summaryrefslogtreecommitdiff
path: root/3638/CH13
diff options
context:
space:
mode:
Diffstat (limited to '3638/CH13')
-rw-r--r--3638/CH13/EX13.1/Ex13_1.jpgbin0 -> 62262 bytes
-rw-r--r--3638/CH13/EX13.1/Ex13_1.sce26
-rw-r--r--3638/CH13/EX13.10/Ex13_10.jpgbin0 -> 84798 bytes
-rw-r--r--3638/CH13/EX13.10/Ex13_10.sce18
-rw-r--r--3638/CH13/EX13.11/Ex13_11.jpgbin0 -> 103925 bytes
-rw-r--r--3638/CH13/EX13.11/Ex13_11.sce23
-rw-r--r--3638/CH13/EX13.12/Ex13_12.jpgbin0 -> 99908 bytes
-rw-r--r--3638/CH13/EX13.12/Ex13_12.sce18
-rw-r--r--3638/CH13/EX13.13/Ex13_13.jpgbin0 -> 74219 bytes
-rw-r--r--3638/CH13/EX13.13/Ex13_13.sce19
-rw-r--r--3638/CH13/EX13.14/Ex13_14.jpgbin0 -> 91135 bytes
-rw-r--r--3638/CH13/EX13.14/Ex13_14.sce25
-rw-r--r--3638/CH13/EX13.15/Ex13_15.jpgbin0 -> 65831 bytes
-rw-r--r--3638/CH13/EX13.15/Ex13_15.sce14
-rw-r--r--3638/CH13/EX13.16/Ex13_16.jpgbin0 -> 90949 bytes
-rw-r--r--3638/CH13/EX13.16/Ex13_16.sce18
-rw-r--r--3638/CH13/EX13.17/Ex13_17.jpgbin0 -> 91905 bytes
-rw-r--r--3638/CH13/EX13.17/Ex13_17.sce18
-rw-r--r--3638/CH13/EX13.18/Ex13_18.jpgbin0 -> 90468 bytes
-rw-r--r--3638/CH13/EX13.18/Ex13_18.sce18
-rw-r--r--3638/CH13/EX13.2/Ex13_2.jpgbin0 -> 62794 bytes
-rw-r--r--3638/CH13/EX13.2/Ex13_2.sce11
-rw-r--r--3638/CH13/EX13.3/Ex13_3.jpgbin0 -> 71173 bytes
-rw-r--r--3638/CH13/EX13.3/Ex13_3.sce19
-rw-r--r--3638/CH13/EX13.4/Ex13_4.jpgbin0 -> 86854 bytes
-rw-r--r--3638/CH13/EX13.4/Ex13_4.sce16
-rw-r--r--3638/CH13/EX13.5/Ex13_5.jpgbin0 -> 87285 bytes
-rw-r--r--3638/CH13/EX13.5/Ex13_5.sce20
-rw-r--r--3638/CH13/EX13.6/Ex13_6.jpgbin0 -> 101905 bytes
-rw-r--r--3638/CH13/EX13.6/Ex13_6.sce36
-rw-r--r--3638/CH13/EX13.7/Ex13_7.jpgbin0 -> 106079 bytes
-rw-r--r--3638/CH13/EX13.7/Ex13_7.sce39
-rw-r--r--3638/CH13/EX13.8/Ex13_8.jpgbin0 -> 101264 bytes
-rw-r--r--3638/CH13/EX13.8/Ex13_8.sce31
-rw-r--r--3638/CH13/EX13.9/Ex13_9.jpgbin0 -> 84802 bytes
-rw-r--r--3638/CH13/EX13.9/Ex13_9.sce18
36 files changed, 387 insertions, 0 deletions
diff --git a/3638/CH13/EX13.1/Ex13_1.jpg b/3638/CH13/EX13.1/Ex13_1.jpg
new file mode 100644
index 000000000..17618ac70
--- /dev/null
+++ b/3638/CH13/EX13.1/Ex13_1.jpg
Binary files differ
diff --git a/3638/CH13/EX13.1/Ex13_1.sce b/3638/CH13/EX13.1/Ex13_1.sce
new file mode 100644
index 000000000..817b50978
--- /dev/null
+++ b/3638/CH13/EX13.1/Ex13_1.sce
@@ -0,0 +1,26 @@
+//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 13.2
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+//Vc(t)=V0*(1-exp(-t/(R*C))) is the voltage across capacitance in an RC circuit
+//Hence, the time t=R*C*(-log(1-Vc/V0))
+
+//The Rise time is the time taken by a system to rise from 10% to 90% of maximum value
+//So, it is given as Tr=T90-T10 where T90 is time when Vc is 90% of maximum value and T10 is time when Vc is 10% of maximum value
+//i.e. Tr=R*C*(-log(1-0.9))-R*C*(-log(1-0.1))
+//Let Tr=R*C*k; where k=log(1-0.1))-log(1-0.9)
+k=log(1-0.1)-log(1-0.9);
+mprintf("\n The Rise Time Tr=%.2fRC",k);
+
+//Now, The 3dB bandwidth is given as Deltaf=1/(2*%pi*R*C);
