diff options
Diffstat (limited to '3673/CH10')
-rw-r--r-- | 3673/CH10/EX10.1/Ex10_1.sce | 6 | ||||
-rw-r--r-- | 3673/CH10/EX10.10/Ex10_10.sce | 23 | ||||
-rw-r--r-- | 3673/CH10/EX10.11/Ex10_11.sce | 20 | ||||
-rw-r--r-- | 3673/CH10/EX10.12/Ex10_12.sce | 19 | ||||
-rw-r--r-- | 3673/CH10/EX10.4/Ex10_4.sce | 14 | ||||
-rw-r--r-- | 3673/CH10/EX10.6/Ex10_6.sce | 22 | ||||
-rw-r--r-- | 3673/CH10/EX10.9/Ex10_9.sce | 9 | ||||
-rw-r--r-- | 3673/CH10/EX10.a.10/Example_a_10_10.sce | 12 | ||||
-rw-r--r-- | 3673/CH10/EX10.a.11/Example_a_10_11.sce | 14 | ||||
-rw-r--r-- | 3673/CH10/EX10.a.12/Example_a_10_12.sce | 13 | ||||
-rw-r--r-- | 3673/CH10/EX10.a.13/Example_a_10_13.sce | 39 | ||||
-rw-r--r-- | 3673/CH10/EX10.a.14/Example_a_10_14.sce | 26 | ||||
-rw-r--r-- | 3673/CH10/EX10.a.16/Example_a_10_16.sce | 8 | ||||
-rw-r--r-- | 3673/CH10/EX10.a.18/Example_a_10_18.sce | 14 | ||||
-rw-r--r-- | 3673/CH10/EX10.a.19/Example_a_10_19.sce | 16 | ||||
-rw-r--r-- | 3673/CH10/EX10.a.3/Example_a_10_3.sce | 13 | ||||
-rw-r--r-- | 3673/CH10/EX10.a.6/Example_a_10_6.sce | 15 |
17 files changed, 283 insertions, 0 deletions
diff --git a/3673/CH10/EX10.1/Ex10_1.sce b/3673/CH10/EX10.1/Ex10_1.sce new file mode 100644 index 000000000..aadced27a --- /dev/null +++ b/3673/CH10/EX10.1/Ex10_1.sce @@ -0,0 +1,6 @@ +//Example 10_1 page no:436
+clc;
+//given
+I1=1;
+V2=3/2;
+disp(V2/I1,"the mutual impedence is (in ohm)");
diff --git a/3673/CH10/EX10.10/Ex10_10.sce b/3673/CH10/EX10.10/Ex10_10.sce new file mode 100644 index 000000000..7b2f136f4 --- /dev/null +++ b/3673/CH10/EX10.10/Ex10_10.sce @@ -0,0 +1,23 @@ +//Example 10_10 page no:455
+clc;
+//given
+K=0.9;
+L1=10^-6;
+L2=100*10^-6;
+C=0.1*10^-6;
+Rs=10;
+R2=10;
+Vi=15;
+//calculating the resonance frequency
+M=K*sqrt(L1*L2);
+Wr=1/sqrt(L2*C);
+Fr=Wr/(2*%pi);
+Fr=Fr/1000;//converting to kilo Hz
+disp(Fr,"the resonant frequency is (in kHz)");
+//calculating the output voltage
+Vo=M*Vi/(C*((Rs*R2)+(Wr^2*M)));
+Vo=Vo*1000;
+disp(Vo,"the output voltage is (in mV)");
+//maximum value of output voltage
+Vom=Vi/(2*Wr*C*sqrt(Rs*R2));
+disp(Vom,"maximum value of output voltage is (in V)");
diff --git a/3673/CH10/EX10.11/Ex10_11.sce b/3673/CH10/EX10.11/Ex10_11.sce new file mode 100644 index 000000000..d17bf7472 --- /dev/null +++ b/3673/CH10/EX10.11/Ex10_11.sce @@ -0,0 +1,20 @@ +//Example 10_11 page no:462
+clc;
+//given
+N=1000;
+I=2;
+mu=4*%pi*10^-7;
+A=0.025*10^-4;
+//calculating the mmf
+mmf=N*I;
+disp(mmf,"the mmf of the cirucit is (in AT)");
+//calculating magnetic intensity
+H=mmf/I;
+disp(H,"the magnetic field intensity is (in AT/m)");
+//calculating flux density
+B=mu*H;
+b=B*1000;//converting to milli weber
+disp(b,"the flux density is (in mWb/m^2)");
+//calculating total flux
+phi=B*A;
+disp(phi,"the total flux density is (in Wb)");
diff --git a/3673/CH10/EX10.12/Ex10_12.sce b/3673/CH10/EX10.12/Ex10_12.sce new file mode 100644 index 000000000..8a28a7f1e --- /dev/null +++ b/3673/CH10/EX10.12/Ex10_12.sce @@ -0,0 +1,19 @@ +//Example 10_12 page no:462
+clc;
+//given
+area=100*10^-4;
+B=5*10^-3*10^4/100;
+mu=4*%pi*10^-7;
+phi=5*10^-3;
+H=B/mu;
