summaryrefslogtreecommitdiff
path: root/3681/CH10
diff options
context:
space:
mode:
Diffstat (limited to '3681/CH10')
-rw-r--r--3681/CH10/EX10.13/Ans10_13.PNGbin0 -> 7494 bytes
-rw-r--r--3681/CH10/EX10.13/Ex10_13.sce17
-rw-r--r--3681/CH10/EX10.15/Ans10_15.PNGbin0 -> 4580 bytes
-rw-r--r--3681/CH10/EX10.15/Ex10_15.sce19
-rw-r--r--3681/CH10/EX10.16/Ans10_16.PNGbin0 -> 5105 bytes
-rw-r--r--3681/CH10/EX10.16/Ex10_16.sce36
-rw-r--r--3681/CH10/EX10.19/Ans10_19.PNGbin0 -> 6562 bytes
-rw-r--r--3681/CH10/EX10.19/Ex10_19.sce27
-rw-r--r--3681/CH10/EX10.2/Ans10_2.PNGbin0 -> 6280 bytes
-rw-r--r--3681/CH10/EX10.2/Ex10_2.sce25
10 files changed, 124 insertions, 0 deletions
diff --git a/3681/CH10/EX10.13/Ans10_13.PNG b/3681/CH10/EX10.13/Ans10_13.PNG
new file mode 100644
index 000000000..713882089
--- /dev/null
+++ b/3681/CH10/EX10.13/Ans10_13.PNG
Binary files differ
diff --git a/3681/CH10/EX10.13/Ex10_13.sce b/3681/CH10/EX10.13/Ex10_13.sce
new file mode 100644
index 000000000..2975cdc4c
--- /dev/null
+++ b/3681/CH10/EX10.13/Ex10_13.sce
@@ -0,0 +1,17 @@
+// Calculating the number of stator and rotor turns and rotor voltage between slip rings at standstill
+clc;
+disp('Example 10.13, Page No. = 10.35')
+// Given Data
+// 3 phase induction motor
+Nss = 54;// Number of stator slots
+Nrs = 72;// Number of rotor slots
+V = 400;// Applied voltage across the stator terminals
+// Calculation of the number of stator and rotor turns and rotor voltage between slip rings at standstill
+Ts = Nss*8/6;// Stator turns per phase. Since 8 conductors per slot
+Tr = Nrs*4/6;// Rotor turns per phase. Since 4 conductors per slot
+Es = 400/3^(1/2);// Stator voltage per phase
+Er = Es*Tr/Ts;// Rotor voltage per phase at standstill
+disp(Ts,'Stator turns per phase =');
+disp(Tr,'Rotor turns per phase =');
+disp(3^(1/2)*Er,'Rotor voltage between slip rings at standstill (Volts)=');
+//in book answers are 72, 48 and 266.7 Volts respectively. The answers vary due to round off error
diff --git a/3681/CH10/EX10.15/Ans10_15.PNG b/3681/CH10/EX10.15/Ans10_15.PNG
new file mode 100644
index 000000000..d6e22fa3d
--- /dev/null
+++ b/3681/CH10/EX10.15/Ans10_15.PNG
Binary files differ
diff --git a/3681/CH10/EX10.15/Ex10_15.sce b/3681/CH10/EX10.15/Ex10_15.sce
new file mode 100644
index 000000000..fe94cc837
--- /dev/null
+++ b/3681/CH10/EX10.15/Ex10_15.sce
@@ -0,0 +1,19 @@
+// Calculating the number of stator turns per phase
+clc;
+disp('Example 10.15, Page No. = 10.44')
+// Given Data
+// 3 phase star connected induction motor
+P = 75;// Power rating (in kw)
+V = 3000;// Voltage rating
+f = 50;// Frequency (in Hz)
+p = 8;// Number of poles
+AT60 = 500;// mmf required for flux density at 30 degree from pole axis
+Kws = 0.95;// Winding factor
+e = 0.94;// Full load efficiency
+pf = 0.86;// Full load power factor
