summaryrefslogtreecommitdiff
path: root/3556/CH13
diff options
context:
space:
mode:
Diffstat (limited to '3556/CH13')
-rw-r--r--3556/CH13/EX13.1/Ex13_1.sce31
-rw-r--r--3556/CH13/EX13.10/Ex13_10.sce37
-rw-r--r--3556/CH13/EX13.11/Ex13_11.sce46
-rw-r--r--3556/CH13/EX13.12/Ex13_12.sce31
-rw-r--r--3556/CH13/EX13.15/Ex13_15.sce22
-rw-r--r--3556/CH13/EX13.16/Ex13_16.sce23
-rw-r--r--3556/CH13/EX13.17/Ex13_17.sce32
-rw-r--r--3556/CH13/EX13.2/Ex13_2.sce39
-rw-r--r--3556/CH13/EX13.3/Ex13_3.sce44
-rw-r--r--3556/CH13/EX13.4/Ex13_4.sce37
-rw-r--r--3556/CH13/EX13.6/Ex13_6.sce41
-rw-r--r--3556/CH13/EX13.7/Ex13_7.sce33
-rw-r--r--3556/CH13/EX13.8/Ex13_8.sce42
13 files changed, 458 insertions, 0 deletions
diff --git a/3556/CH13/EX13.1/Ex13_1.sce b/3556/CH13/EX13.1/Ex13_1.sce
new file mode 100644
index 000000000..687a7ddab
--- /dev/null
+++ b/3556/CH13/EX13.1/Ex13_1.sce
@@ -0,0 +1,31 @@
+clc
+// Fundamental of Electric Circuit
+// Charles K. Alexander and Matthew N.O Sadiku
+// Mc Graw Hill of New York
+// 5th Edition
+
+// Part 1 : AC Circuits
+// Chapter 3: Magnetically Couple Circuits
+// Example 13 - 1
+
+clear; clc; close;
+//
+// Given data
+Z1 = complex(4.0000,-1.0000);
+Z2 = complex(2.0000,-4.0000)
+V1 = complex(12.0000,0.0000);
+
+// Calculations I2 and I1
+I2 = V1/Z1;
+I1 = Z2*I2;
+I1_mag = norm(I1);
+I1_angle = atand(imag(I1),real(I1));
+I2_mag = norm(I2);
+I2_angle = atand(imag(I2),real(I2));
+//
+// Display the result
+disp("Example 13-1 Solution : ");
+printf(" \n I1_mag = Magnitude of Current 1 = %.3f A",I1_mag)
+printf(" \n I1_angle = Angle at Current 1 = %.3f degree",I1_angle)
+printf(" \n I2_mag = Magnitude of Current 2 = %.3f A",I2_mag)
+printf(" \n I2_angle = Angle at Current 2 = %.3f degree",I2_angle)
diff --git a/3556/CH13/EX13.10/Ex13_10.sce b/3556/CH13/EX13.10/Ex13_10.sce
new file mode 100644
index 000000000..1d30f7ac9
--- /dev/null
+++ b/3556/CH13/EX13.10/Ex13_10.sce
@@ -0,0 +1,37 @@
+clc
+// Fundamental of Electric Circuit
+// Charles K. Alexander and Matthew N.O Sadiku
+// Mc Graw Hill of New York
+// 5th Edition
+
+// Part 1 : AC Circuits
+// Chapter 13 : Magnetically Couple Circuits
+// Example 13 - 10
+
+clear; clc; close;
+//
+// Given data
+I11 = 0.2000;
+V11 = 240.0000;
+I21 = 4.0000;
+V21 = 12.0000;
+I12 = 4.2000;
+V12 = 240.0000;
+I22 = 4.0000;
+V22 = 252.0000;
+//
+// Calculations Two Winding Transformer The Power Rating S1 and S2
+S11 = V11 * I11;
+S21 = V21 * I21;
+// Calculations Autotransformaer The Power Rating S1 and S2
+S12 = V12 * I12;
+S22 = V22 * I22;
+// Display the result
+disp("Example 13-10 Solution : ");