+//Let Deltaf=m/(R*C); where m=1/(2*%pi)
+m=1/(2*%pi);
+mprintf("\n The 3dB bandwidth Deltaf=%.2f/RC",m);
+
+//By multiplying expressions of Tr and Deltaf, we eliminate RC from the expressions
+//Rearranging te terms, we get Tr in terms of Deltaf
+mprintf("\n Rise time in terms of Bandwidth is given as:");
+mprintf("\n Tr=%.2f/Deltaf",k*m);
diff --git a/3638/CH13/EX13.10/Ex13_10.jpg b/3638/CH13/EX13.10/Ex13_10.jpg
new file mode 100644
index 000000000..84ed6f463
--- /dev/null
+++ b/3638/CH13/EX13.10/Ex13_10.jpg
Binary files differ
diff --git a/3638/CH13/EX13.10/Ex13_10.sce b/3638/CH13/EX13.10/Ex13_10.sce
new file mode 100644
index 000000000..31a2602cf
--- /dev/null
+++ b/3638/CH13/EX13.10/Ex13_10.sce
@@ -0,0 +1,18 @@
+//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 13.10
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+P=100e-9;//Optical power in W
+R=0.6;//Responsivity in A/W
+Rl=1000;//Value of load resistor in Ohms
+e=1.6e-19//Electronic charge in C
+kB=1.38e-23;//Boltzmann constant in SI Units
+T=300;//Missing data- Temperature in K
+x=0.7;//Excess noise
+Id=0;//Since the dark current is neglected in the example
+
+Mop=(4*kB*T/(x*e*Rl*(R*P+Id)))^(1/(x+2));//Optimum value of internal gain corresponding to input optical power P
+mprintf("Mop= %.1f",Mop);
diff --git a/3638/CH13/EX13.11/Ex13_11.jpg b/3638/CH13/EX13.11/Ex13_11.jpg
new file mode 100644
index 000000000..a3f0d59d6
--- /dev/null
+++ b/3638/CH13/EX13.11/Ex13_11.jpg
Binary files differ
diff --git a/3638/CH13/EX13.11/Ex13_11.sce b/3638/CH13/EX13.11/Ex13_11.sce
new file mode 100644
index 000000000..a463dc181
--- /dev/null
+++ b/3638/CH13/EX13.11/Ex13_11.sce
@@ -0,0 +1,23 @@
+//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 13.11
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+R=0.5;//Responsivity in A/W
+T=300;//Missing data- Temperature in K
+C=1e-12;//Photodiode capacitance in F
+BER=1e-9;//Bit error rate
+SNR=144;//Signal-to-noise ratio corresponding to BER of (10)^(-9)
+kB=1.38e-23;//Boltzmann constant in SI Units
+
+//Case(i):
+B=100e6;//Bit rate in b/s
+Pmin=B/R*sqrt(2*%pi*kB*T*C*SNR);
+mprintf("\n For 100 Mb/s, Pmin=%.2f uW",Pmin/1e-6);//Dividing by 10^(-6) to convert into uW
+
+//Case(ii):
+B=1e9;//Bit rate in b/s
+Pmin=B/R*sqrt(2*%pi*kB*T*C*SNR);
+mprintf("\n For 1 Gb/s, Pmin=%.2f uW",Pmin/1e-6);//Dividing by 10^(-6) to convert into uW
diff --git a/3638/CH13/EX13.12/Ex13_12.jpg b/3638/CH13/EX13.12/Ex13_12.jpg
new file mode 100644
index 000000000..f4010d7dd
--- /dev/null
+++ b/3638/CH13/EX13.12/Ex13_12.jpg
Binary files differ
diff --git a/3638/CH13/EX13.12/Ex13_12.sce b/3638/CH13/EX13.12/Ex13_12.sce
new file mode 100644
index 000000000..1f77ffaa4
--- /dev/null
+++ b/3638/CH13/EX13.12/Ex13_12.sce
@@ -0,0 +1,18 @@
+//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 13.12
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+R=0.5;//Responsivity in A/W
+T=300;//Missing data- Temperature in K
+C=1e-12;//Photodiode capacitance in F
+BER=1e-6;//Bit error rate