+// Calculation of the number of stator turns per phase
+I = P*10^(3)/(3^(1/2)*V*e*pf);// Full load current (in ampere)
+Im = 0.35*I;// Magnetizing current (in Ampere). Since magnetizing current is 35% of full load current
+Ts = 0.427*p*AT60/(Kws*Im);// Stator turns per phase
+disp(Ts,'Stator turns per phase =');
+//in book answer is 288. The answers vary due to round off error
diff --git a/3681/CH10/EX10.16/Ans10_16.PNG b/3681/CH10/EX10.16/Ans10_16.PNG
new file mode 100644
index 000000000..2807a0d4c
--- /dev/null
+++ b/3681/CH10/EX10.16/Ans10_16.PNG
Binary files differ
diff --git a/3681/CH10/EX10.16/Ex10_16.sce b/3681/CH10/EX10.16/Ex10_16.sce
new file mode 100644
index 000000000..8b0fa7ea7
--- /dev/null
+++ b/3681/CH10/EX10.16/Ex10_16.sce
@@ -0,0 +1,36 @@
+// Calculating the magnetizing current per phase
+clc;
+disp('Example 10.16, Page No. = 10.44')
+// Given Data
+// 3 phase delta connected induction motor
+P = 75;// Power rating (in kw)
+V = 400;// Voltage rating
+f = 50;// Frequency (in Hz)
+p = 6;// Number of poles
+D = 0.3;// Diameter of motor core (in meter)
+L = 0.12;// Length of motor core (in meter)
+Nss = 72;// Number of stator slots
+Nc = 20;// Number of conductors per slot
+lg = 0.55;// Length of air gap (in meter)
+Kg = 1.2// Gap constraction factor
+Coil_Span = 11;// Coil span (slots)
+// Calculation of the magnetizing current per phase
+q = Nss/(3*p);// Slots per pole per phase
+Kd = sin(60/2*%pi/180)/(q*sin(60/(2*4)*%pi/180));// Distribution factor
+Ns_pole = Nss/p;// Slots per pole
+alpha = 1/Ns_pole*180;// Angle of chording (in degree). Since the winding is chorded by 1 slot pitch
+Kp = cos(alpha/2*%pi/180);// Pitch factor
+Kws = Kd*Kp;// Stator winding factor
+Ns = Nss*Nc;// Total stator conductors
+Ts = Ns/(3*2);// Stator turns per phase
+Eb = V;// Stator voltage per phase. Since machine is delta connected
+Fm = Eb/(4.44*f*Ts*Kws);// Flux per pole (in Wb)
+A = %pi*D*L/p;// Area per pole (in meter square)
+Bav = Fm/A;// Average air gap density (in Wb per meter square)
+Bg60 = 1.36*Bav;// Gap flux density at 30 degree from pole axis
+ATg = 800000*Bg60*Kg*lg*10^(-3);// Mmf required for air gap (in A)
+ATi = 0.35*ATg;// Mmf for iron parts (in A). Since mmf required for iron parts is 35% of air gap mmf
+AT60 = ATg+ATi;// Total mmf (in A)
+Im = 0.427*p*AT60/(Kws*Ts);// Magnetizing current per phase (in ampere)
+disp(Im,'Magnetizing current per phase (Ampere) =');
+//in book answer is 4.56 Ampere. The answers vary due to round off error
diff --git a/3681/CH10/EX10.19/Ans10_19.PNG b/3681/CH10/EX10.19/Ans10_19.PNG
new file mode 100644
index 000000000..3bf5d16f2
--- /dev/null
+++ b/3681/CH10/EX10.19/Ans10_19.PNG
Binary files differ
diff --git a/3681/CH10/EX10.19/Ex10_19.sce b/3681/CH10/EX10.19/Ex10_19.sce
new file mode 100644
index 000000000..fff460a55
--- /dev/null