+len=2.5*10^-3;
+mmf_required=H*len;//in text book H of the gap is rounded so mmf_required varies greatly
+area1=150*10^-4;
+flux_den=phi/area1;
+mr=800;
+H=flux_den/(mu*mr);
+len=0.5;
+mmf_required1=len*H;
+tot_mmf=mmf_required+mmf_required1;
+disp(tot_mmf,"the mmf required is (in AT)");
+//H of the air gap is rounded off greatly in textbook so the answer is inaccurate, here the accurate value is used for the calculation
diff --git a/3673/CH10/EX10.4/Ex10_4.sce b/3673/CH10/EX10.4/Ex10_4.sce new file mode 100644 index 000000000..f6da78e67 --- /dev/null +++ b/3673/CH10/EX10.4/Ex10_4.sce @@ -0,0 +1,14 @@ +//Example 10_2 page no:442
+clc;
+//given
+K=0.5;
+L1=50*10^-3;
+L2=200*10^-3;
+//calculating the mutual inductance
+M=K*sqrt(L1*L2);
+M=M*1000;//converting to milli henry
+disp(M,"the value of mutual inducatance between coil is (in mH)");
+//calculating the maximum inductance when K=1
+M=sqrt(L1*L2);
+M=M*1000;//converting to milli henry
+disp(M,"the maximum value of inducatance is (in mH)");
diff --git a/3673/CH10/EX10.6/Ex10_6.sce b/3673/CH10/EX10.6/Ex10_6.sce new file mode 100644 index 000000000..2fc6f533f --- /dev/null +++ b/3673/CH10/EX10.6/Ex10_6.sce @@ -0,0 +1,22 @@ +//Example 10_6 page no:446
+clc;
+//given
+output_imp=1936;
+load_imp=4;
+I1=20*10^-3;
+//calculating the turn ratio
+den=output_imp/load_imp;
+den=sqrt(den);
+num=1;
+function [x] = frac(n, d)
+ x = (n*%s)/(d*%s);
+endfunction;
+x=frac(num,den);
+disp(x,"the desired ratio for an ideal transformer to connect the two systems is");
+//calculating the rms current
+a=1/22;
+rms_current=I1/a;
+disp(rms_current,"the RMS value of the current in the secondary winding is (in A)");
+//calculatin the delivered power
+del_pow=(rms_current^2)*load_imp;
+disp(del_pow,"the power delivered to the load is (in W)");
diff --git a/3673/CH10/EX10.9/Ex10_9.sce b/3673/CH10/EX10.9/Ex10_9.sce new file mode 100644 index 000000000..fe956f74e --- /dev/null +++ b/3673/CH10/EX10.9/Ex10_9.sce @@ -0,0 +1,9 @@ +//Example 10_9 page no:451
+clc;
+//given
+L=[1,2,//here L1+L2 is kept as L
+1,-2];
+a=[0.4,
+0.2];
+X=inv(L)*a;
+disp(X(2),"the mutual inductance of the coil is (in H)");
diff --git a/3673/CH10/EX10.a.10/Example_a_10_10.sce b/3673/CH10/EX10.a.10/Example_a_10_10.sce new file mode 100644 index 000000000..1c0c3391f --- /dev/null +++ b/3673/CH10/EX10.a.10/Example_a_10_10.sce @@ -0,0 +1,12 @@ +//Example_a_10_10 page no:471
+clc;
+R=10;
+X1=[(-%i*11),10
+ (%i*18),0];
+X2=[-(%i*11),(%i*18)
+ (%i*18),(10-(%i*3))];
+i2=det(X1/X2);
+i2mag=sqrt(real(i2)^2+imag(i2)^2);
+v2=i2mag*R;
+v2=det(v2);
+disp(v2,"the voltage across 10 ohm resistor is (in V)");
diff --git a/3673/CH10/EX10.a.11/Example_a_10_11.sce b/3673/CH10/EX10.a.11/Example_a_10_11.sce new file mode 100644 index 000000000..ddb4b9626 --- /dev/null +++ b/3673/CH10/EX10.a.11/Example_a_10_11.sce @@ -0,0 +1,14 @@ +//Example_a_10_11 page no:472
+clc;
+omega_r=1000;
+C1=1*10^-6;
+C2=2*10^-6;
+R1=5;
+R2=3;
+L1=1/(omega_r^2*C1);
+L2=1/(omega_r^2*C2);
+M=sqrt(R1*R2)/omega_r;
+M=M*1000;//converting to milli Henry
+disp(L1,"the inductance L1 is (in H)");