+SNR=90;//Signal-to-noise ratio corresponding to BER of (10)^(-6)
+kB=1.38e-23;//Boltzmann constant in SI Units
+
+B=100e6;//Bit rate in b/s
+Pmin=B/R*sqrt(2*%pi*kB*T*C*SNR);
+mprintf("\n For 100 Mb/s, Pmin=%.2f uW",Pmin/1e-6);//Dividing by 10^(-6) to convert into uW
+//The answers vary due to round off error
diff --git a/3638/CH13/EX13.13/Ex13_13.jpg b/3638/CH13/EX13.13/Ex13_13.jpg
new file mode 100644
index 000000000..38f8ae7f6
--- /dev/null
+++ b/3638/CH13/EX13.13/Ex13_13.jpg
Binary files differ
diff --git a/3638/CH13/EX13.13/Ex13_13.sce b/3638/CH13/EX13.13/Ex13_13.sce
new file mode 100644
index 000000000..4660ddd4a
--- /dev/null
+++ b/3638/CH13/EX13.13/Ex13_13.sce
@@ -0,0 +1,19 @@
+//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 13.13
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+L=40;//Total fiber length in km
+alphat=0.5;//Fiber transmission loss in dB/km
+Pmin=-39;//Receiver sensitivity in dBm is the minimum power received by receiver
+Ns=4;//Number of splices contributing to loss
+Ls=0.5;//Loss of each splice in dB
+Nc=2;//Number of connectors contributing to loss
+Lc=1;//Loss of each connector in dB;
+Pm=6;//Power margin in dB
+//Let the source power be P
+P=Pmin+Pm+Ns*Ls+Nc*Lc+L*alphat;//Minimum value of source power in dBm
+mprintf("\n The source power must exceed %.2f dBm= %.2f mW",P,(10^(P/10)));//Taking 10^(P/10) to convert into mW
+
diff --git a/3638/CH13/EX13.14/Ex13_14.jpg b/3638/CH13/EX13.14/Ex13_14.jpg
new file mode 100644
index 000000000..7702fe8d6
--- /dev/null
+++ b/3638/CH13/EX13.14/Ex13_14.jpg
Binary files differ
diff --git a/3638/CH13/EX13.14/Ex13_14.sce b/3638/CH13/EX13.14/Ex13_14.sce
new file mode 100644
index 000000000..d2b3ffa2e
--- /dev/null
+++ b/3638/CH13/EX13.14/Ex13_14.sce
@@ -0,0 +1,25 @@
+//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 13.14
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+Pi=50e-6;//Source power in W
+R=0.65;//Responsivity in A/W
+T=300;//Missing data- Temperature in K
+C=5e-12;//Photodiode capacitance in F
+BER=1e-9;//Bit error rate
+SNR=144;//Signal-to-noise ratio corresponding to BER of (10)^(-6)
+kB=1.38e-23;//Boltzmann constant in SI Units
+
+B=20e6;//Bit rate in b/s
+Pmin=(B/R)*sqrt(2*%pi*kB*T*C*SNR);//Receiver sensitivity in W
+//Let the value of Pmin in dBm be denoted by 'PmindBm'
+PmindBm=10*log10(Pmin/1e-3);//Taking 10*log(Pmin) to convert into dBm where Pmin must be in mW
+mprintf("\n For 20 Mb/s, Pmin=%.2e W = %.1f dBm",Pmin,PmindBm);//The answers vary due to round off error
+//Let the value of Pi in dBm be denoted by 'PidBm'
+PidBm=10*log10(Pi/1e-3);//Taking 10*log(Pi) to convert into dBm where Pi must be in mW
+Pl=abs(PmindBm-PidBm);//The permissible loss between transmitter and receiver in dB
+mprintf("\n The permissible loss between transmitter and receiver = %.1f dB",Pl);
+//The answers vary due to round off error
diff --git a/3638/CH13/EX13.15/Ex13_15.jpg b/3638/CH13/EX13.15/Ex13_15.jpg
new file mode 100644
index 000000000..9928e8916
--- /dev/null