+printf(" \n S11 = Power Rating Two Winding Transformer S1 = %.3f VA",S11)
+printf(" \n S21 = Power Rating Two Winding Transformer S2 = %.3f VA",S21)
+printf(" \n S12 = Power Rating Autotransformer S1 = %.3f VA",S12)
+printf(" \n S22 = Power Rating Autotransformwer S2 = %.3f VA",S22)
+
+
+
diff --git a/3556/CH13/EX13.11/Ex13_11.sce b/3556/CH13/EX13.11/Ex13_11.sce
new file mode 100644
index 000000000..813e5c988
--- /dev/null
+++ b/3556/CH13/EX13.11/Ex13_11.sce
@@ -0,0 +1,46 @@
+clc
+// Fundamental of Electric Circuit
+// Charles K. Alexander and Matthew N.O Sadiku
+// Mc Graw Hill of New York
+// 5th Edition
+
+// Part 1 : AC Circuits
+// Chapter 13 : Magnetically Couple Circuits
+// Example 13 - 11
+
+clear; clc; close;
+//
+// Given data
+V1 = complex(120*cosd(30.0000),120*sind(30.0000));
+ZL = complex(8.0000,6.0000)
+N1 = 80.0000;
+N2 = 120.0000;
+//
+// Calculatioons I1, I2 dan Io
+V2 = ((N1 + N2)/N1)*V1
+I2 = V2/ZL;
+I2_mag = norm(I2);
+I2_angle = atand(imag(I2),real(I2));
+I1 = ((N1 + N2)/N1)*I2;
+I1_mag = norm(I1);
+I1_angle = atand(imag(I1),real(I1));
+Io = I2 - I1;
+Io_mag = norm(Io);
+Io_angle = atand(imag(Io),real(Io));
+// Complex Power
+S2 = V2*conj(I2);
+S2_mag = norm(S2);
+S2_angle = atand(imag(S2),real(S2))
+// Display the result
+disp("Example 13-11 Solution : ");
+disp("a. Current I1, I2 and Io : ");
+printf(" \n I1_mag = Magnitude of Current 1 = %.3f A",I1_mag)
+printf(" \n I1_angle = Angle at Current 1 = %.3f degree",I1_angle)
+printf(" \n I2_mag = Magnitude of Current 2 = %.3f A",I2_mag)
+printf(" \n I2_angle = Angle at Current 2 = %.3f degree",I2_angle)
+printf(" \n Io_mag = Magnitude of Current Io = %.3f A",Io_mag)
+printf(" \n Io_angle = Angle at Current Io = %.3f degree",Io_angle)
+disp("")
+disp("The Complex Power Supplied to The Load : ");
+printf(" \n S2_mag = Magnitude of Power Complex = %.3f KVA",S2_mag/1000)
+printf(" \n S2_angle = Angle at Power Complex = %.3f degree",S2_angle)
diff --git a/3556/CH13/EX13.12/Ex13_12.sce b/3556/CH13/EX13.12/Ex13_12.sce
new file mode 100644
index 000000000..02f75ca8b
--- /dev/null
+++ b/3556/CH13/EX13.12/Ex13_12.sce
@@ -0,0 +1,31 @@
+clc
+// Fundamental of Electric Circuit
+// Charles K. Alexander and Matthew N.O Sadiku
+// Mc Graw Hill of New York
+// 5th Edition
+
+// Part 1 : AC Circuits
+// Chapter 13 : Magnetically Couple Circuits
+// Example 13 - 12
+
+clear; clc; close;
+//
+// Given data
+ST = 42000.0000;
+n = 5.0000;
+VL2 = 240.0000;
+//
+// Calculatioons Line Voltage and Current on The Primary Side
+IL2 = ST/(sqrt(3)*VL2);
+IL1 = (n/(sqrt(3)))*IL2;
+VL1 = (sqrt(3)/n)*VL2;
+// Calculations KVA Rating
