summaryrefslogtreecommitdiff
path: root/3681/CH10/EX10.16
diff options
context:
space:
mode:
Diffstat (limited to '3681/CH10/EX10.16')
-rw-r--r--3681/CH10/EX10.16/Ans10_16.PNGbin0 -> 5105 bytes
-rw-r--r--3681/CH10/EX10.16/Ex10_16.sce36
2 files changed, 36 insertions, 0 deletions
diff --git a/3681/CH10/EX10.16/Ans10_16.PNG b/3681/CH10/EX10.16/Ans10_16.PNG
new file mode 100644
index 000000000..2807a0d4c
--- /dev/null
+++ b/3681/CH10/EX10.16/Ans10_16.PNG
Binary files differ
diff --git a/3681/CH10/EX10.16/Ex10_16.sce b/3681/CH10/EX10.16/Ex10_16.sce
new file mode 100644
index 000000000..8b0fa7ea7
--- /dev/null
+++ b/3681/CH10/EX10.16/Ex10_16.sce
@@ -0,0 +1,36 @@
+// Calculating the magnetizing current per phase
+clc;
+disp('Example 10.16, Page No. = 10.44')
+// Given Data
+// 3 phase delta connected induction motor
+P = 75;// Power rating (in kw)
+V = 400;// Voltage rating
+f = 50;// Frequency (in Hz)
+p = 6;// Number of poles
+D = 0.3;// Diameter of motor core (in meter)
+L = 0.12;// Length of motor core (in meter)
+Nss = 72;// Number of stator slots
+Nc = 20;// Number of conductors per slot
+lg = 0.55;// Length of air gap (in meter)
+Kg = 1.2// Gap constraction factor
+Coil_Span = 11;// Coil span (slots)
+// Calculation of the magnetizing current per phase
+q = Nss/(3*p);// Slots per pole per phase
+Kd = sin(60/2*%pi/180)/(q*sin(60/(2*4)*%pi/180));// Distribution factor
+Ns_pole = Nss/p;// Slots per pole
+alpha = 1/Ns_pole*180;// Angle of chording (in degree). Since the winding is chorded by 1 slot pitch
+Kp = cos(alpha/2*%pi/180);// Pitch factor
+Kws = Kd*Kp;// Stator winding factor
+Ns = Nss*Nc;// Total stator conductors
+Ts = Ns/(3*2);// Stator turns per phase
+Eb = V;// Stator voltage per phase. Since machine is delta connected
+Fm = Eb/(4.44*f*Ts*Kws);// Flux per pole (in Wb)
+A = %pi*D*L/p;// Area per pole (in meter square)
+Bav = Fm/A;// Average air gap density (in Wb per meter square)
+Bg60 = 1.36*Bav;// Gap flux density at 30 degree from pole axis
+ATg = 800000*Bg60*Kg*lg*10^(-3);// Mmf required for air gap (in A)
+ATi = 0.35*ATg;// Mmf for iron parts (in A). Since mmf required for iron parts is 35% of air gap mmf
+AT60 = ATg+ATi;// Total mmf (in A)
+Im = 0.427*p*AT60/(Kws*Ts);// Magnetizing current per phase (in ampere)
+disp(Im,'Magnetizing current per phase (Ampere) =');
+//in book answer is 4.56 Ampere. The answers vary due to round off error