+++ b/3638/CH13/EX13.15/Ex13_15.jpg
Binary files differ
diff --git a/3638/CH13/EX13.15/Ex13_15.sce b/3638/CH13/EX13.15/Ex13_15.sce
new file mode 100644
index 000000000..c1557ddcd
--- /dev/null
+++ b/3638/CH13/EX13.15/Ex13_15.sce
@@ -0,0 +1,14 @@
+//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 13.15
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+B=400e6;//Bit rate in b/s
+BER=1e-9;//Bit error rate
+L=100;//Total fiber length in km
+
+//The Total system rise time is given as:
+Ts=0.7/B;//The expression for total rise time under NRZ transmission in s
+mprintf("\n The total system rise time Ts=%.2f ns",Ts/1e-9);//Dividing by 10^(-9) to convert into ns
diff --git a/3638/CH13/EX13.16/Ex13_16.jpg b/3638/CH13/EX13.16/Ex13_16.jpg
new file mode 100644
index 000000000..ad519723e
--- /dev/null
+++ b/3638/CH13/EX13.16/Ex13_16.jpg
Binary files differ
diff --git a/3638/CH13/EX13.16/Ex13_16.sce b/3638/CH13/EX13.16/Ex13_16.sce
new file mode 100644
index 000000000..ee202e679
--- /dev/null
+++ b/3638/CH13/EX13.16/Ex13_16.sce
@@ -0,0 +1,18 @@
+//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 13.16
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+lambda=1300e-9;//Operating wavekength of the system in m
+alpha=0.4;//Fiber loss in dB/km
+Pi=1e-3;//Input power in W
+Np=1000;//Minimum number of photons per bit of information
+B=2.5e9;//Bit rate in b/s
+h=6.63e-34;//Planck's constant in SI Units
+c=3e8;//Speed of photons in m/s
+v=c/lambda;//Frequency corresponding to the operating frequency
+
+Lmax=10/alpha*log10(2*Pi/(Np*B*h*v));//Maximum permissible loss-limited length in km
+mprintf("\n Maximum permissible loss-limited length Lmax=%.2f km",Lmax);//The answers vary due to round off error
diff --git a/3638/CH13/EX13.17/Ex13_17.jpg b/3638/CH13/EX13.17/Ex13_17.jpg
new file mode 100644
index 000000000..46f948a7d
--- /dev/null
+++ b/3638/CH13/EX13.17/Ex13_17.jpg
Binary files differ
diff --git a/3638/CH13/EX13.17/Ex13_17.sce b/3638/CH13/EX13.17/Ex13_17.sce
new file mode 100644
index 000000000..040f657a3
--- /dev/null
+++ b/3638/CH13/EX13.17/Ex13_17.sce
@@ -0,0 +1,18 @@
+//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 13.17
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+lambda=1550e-9;//Operating wavekength of the system in m
+alpha=0.2;//Fiber loss in dB/km
+Pi=1e-3;//Input power in W
+Np=1000;//Minimum number of photons per bit of information
+B=2.5e9;//Bit rate in b/s
+h=6.63e-34;//Planck's constant in SI Units
+c=3e8;//Speed of photons in m/s
+v=c/lambda;//Frequency corresponding to the operating frequency
+
+Lmax=10/alpha*log10(2*Pi/(Np*B*h*v));//Maximum permissible loss-limited length in km
+mprintf("\n Maximum permissible loss-limited length Lmax=%.2f km",Lmax);//The answers vary due to round off error
diff --git a/3638/CH13/EX13.18/Ex13_18.jpg b/3638/CH13/EX13.18/Ex13_18.jpg
new file mode 100644
index 000000000..8321a9800
--- /dev/null
+++ b/3638/CH13/EX13.18/Ex13_18.jpg
Binary files differ
diff --git a/3638/CH13/EX13.18/Ex13_18.sce b/3638/CH13/EX13.18/Ex13_18.sce