+KVA = ST/3
+// Display the result
+disp("Example 13-12 Solution : ");
+disp("a. Type Transformer Connection is Y - Delta ")
+disp("b. Line Voltage and Current on The Primary Side : ");
+printf(" \n IL1 = Line Current on The Primary Side = %.3f A",IL1)
+printf(" \n VL1 = Voltage Current on The Primary Side = %.3f Voltage",VL1)
+disp("c. KVA Rating : ");
+printf(" \n KVA = KVA Rating Each TRansformer = %.3f KVA",KVA/1000)
diff --git a/3556/CH13/EX13.15/Ex13_15.sce b/3556/CH13/EX13.15/Ex13_15.sce
new file mode 100644
index 000000000..cf44622d6
--- /dev/null
+++ b/3556/CH13/EX13.15/Ex13_15.sce
@@ -0,0 +1,22 @@
+clc
+// Fundamental of Electric Circuit
+// Charles K. Alexander and Matthew N.O Sadiku
+// Mc Graw Hill of New York
+// 5th Edition
+
+// Part 1 : AC Circuits
+// Chapter 13 : Magnetically Couple Circuits
+// Example 13 - 15
+
+clear; clc; close;
+//
+// Given data
+V1 = 120.0000;
+n = 3.0000;
+//
+// Calculatioons V2
+V2 = V1/n;
+// Display the result
+disp("Example 13-15 Solution : ");
+printf(" \n V2 = Voltage Accros Thr Load = %.3f Volt",V2)
+
diff --git a/3556/CH13/EX13.16/Ex13_16.sce b/3556/CH13/EX13.16/Ex13_16.sce
new file mode 100644
index 000000000..666b41883
--- /dev/null
+++ b/3556/CH13/EX13.16/Ex13_16.sce
@@ -0,0 +1,23 @@
+clc
+// Fundamental of Electric Circuit
+// Charles K. Alexander and Matthew N.O Sadiku
+// Mc Graw Hill of New York
+// 5th Edition
+
+// Part 1 : AC Circuits
+// Chapter 13 : Magnetically Couple Circuits
+// Example 13 - 16
+
+clear; clc; close;
+//
+// Given data
+Zth = 192.0000;
+ZL = 12.0000;
+//
+// Calculations n
+n = sqrt(ZL/Zth);
+//
+// Display the result
+disp("Example 13-16 Solution : ");
+printf(" \n n = Turns Ratio Speaker = %.3f turn",n)
+
diff --git a/3556/CH13/EX13.17/Ex13_17.sce b/3556/CH13/EX13.17/Ex13_17.sce
new file mode 100644
index 000000000..c1044e25d
--- /dev/null
+++ b/3556/CH13/EX13.17/Ex13_17.sce
@@ -0,0 +1,32 @@
+clc
+// Fundamental of Electric Circuit
+// Charles K. Alexander and Matthew N.O Sadiku
+// Mc Graw Hill of New York
+// 5th Edition
+
+// Part 1 : AC Circuits
+// Chapter 13 : Magnetically Couple Circuits
+// Example 13 - 17
+
+clear; clc; close;
+//
+// Given data
+Vp = 2400.0000;
+Vs = 240.0000;
+Ns = 72.0000;
+P_bulbs = 100.0000;
+P_TV = 350.0000;
+P_Kitchen = 15000.0000;
+n_bulbs = 8;
+//
+// Calculations Np
+Np = Ns *(Vp/Vs)
+// Calculations Ip
+P = (n_bulbs*P_bulbs)+ P_TV + P_Kitchen;
+Ip = P/Vp;
+
+// Display the result
+disp("Example 13-17 Solution : ");
+printf(" \n a. n = Turns Ratio Speaker = %.3f turn",Np)
+printf(" \n b. Ip = Current In The Primary Winding = %.3f A",Ip)
+