+++ b/3681/CH10/EX10.19/Ex10_19.sce
@@ -0,0 +1,27 @@
+// Calculating the current in rotor bars and in end rings
+clc;
+disp('Example 10.19, Page No. = 10.50')
+// Given Data
+p = 6;// Number of poles
+ms = 3;// Number of phases of stator
+Nss = 72;// Number of stator slots
+Nc = 15;// Number of conductors per slot
+Sr = 55;// Number of stator slots
+Is = 24.1;// Stator current (in Ampere)
+Coil_Span = 11;// Coil span (slots)
+pf = 0.83;// Power factor
+// Calculation of the current in rotor bars and in end rings
+q = Nss/(ms*p);// Stator slots per pole per phase
+Kd = sin(60/2*%pi/180)/(q*sin(60/(2*4)*%pi/180));// Distribution factor
+Ns_pole = Nss/p;// Slots per pole
+alpha = 1/Ns_pole*180;// Angle of chording (in degree). Since the winding is chorded by 1 slot pitch
+Kp = cos(alpha/2*%pi/180);// Pitch factor
+Kws = Kd*Kp;// Stator winding factor
+Ir_ = Is*pf;// Stator current equivalent to rotor current (in Ampere)
+Ns = Nss*Nc;// Total stator conductors
+Ts = Ns/(ms*2);// Stator turns per phase
+Ib = 2*ms*Kws*Ts*Ir_/Sr;// Current in each rotor bar (in Ampere)
+Ie = Sr*Ib/(%pi*p);// Current in each end ring (in Ampere)
+disp(Ib,'Current in each rotor bar (Ampere) =');
+disp(Ie,'Current in each end ring (Ampere) =');
+//in book answers are 375.4 Ampere and 1095.3 Ampere respectively. The answers vary due to round off error
diff --git a/3681/CH10/EX10.2/Ans10_2.PNG b/3681/CH10/EX10.2/Ans10_2.PNG
new file mode 100644
index 000000000..ae212a782
--- /dev/null
+++ b/3681/CH10/EX10.2/Ans10_2.PNG
Binary files differ
diff --git a/3681/CH10/EX10.2/Ex10_2.sce b/3681/CH10/EX10.2/Ex10_2.sce
new file mode 100644
index 000000000..3c3edc928
--- /dev/null
+++ b/3681/CH10/EX10.2/Ex10_2.sce
@@ -0,0 +1,25 @@
+// Calculating the main dimentions of squirrel cage induction motor
+clc;
+disp('Example 10.2, Page No. = 10.14')
+// Given Data
+P = 15;// Power rating (in kW)
+V = 400;// Voltage rating (in Volts)
+rpm = 2810;// r.p.m.
+f = 50;// Frequency (in Hz)
+e = 0.88;// Efficiency
+pf = 0.9;// Full load power factor
+ac = 25000;// Specific electrical loading (in A per meter)
+Bav = 0.5;// Specific magnetic loading (in Wb per meter square)
+Kw = 0.955;
+// the rotor peripheral speed is approximately 20 meter per second at synchronous speed
+// Calculation of the main dimentions of squirrel cage induction motor
+Q = P/(e*pf);// kVA input
+Co = 11*Kw*Bav*ac*10^(-3);// Output co-efficient
+ns = 3000/60;// Synchronous speed corresponding to 50 Hz (in r.p.s.)
+D2L = Q/(Co*ns);// Product of D^(2)*L
+D = 20/(%pi*ns);// Since the rotor diameter in an induction motor is almost equal to stator bore
+L = D2L/(D*D);
+disp('Main dimentions of squirrel cage induction motor')
+disp(D,'D (meter)=');
+disp(L,'L (meter)=');
+//in book answers are 0.1257 meter and 0.177 meter respectively. The answers vary due to round off error