new file mode 100644
index 000000000..6058d92a5
--- /dev/null
+++ b/3638/CH13/EX13.18/Ex13_18.sce
@@ -0,0 +1,18 @@
+//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 13.18
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+lambda=850e-9;//Operating wavekength of the system in m
+alpha=2.5;//Fiber loss in dB/km
+Pi=1e-3;//Input power in W
+Np=1000;//Minimum number of photons per bit of information
+B=100e6;//Bit rate in b/s
+h=6.63e-34;//Planck's constant in SI Units
+c=3e8;//Speed of photons in m/s
+v=c/lambda;//Frequency corresponding to the operating frequency
+
+Lmax=10/alpha*log10(2*Pi/(Np*B*h*v));//Maximum permissible loss-limited length in km
+mprintf("\n Maximum permissible loss-limited length Lmax=%.2f km",Lmax);//The answers vary due to round off error
diff --git a/3638/CH13/EX13.2/Ex13_2.jpg b/3638/CH13/EX13.2/Ex13_2.jpg
new file mode 100644
index 000000000..715a31181
--- /dev/null
+++ b/3638/CH13/EX13.2/Ex13_2.jpg
Binary files differ
diff --git a/3638/CH13/EX13.2/Ex13_2.sce b/3638/CH13/EX13.2/Ex13_2.sce
new file mode 100644
index 000000000..39df7da91
--- /dev/null
+++ b/3638/CH13/EX13.2/Ex13_2.sce
@@ -0,0 +1,11 @@
+//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 13.2
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+B=2.5e9;//pulse rate of signal in bits/sec
+
+mprintf("\n In the RZ format, we would require a bandwidth = %.2f GHz",B/1e9);//In RZ format, Deltaf=B and Division by 10^9 to convert into GHz
+mprintf("\n In the NRZ format, we would require a bandwidth = %.2f GHz",(B/2)/1e9);//In RZ format, Deltaf=B/2 and Division by 10^9 to convert into GHz
diff --git a/3638/CH13/EX13.3/Ex13_3.jpg b/3638/CH13/EX13.3/Ex13_3.jpg
new file mode 100644
index 000000000..2511369d7
--- /dev/null
+++ b/3638/CH13/EX13.3/Ex13_3.jpg
Binary files differ
diff --git a/3638/CH13/EX13.3/Ex13_3.sce b/3638/CH13/EX13.3/Ex13_3.sce
new file mode 100644
index 000000000..80c9fc3ec
--- /dev/null
+++ b/3638/CH13/EX13.3/Ex13_3.sce
@@ -0,0 +1,19 @@
+//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 13.3
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+Id=1e-9;//Dark current of a silicon PIN photodiode in A
+P=1e-6;//Optical power in W
+R=0.65;//Responsivity in A/W
+e=1.6e-19//Electronic charge in C
+Deltaf=100e6;//Detector bandwidth in Hz
+
+I=R*P;
+mprintf("\n I=%.2f uA",I/1e-6)//Division by 10^(-6) to convert into uA
+//Let the root mean square shot noise current be Ins
+Ins=sqrt(2*e*(I+Id)*Deltaf);//As the root mean square shot noise current is the square root of mean square shot noise current in A
+mprintf("\n The rms shot noise current = %.2f nA",Ins/1e-9);//Division by 10^(-9) to convert into nA
+//The answers vary due to round off error
diff --git a/3638/CH13/EX13.4/Ex13_4.jpg b/3638/CH13/EX13.4/Ex13_4.jpg
new file mode 100644
index 000000000..d95efac71
--- /dev/null
+++ b/3638/CH13/EX13.4/Ex13_4.jpg
Binary files differ
diff --git a/3638/CH13/EX13.4/Ex13_4.sce b/3638/CH13/EX13.4/Ex13_4.sce
new file mode 100644
