summaryrefslogtreecommitdiff
path: root/3681/CH3/EX3.4/Ex3_4.sce
diff options
context:
space:
mode:
Diffstat (limited to '3681/CH3/EX3.4/Ex3_4.sce')
-rw-r--r--3681/CH3/EX3.4/Ex3_4.sce28
1 files changed, 28 insertions, 0 deletions
diff --git a/3681/CH3/EX3.4/Ex3_4.sce b/3681/CH3/EX3.4/Ex3_4.sce
new file mode 100644
index 000000000..999571179
--- /dev/null
+++ b/3681/CH3/EX3.4/Ex3_4.sce
@@ -0,0 +1,28 @@
+// Estimating the average flux density in the air gap
+clc;
+disp('Example 3.4, Page No. = 3.14')
+// Given Data
+MVA = 172;// MVA rating
+P = 20;// Number of pole
+D = 6.5;// Diameter in meter
+L = 1.72;// Core length in meter
+ys = 64;//Slot Pitch in mm
+Ws = 22;// Stator slot (open) width in mm
+lg = 30;// Length of air gap in mm
+nd = 41;// Number of ventilating ducts
+Wd = 6;// Width of each ventilating Duct in mm
+mmf = 27000// Total mmf per pole in A
+Kf = 0.7;// Field form factor
+// Estimation of effective air gap area per pole
+y=Ws/(2*lg);//Ratio for slots
+Kcs= (2/%pi)*(atan(y)-log10(sqrt(1+y^2))/y);//Carter's co-efficient for slots
+Kgs=ys/(ys-(Kcs*Ws));//Gap contraction for slots
+y=Wd/(2*lg);//Ratio for ducts
+Kcd= (2/%pi)*(atan(y)-log10(sqrt(1+y^2))/y);//Carter's co-efficient for slots
+Kgd=L*10^(3)/(L*10^(3)-(Kcd*nd*Wd));//Gap contraction for ducts
+Kg=Kgs*Kgd;//Total gap expansion factor
+ATg = 0.87*mmf;// The required for the air gap is 87% of the total mmf per pole in A
+Bg = ATg/(800000*Kg*lg*10^(-3));// Maximum flux density in air gap in Wb per meter square
+Bav= Kf*Bg;// Average flux density in air gap in Wb per meter square
+disp(Bav,'Average flux density in air gap (Wb per meter square)=');
+//in book answer is .615 Wb per meter square. The provided in the textbook is wrong