+disp(L2,"the inductance L2 is (in H)");
+disp(M,"the optimum value of mutual inductance is (in mH)");
diff --git a/3673/CH10/EX10.a.12/Example_a_10_12.sce b/3673/CH10/EX10.a.12/Example_a_10_12.sce new file mode 100644 index 000000000..f5499b648 --- /dev/null +++ b/3673/CH10/EX10.a.12/Example_a_10_12.sce @@ -0,0 +1,13 @@ +//Example_a_10_12 page no:473
+clc;
+R1=0.01;
+R2=0.1;
+Rs=0.1;
+V=2;
+L1=2*10^-6;
+L2=25*10^-6;
+omega_r=10^4;
+Mc=sqrt(R2*(R1+R2))/omega_r;
+C2=1/(omega_r^2*L2);
+Vo=V/(2*omega_r^2*C2*Mc);
+disp(Vo,"the maximum output voltage at resonance is (in V)");
diff --git a/3673/CH10/EX10.a.13/Example_a_10_13.sce b/3673/CH10/EX10.a.13/Example_a_10_13.sce new file mode 100644 index 000000000..1be171321 --- /dev/null +++ b/3673/CH10/EX10.a.13/Example_a_10_13.sce @@ -0,0 +1,39 @@ +//Example_a_10_13 page no:473
+clc;
+D=10;
+len_of_flux_path=%pi*D;
+len_of_flux_path=len_of_flux_path/100;//converting to meter
+area_of_flux_path=15*10^-4;
+air_gap=2*10^-3;
+B=1.5;
+mu_not=4*%pi*10^-7;
+mu_r=500;
+H=B/(mu_not*mu_r);
+mmf=750;
+T=250;
+N=250;
+A=15*10^-4;
+exciting_current=mmf/T;
+reluctance=len_of_flux_path/(mu_not*mu_r*A);
+self_inductance=N^2/reluctance;//calculating the self inductance
+Energy=(1/2)*self_inductance*exciting_current^2;//calculating the stored energy
+disp("without air gap");
+disp(exciting_current,"the exciting current is (in A)");
+disp(self_inductance,"the inductance is (in H)");
+disp(Energy,"the stored energy is (in joules)");
+reluctance_of_gap=air_gap/(mu_not*A);
+total_reluctance=reluctance+reluctance_of_gap;
+mmf=B*area_of_flux_path*total_reluctance;
+Exciting_current=mmf/N;
+L=N^2/total_reluctance;
+L=L*1000;//converting to milli Henry
+E=(1/2)*L*10^-3*Exciting_current^2;
+disp("with air gap");
+disp(reluctance_of_gap,"the reluctance of air gap is (in A/Wb)");
+disp(total_reluctance,"the total reluctance is (in A/Wb)");
+disp(mmf,"the mmf is (in AT)");
+disp(Exciting_current,"the exciting current is (in A)");
+disp(L,"the inductance is (in mH)");
+disp(E,"the energy is (in joules)");
+//mmf varies slightly with text book because total reluctance is rounded off in text book
+//exciting current varies slightly with text book because mmf is rounded off in text book
diff --git a/3673/CH10/EX10.a.14/Example_a_10_14.sce b/3673/CH10/EX10.a.14/Example_a_10_14.sce new file mode 100644 index 000000000..97e5ed708 --- /dev/null +++ b/3673/CH10/EX10.a.14/Example_a_10_14.sce @@ -0,0 +1,26 @@ +//Example_a_10_14 page no:475
+clc;
+turn=700;
+mu_o=4*%pi*10^-7;
+mu_r=600;
+phi_g=1.8*10^-3;
+Ag=4*4&10^-4;
+Bg=(1.8*10^-3)/(16*10^-4);
+Ig=0.001;
+Hg=Bg/mu_o;
+mmf_gap=Hg*Ig;
+phi_c=1.8*10^-3;
+Ac=4*4*10^-4;
+Bc=1.125;
+Ic=0.24;
+Is=0.6;
+Hc=Bc/(mu_o*mu_r);
+mmf_central_limb=Hc*Ic;
+phi_s=(1/2)*phi_g;
+Bs=phi_s/(16*10^-4);
+Hs=Bs/(mu_o*mu_r);
+//calculating the mmf
+mmf_side_limb=Hs*Is;
+mmf_t=mmf_gap+mmf_central_limb+mmf_side_limb;
+current_required=mmf_t/turn;
+disp(current_required,"the required current is (in A)");