diff --git a/3556/CH13/EX13.2/Ex13_2.sce b/3556/CH13/EX13.2/Ex13_2.sce
new file mode 100644
index 000000000..7ae25556b
--- /dev/null
+++ b/3556/CH13/EX13.2/Ex13_2.sce
@@ -0,0 +1,39 @@
+clc
+// Fundamental of Electric Circuit
+// Charles K. Alexander and Matthew N.O Sadiku
+// Mc Graw Hill of New York
+// 5th Edition
+
+// Part 1 : AC Circuits
+// Chapter 3: Magnetically Couple Circuits
+// Example 13 - 2
+
+clear; clc; close;
+//
+// Given data
+Z11 = complex(4.0000,3.0000);
+Z12 = complex(0.0000,-8.0000);
+Z21 = complex(0.0000,-8.0000);
+Z22 = complex(5.0000,18.0000);
+V1 = complex(100.0000,0.0000);
+V2 = complex(0.0000,0.0000)
+// Calculations Delta, Delta_1, Delta_2
+delta = det([ Z11 Z12;
+ Z21 Z22]);
+delta_1 = det([V1 Z12;
+ V2 Z22]);
+delta_2 = det([Z11 V1;
+ Z21 V2]);
+I1 = delta_1/delta;
+I2 = delta_2/delta;
+I1_mag = norm(I1);
+I1_angle = atand(imag(I1),real(I1));
+I2_mag = norm(I2);
+I2_angle = atand(imag(I2),real(I2));
+//
+// Display the result
+disp("Example 13-2 Solution : ");
+printf(" \n I1_mag = Magnitude of Current 1 = %.3f A",I1_mag)
+printf(" \n I1_angle = Angle at Current 1 = %.3f degree",I1_angle)
+printf(" \n I2_mag = Magnitude of Current 2 = %.3f A",I2_mag)
+printf(" \n I2_angle = Angle at Current 2 = %.3f degree",I2_angle)
diff --git a/3556/CH13/EX13.3/Ex13_3.sce b/3556/CH13/EX13.3/Ex13_3.sce
new file mode 100644
index 000000000..72a4c0368
--- /dev/null
+++ b/3556/CH13/EX13.3/Ex13_3.sce
@@ -0,0 +1,44 @@
+clc
+// Fundamental of Electric Circuit
+// Charles K. Alexander and Matthew N.O Sadiku
+// Mc Graw Hill of New York
+// 5th Edition
+
+// Part 1 : AC Circuits
+// Chapter 13 : Magnetically Couple Circuits
+// Example 13 - 3
+
+clear; clc; close;
+//
+// Given data
+L1 = 5.0000;
+L2 = 4.0000;
+C = (1/16);
+M = 2.5000;
+w = 4.0000;
+Vs = complex(60.0000*cosd(30.0000),60*sind(30.0000));
+I2 = complex(3.2540*cosd(160.6000),3.2540*sind(160.6000));
+//
+// Calculations Coupling Coefficient
+k = M/sqrt(L1*L2);
+// Calculations I1
+I1 = complex(1.2000*cosd(180.0000),1.20000*sind(180.0000))*I2
+I1_mag = norm(I1);
+I1_angle= atand(imag(I1),real(I1))
+// Calculations I2
+I2_mag = norm(I2);
+I2_angle= atand(imag(I2),real(I2))
+// Calculations The Total Energy Stored
+angle_deg = (4/%pi)*180;
+angle_I1 = angle_deg + I1_angle;
+I1_t = I1_mag * cosd(angle_I1);
+angle_I2 = angle_deg + I2_angle;
+I2_t = I2_mag * cosd(angle_I2);
+W = 0.5 * L1 * (I1_t)^2 + 0.5 * L2 * (I2_t)^2 + M*I1_t*I2_t;
+// Display the result
+disp("Example 13-3 Solution : ");
+printf(" \n I1_mag = Magnitude of Current 1 = %.3f A",I1_mag)
+printf(" \n I1_angle = Angle at Current 1 = %.3f degree",I1_angle)