index 000000000..a003023f1
--- /dev/null
+++ b/3638/CH13/EX13.4/Ex13_4.sce
@@ -0,0 +1,16 @@
+//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 13.4
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+Rl=500;//Value of load resistor Rl in Ohms
+kB=1.38e-23;//Boltzmann constant in SI Units
+Deltaf=100e6;//Bandwidth of detection in Hz
+T=300;//Temperature in K
+
+//Let the root mean square shot noise current be Ins
+Ins=sqrt(4*kB*T*Deltaf/Rl);//As the root mean square shot noise current is the square root of mean square shot noise current in A
+mprintf("\n The rms shot noise current = %.2e A",Ins);
+mprintf("\n The mean square shot noise current = %.2e A^2",Ins^2)//The answers vary due to round off error
diff --git a/3638/CH13/EX13.5/Ex13_5.jpg b/3638/CH13/EX13.5/Ex13_5.jpg
new file mode 100644
index 000000000..4e21e1544
--- /dev/null
+++ b/3638/CH13/EX13.5/Ex13_5.jpg
Binary files differ
diff --git a/3638/CH13/EX13.5/Ex13_5.sce b/3638/CH13/EX13.5/Ex13_5.sce
new file mode 100644
index 000000000..1e75b2ef2
--- /dev/null
+++ b/3638/CH13/EX13.5/Ex13_5.sce
@@ -0,0 +1,20 @@
+//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 13.5
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+R=0.65;//Responsivity of a Si detector in A/W
+Id=1e-9;//Dark current in A
+e=1.6e-19;//Electronic charge in C
+kB=1.38e-23;//Boltzmann constant in SI Units
+Rl=1000;//Assumed value of load resistor Rl in Ohms
+T=300;//Assumed value of temperature in K
+
+NEP=1/R*sqrt(2*e*Id+4*kB*T/Rl);//Noise equivalent power in W/(Hz)^(1/2)
+mprintf("\n NEP = %.2e W/(Hz)^(1/2)",NEP);//The answers vary due to round off error
+//If Id is the major noise term :
+NEP=1/R*sqrt(2*e*Id);//Noise equivalent power in W/(Hz)^(1/2)
+mprintf("\n If Id is the major noise term:");
+mprintf("\n NEP = %.2e W/(Hz)^(1/2)",NEP);
diff --git a/3638/CH13/EX13.6/Ex13_6.jpg b/3638/CH13/EX13.6/Ex13_6.jpg
new file mode 100644
index 000000000..58b1d18bc
--- /dev/null
+++ b/3638/CH13/EX13.6/Ex13_6.jpg
Binary files differ
diff --git a/3638/CH13/EX13.6/Ex13_6.sce b/3638/CH13/EX13.6/Ex13_6.sce
new file mode 100644
index 000000000..27102af8b
--- /dev/null
+++ b/3638/CH13/EX13.6/Ex13_6.sce
@@ -0,0 +1,36 @@
+//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 13.6
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+Id=1e-9;//Dark current of a silicon PIN photodiode in A
+P=500e-9;//Optical power in W
+R=0.65;//Responsivity in A/W
+Rl=1000;//Value of load resistor in Ohms
+e=1.6e-19//Electronic charge in C
+kB=1.38e-23;//Boltzmann constant in SI Units
+Deltaf=100e6;//Detector bandwidth in Hz
+T=300;//Missing data- Temperature in K
+
+I=R*P;//Signal current in A
+mprintf("\n I=%.3f uA",I/1e-6)//Division by 10^(-6) to convert into uA
+//Let the root mean square shot noise current be Ins
+//The rms shot noise current due to signal is:
+Ins=sqrt(2*e*I*Deltaf);//As the root mean square shot noise current is the square root of mean square shot noise current in A