diff --git a/3673/CH10/EX10.a.16/Example_a_10_16.sce b/3673/CH10/EX10.a.16/Example_a_10_16.sce new file mode 100644 index 000000000..a45074bb5 --- /dev/null +++ b/3673/CH10/EX10.a.16/Example_a_10_16.sce @@ -0,0 +1,8 @@ +//Example_a_10_16 page no:477
+clc;
+t=2;
+V1=(0.5*((t*(-2)*exp(-2*t))+exp(-2*t)))+(0.2*(((t^2)*(-1)*exp(-t))+(2*(t)*exp(-t))));
+disp(V1,"the value of V1(t) is (in V)");//the value of V1 is wrong in text book, correct calculation is done here
+V2=-0.125*((2*2*exp(-2))-(2^2*exp(-2)))+(0.2*(exp(-2*2)-(2*2*exp(-2*2))));
+disp(V2,"the value of V2(t) is (in V)");
+//calculation of V1 is wrong in textbook
diff --git a/3673/CH10/EX10.a.18/Example_a_10_18.sce b/3673/CH10/EX10.a.18/Example_a_10_18.sce new file mode 100644 index 000000000..4875123b3 --- /dev/null +++ b/3673/CH10/EX10.a.18/Example_a_10_18.sce @@ -0,0 +1,14 @@ +//Example_a_10_18 page no:479
+clc;
+l=0.6;
+r=l/(2*%pi);
+N=300;
+I=1;
+AT=300;
+a=%pi*r^2;
+mu=4*%pi*10^-7
+R=l/(mu*N*a);
+lg=90.345/299;
+disp(lg,"the air gap is (in m)");
+disp(R,"the reluctance is (in AT/wb)");
+//reluctance value varies in the textbook hence area and radius is rounded off in text book
diff --git a/3673/CH10/EX10.a.19/Example_a_10_19.sce b/3673/CH10/EX10.a.19/Example_a_10_19.sce new file mode 100644 index 000000000..dac1a51cb --- /dev/null +++ b/3673/CH10/EX10.a.19/Example_a_10_19.sce @@ -0,0 +1,16 @@ +//Example_a_10_18 page no:479
+clc;
+N=500;
+l1=(20+20)*10^-2;
+l2=(20+8)*10^-2;
+l3=1*10^-3;
+mu1=800*4*%pi*10^-7;
+mu2=800*4*%pi*10^-7;
+mu3=4*%pi*10^-7;
+A1=16*10^-4;
+A2=64*10^-4;
+A3=64*10^-4;
+phi=1*10^-3;
+I=(((l1/(A1*mu1))+(l2/(A2*mu2))+(l3/(A3*mu3)))*phi)/500;
+disp(I,"the current to be passed through the coil "'C"' is (in A)");
+//the calculation in text book is wrong,here the value of current is correctly calculated, calculation at one of the denominator is wrong in text book
diff --git a/3673/CH10/EX10.a.3/Example_a_10_3.sce b/3673/CH10/EX10.a.3/Example_a_10_3.sce new file mode 100644 index 000000000..fe6c4252c --- /dev/null +++ b/3673/CH10/EX10.a.3/Example_a_10_3.sce @@ -0,0 +1,13 @@ +//Example_a_10_3 page no:465
+clc;
+K=0.5;
+L1L2=36;
+M=K*sqrt(L1L2);
+t=0;
+//calculating the voltages
+V1=20*(-sind((50*t-30))*50)-6*(-sind((50*t)-30)*50);
+V2=-15*(-sind((50*t-30))*50)+18*(-sind((50*t)-30)*50);
+W=(((1/2)*4*(5*cosd((50*t)-30))^2)+((1/2)*9*(2*cosd((50*t)-30))^2)-(3*(5*cosd((50*t)-30)*2*cosd((50*t)-30))))*%i;
+disp(V1,"the value of V1 is (in V)");
+disp(V2,"the value of V2 is (in V)");
+disp(W,"the total energy stored in the system is (in W)");
diff --git a/3673/CH10/EX10.a.6/Example_a_10_6.sce b/3673/CH10/EX10.a.6/Example_a_10_6.sce new file mode 100644 index 000000000..597efd432 --- /dev/null +++ b/3673/CH10/EX10.a.6/Example_a_10_6.sce @@ -0,0 +1,15 @@ +//Example_a_10_6 page no:467
+clc;
+V1=10;
+R2=400;
+X1=[(10+(%i*500)),10
+ (-%i*250),0];
+X2=[(10+(%i*500)),(-%i*250)
+ (-%i*250),(400+(%i*5000))];
+i2=det(X1/X2);
+V2=i2*R2;
+V2mag=sqrt(real(V2)^2+imag(V2)^2);
+V2ang=atand(imag(V2)/real(V2));
+output_ratio=V2mag/V1;
+disp(output_ratio,"the magnitude of ratio of output voltage of the source voltage is ");
+disp(V2ang,"the angle of ratio of output voltage of the source voltage is (in degree)");
|