+printf(" \n I2_mag = Magnitude of Current 2 = %.3f A",I2_mag)
+printf(" \n I2_angle = Angle at Current 2 = %.3f degree",I2_angle)
+printf(" \n W = Total Energy Stored = %.3f Joule",W)
diff --git a/3556/CH13/EX13.4/Ex13_4.sce b/3556/CH13/EX13.4/Ex13_4.sce
new file mode 100644
index 000000000..cb38109fc
--- /dev/null
+++ b/3556/CH13/EX13.4/Ex13_4.sce
@@ -0,0 +1,37 @@
+clc
+// Fundamental of Electric Circuit
+// Charles K. Alexander and Matthew N.O Sadiku
+// Mc Graw Hill of New York
+// 5th Edition
+
+// Part 1 : AC Circuits
+// Chapter 13 : Magnetically Couple Circuits
+// Example 13 - 4
+
+clear; clc; close;
+//
+// Given data
+Z1 = complex(60.0000,-100.0000);
+Z2 = complex(30.0000,40.0000);
+ZL = complex(80.0000,60.0000);
+Z_20 = complex(0.0000,20.0000);
+Z_40 = complex(0.0000,40.0000);
+M = 5.0000;
+V = complex(50*cosd(60.0000),50*sind(60.0000))
+//
+// Calculations Zin
+Zin_1 = M^2/(Z_40 + Z2 + ZL)
+Zin_2 = Z1 + Z_20;
+Zin = Zin_1 + Zin_2
+Zin_mag = norm(Zin);
+Zin_angle = atand(imag(Zin),real(Zin))
+// Calculation I1
+I1 = V/Zin
+I1_mag = norm(I1);
+I1_angle = atand(imag(I1),real(I1))
+// Display the result
+disp("Example 13-4 Solution : ");
+printf(" \n Zin_mag = Magnitude of Zin = %.3f A",Zin_mag)
+printf(" \n Zin_angle = Angle at Zin = %.3f degree",Zin_angle)
+printf(" \n I1_mag = Magnitude of Current 1 = %.3f A",I1_mag)
+printf(" \n I1_angle = Angle at Current 1 = %.3f degree",I1_angle)
diff --git a/3556/CH13/EX13.6/Ex13_6.sce b/3556/CH13/EX13.6/Ex13_6.sce
new file mode 100644
index 000000000..107d7e18d
--- /dev/null
+++ b/3556/CH13/EX13.6/Ex13_6.sce
@@ -0,0 +1,41 @@
+clc
+// Fundamental of Electric Circuit
+// Charles K. Alexander and Matthew N.O Sadiku
+// Mc Graw Hill of New York
+// 5th Edition
+
+// Part 1 : AC Circuits
+// Chapter 13 : Magnetically Couple Circuits
+// Example 13 - 6
+
+clear; clc; close;
+//
+// Given data
+L1 = 8.0000;
+L2 = 5.0000;
+M = -1.00000;
+Z1 = complex(4.0000,0.0000);
+ZL = complex(10.0000,0.0000);
+V = complex(60*cosd(90.0000),60*sind(90.0000))
+I2 = complex(0.0000,0.0600)
+//
+// Calculations I1
+I1 = complex(5.0000,-10.0000)*I2
+I1_mag = norm(I1);
+I1_angle = atand(imag(I1),real(I1));
+// Calculation I2
+I2_mag = norm(I2);
+I2_angle = atand(imag(I2),real(I2));
+// Calculation Vo
+Vo = complex(-10.0000,0.0000)*I2;
+Vo_mag = norm(Vo);
+Vo_angle = atand(imag(Vo),real(Vo));
+//
+// Display the result
+disp("Example 13-6 Solution : ");
+printf(" \n I1_mag = Magnitude of Current I1 = %.3f A",I1_mag)
+printf(" \n I1_angle = Angle at Current I1 = %.3f degree",I1_angle)
