');
+//in book answer is 2.2156 Wb per meter square. The answers vary due to round off error