+mprintf("\n The rms shot noise current due to signal = %.2f nA",Ins/1e-9);//Division by 10^(-9) to convert into nA
+//The answers vary due to round off error
+
+//The rms shot noise current due to dark current is:
+Ins=sqrt(2*e*Id*Deltaf);//As the root mean square shot noise current is the square root of mean square shot noise current in A
+mprintf("\n The rms shot noise current due to dark current = %.2f nA",Ins/1e-9);//Division by 10^(-9) to convert into nA
+
+//The rms shot thermal noise current is:
+Ins=sqrt(4*kB*T*Deltaf/Rl);//As the root mean square shot noise current is the square root of mean square shot noise current in A
+mprintf("\n The rms shot thermal noise current = %.2f nA",Ins/1e-9);//Division by 10^(-9) to convert into nA
+//The answers vary due to round off error
+SNR=((R*P)^2)*Rl/(4*kB*T*Deltaf);//Corresponding Signal-to-noise ratio
+mprintf("\n SNR = %f",SNR);//The answers vary due to round off error
+mprintf("\n SNR in dB = %f dB",10*log10(SNR));//For conversion to dB
+//The answers vary due to round off error
diff --git a/3638/CH13/EX13.7/Ex13_7.jpg b/3638/CH13/EX13.7/Ex13_7.jpg
new file mode 100644
index 000000000..8357283f1
--- /dev/null
+++ b/3638/CH13/EX13.7/Ex13_7.jpg
Binary files differ
diff --git a/3638/CH13/EX13.7/Ex13_7.sce b/3638/CH13/EX13.7/Ex13_7.sce
new file mode 100644
index 000000000..cf6258c2a
--- /dev/null
+++ b/3638/CH13/EX13.7/Ex13_7.sce
@@ -0,0 +1,39 @@
+//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 13.7
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+Id=1e-9;//Dark current of a silicon PIN photodiode in A
+P=500e-9;//Optical power in W
+R=0.65;//Responsivity in A/W
+Rl=1000;//Value of load resistor in Ohms
+e=1.6e-19//Electronic charge in C
+kB=1.38e-23;//Boltzmann constant in SI Units
+Deltaf=100e6;//Detector bandwidth in Hz
+T=300;//Missing data- Temperature in K
+M=50;//Internal gain corresponding to input optical power P
+x=0;//No excess noise
+
+I=M*R*P;//Signal current in A
+mprintf("\n I=%.2f uA",I/1e-6)//Division by 10^(-6) to convert into uA
+//Let the root mean square shot noise current be Ins
+//The rms shot noise current due to signal is:
+Ins=sqrt(2*e*M*I*Deltaf);//As the root mean square shot noise current is the square root of mean square shot noise current in A
+mprintf("\n The rms shot noise current due to signal = %.2f nA",Ins/1e-9);//Division by 10^(-9) to convert into nA
+//The answers vary due to round off error
+
+//The rms shot noise current due to dark current is:
+Ins=sqrt(2*e*(M^2)*Id*Deltaf);//As the root mean square shot noise current is the square root of mean square shot noise current in A
+mprintf("\n The rms shot noise current due to dark current = %.2f nA",Ins/1e-9);//Division by 10^(-9) to convert into nA
+//The answers vary due to round off error
+
+//The rms shot thermal noise current is:
+Ins=sqrt(4*kB*T*Deltaf/Rl);//As the root mean square shot noise current is the square root of mean square shot noise current in A
+mprintf("\n The rms shot thermal noise current = %.2f nA",Ins/1e-9);//Division by 10^(-9) to convert into nA