+printf(" \n I2_mag = Magnitude of Current I2 = %.3f A",I2_mag)
+printf(" \n I2_angle = Angle at Current I2 = %.3f degree",I2_angle)
+printf(" \n Vo_mag = Magnitude of Voltage Vo = %.3f A",Vo_mag)
+printf(" \n Vo_angle = Angle at Voltage Vo = %.3f degree",Vo_angle)
diff --git a/3556/CH13/EX13.7/Ex13_7.sce b/3556/CH13/EX13.7/Ex13_7.sce
new file mode 100644
index 000000000..57c095f92
--- /dev/null
+++ b/3556/CH13/EX13.7/Ex13_7.sce
@@ -0,0 +1,33 @@
+clc
+// Fundamental of Electric Circuit
+// Charles K. Alexander and Matthew N.O Sadiku
+// Mc Graw Hill of New York
+// 5th Edition
+
+// Part 1 : AC Circuits
+// Chapter 13 : Magnetically Couple Circuits
+// Example 13 - 7
+
+clear; clc; close;
+//
+// Given data
+V1 = 2400.0000;
+V2 = 120.0000;
+N2 = 50.0000;
+S = 9600.0000;
+//
+// Calculations Turn Ratio
+n = V2/V1;
+// Calculations the Number of Turn on The Primary Side
+N1 = N2/n;
+// Calculations Current I1
+I1 = S/V1;
+// Calculation Currwent I2
+I2 = I1/n;
+//
+// Display the result
+disp("Example 13-9 Solution : ");
+printf(" \n n = Turn Ratio = %.3f ",n)
+printf(" \n N1 = The Number of Turn on The Primary Side = %.3f turns",N1)
+printf(" \n I1 = Magnitude of Current I1 = %.3f A",I1)
+printf(" \n I2 = Magnitude of Current I2 = %.3f A",I2)
diff --git a/3556/CH13/EX13.8/Ex13_8.sce b/3556/CH13/EX13.8/Ex13_8.sce
new file mode 100644
index 000000000..50364345b
--- /dev/null
+++ b/3556/CH13/EX13.8/Ex13_8.sce
@@ -0,0 +1,42 @@
+clc
+// Fundamental of Electric Circuit
+// Charles K. Alexander and Matthew N.O Sadiku
+// Mc Graw Hill of New York
+// 5th Edition
+
+// Part 1 : AC Circuits
+// Chapter 13 : Magnetically Couple Circuits
+// Example 13 - 8
+
+clear; clc; close;
+//
+// Given data
+Z1 = complex(4.0000,-6.0000);
+ZL = complex(20.0000,0.0000);
+Vs = complex(120*cosd(0.0000),120*sind(0.0000))
+n = 2.0000;
+//
+// Calculations I1
+ZR = ZL/n^2;
+Zin = Z1 + ZR;
+I1 = Vs/Zin
+I1_mag = norm(I1)
+I1_angle = atand(imag(I1),real(I1));
+// Calculation I2
+I2 = -I1/n;
+Vo = ZL*I2;
+Vo_mag = norm(Vo);
+Vo_angle = atand(imag(Vo),real(Vo))+360.0000;
+// Complex Power
+S = Vs*conj(I1);
+S_mag = norm(S);
+S_angle = atand(imag(S),real(S))
+// Display the result
+disp("Example 13-8 Solution : ");
+printf(" \n I1_mag = Magnitude of Current I1 = %.3f A",I1_mag)
+printf(" \n I1_angle = Angle at Current I1 = %.3f degree",I1_angle)
+printf(" \n Vo_mag = Magnitude of Voltage Vo = %.3f Volt",Vo_mag)
+printf(" \n Vo_angle = Angle at Voltage Vo = %.3f degree",Vo_angle)
+printf(" \n S_mag = Magnitude of Complex Power = %.3f VA",S_mag)
+printf(" \n S_angle = Angle at Complex Power = %.3f degree",S_angle)
+