diff options
Diffstat (limited to '3556/CH13/EX13.3/Ex13_3.sce')
-rw-r--r-- | 3556/CH13/EX13.3/Ex13_3.sce | 44 |
1 files changed, 44 insertions, 0 deletions
diff --git a/3556/CH13/EX13.3/Ex13_3.sce b/3556/CH13/EX13.3/Ex13_3.sce new file mode 100644 index 000000000..72a4c0368 --- /dev/null +++ b/3556/CH13/EX13.3/Ex13_3.sce @@ -0,0 +1,44 @@ +clc
+// Fundamental of Electric Circuit
+// Charles K. Alexander and Matthew N.O Sadiku
+// Mc Graw Hill of New York
+// 5th Edition
+
+// Part 1 : AC Circuits
+// Chapter 13 : Magnetically Couple Circuits
+// Example 13 - 3
+
+clear; clc; close;
+//
+// Given data
+L1 = 5.0000;
+L2 = 4.0000;
+C = (1/16);
+M = 2.5000;
+w = 4.0000;
+Vs = complex(60.0000*cosd(30.0000),60*sind(30.0000));
+I2 = complex(3.2540*cosd(160.6000),3.2540*sind(160.6000));
+//
+// Calculations Coupling Coefficient
+k = M/sqrt(L1*L2);
+// Calculations I1
+I1 = complex(1.2000*cosd(180.0000),1.20000*sind(180.0000))*I2
+I1_mag = norm(I1);
+I1_angle= atand(imag(I1),real(I1))
+// Calculations I2
+I2_mag = norm(I2);
+I2_angle= atand(imag(I2),real(I2))
+// Calculations The Total Energy Stored
+angle_deg = (4/%pi)*180;
+angle_I1 = angle_deg + I1_angle;
+I1_t = I1_mag * cosd(angle_I1);
+angle_I2 = angle_deg + I2_angle;
+I2_t = I2_mag * cosd(angle_I2);
+W = 0.5 * L1 * (I1_t)^2 + 0.5 * L2 * (I2_t)^2 + M*I1_t*I2_t;
+// Display the result
+disp("Example 13-3 Solution : ");
+printf(" \n I1_mag = Magnitude of Current 1 = %.3f A",I1_mag)
+printf(" \n I1_angle = Angle at Current 1 = %.3f degree",I1_angle)
+printf(" \n I2_mag = Magnitude of Current 2 = %.3f A",I2_mag)
+printf(" \n I2_angle = Angle at Current 2 = %.3f degree",I2_angle)
+printf(" \n W = Total Energy Stored = %.3f Joule",W)
|