+//The answers vary due to round off error
+SNR=((M*R*P)^2)/(2*e*(M^(2+x))*(R*P+Id)*Deltaf+4*kB*T*Deltaf/Rl);//Corresponding Signal-to-noise ratio since x=0
+mprintf("\n SNR = %f",SNR);//The answers vary due to round off error
+mprintf("\n SNR in dB = %.2f dB",10*log10(SNR));//For conversion to dB
+//The answers vary due to round off error
diff --git a/3638/CH13/EX13.8/Ex13_8.jpg b/3638/CH13/EX13.8/Ex13_8.jpg
new file mode 100644
index 000000000..11d7dfca0
--- /dev/null
+++ b/3638/CH13/EX13.8/Ex13_8.jpg
Binary files differ
diff --git a/3638/CH13/EX13.8/Ex13_8.sce b/3638/CH13/EX13.8/Ex13_8.sce
new file mode 100644
index 000000000..3eec3dea1
--- /dev/null
+++ b/3638/CH13/EX13.8/Ex13_8.sce
@@ -0,0 +1,31 @@
+//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 13.8
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+P=100e-9;//Optical power in W
+R=0.65;//Responsivity in A/W
+Rl=1000;//Value of load resistor in Ohms
+e=1.6e-19//Electronic charge in C
+kB=1.38e-23;//Boltzmann constant in SI Units
+Deltaf=100e6;//Detector bandwidth in Hz
+T=300;//Missing data- Temperature in K
+x=0.3;//Excess noise
+Id=0;//Since the dark current is neglected in the example
+
+Mop=(4*kB*T/(x*e*Rl*(R*P+Id)))^(1/(x+2));//Optimum value of internal gain corresponding to input optical power P
+mprintf("Mop= %.1f",Mop);//The answers vary due to round off error
+SNR=((Mop*R*P)^2)/(2*e*(Mop^(2+x))*(R*P+Id)*Deltaf+4*kB*T*Deltaf/Rl);//Corresponding Signal-to-noise ratio since x=0
+mprintf("\n SNR = %f",SNR);//The answers vary due to round off error
+mprintf("\n SNR in dB = %.2f dB",10*log10(SNR));//For conversion to dB
+//The answers vary due to round off error
+
+//Case (ii):
+M=1;//Internal gain corresponding to input optical power P
+SNR=((M*R*P)^2)/(2*e*(M^(2+x))*(R*P+Id)*Deltaf+4*kB*T*Deltaf/Rl);//Corresponding Signal-to-noise ratio since x=0
+mprintf("\n For M=1:");
+mprintf("\n SNR = %f",SNR);//The answers vary due to round off error
+mprintf("\n SNR in dB = %.2f dB",10*log10(SNR));//For conversion to dB
+//The answers vary due to round off error
diff --git a/3638/CH13/EX13.9/Ex13_9.jpg b/3638/CH13/EX13.9/Ex13_9.jpg
new file mode 100644
index 000000000..9cbf1e4bf
--- /dev/null
+++ b/3638/CH13/EX13.9/Ex13_9.jpg
Binary files differ
diff --git a/3638/CH13/EX13.9/Ex13_9.sce b/3638/CH13/EX13.9/Ex13_9.sce
new file mode 100644
index 000000000..f76e16086
--- /dev/null
+++ b/3638/CH13/EX13.9/Ex13_9.sce
@@ -0,0 +1,18 @@
+//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 13.9
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+P=500e-9;//Optical power in W
+R=0.45;//Responsivity in A/W
+Rl=1000;//Value of load resistor in Ohms
+e=1.6e-19//Electronic charge in C
+kB=1.38e-23;//Boltzmann constant in SI Units
+T=300;//Missing data- Temperature in K
+x=1;//Excess noise
+Id=0;//Since the dark current is neglected in the example
+
+Mop=(4*kB*T/(x*e*Rl*(R*P+Id)))^(1/(x+2));//Optimum value of internal gain corresponding to input optical power P
+mprintf("Mop= %.1f",Mop);