diff options
Diffstat (limited to '3547/CH6')
22 files changed, 426 insertions, 0 deletions
diff --git a/3547/CH6/EX6.1/EX6_1.png b/3547/CH6/EX6.1/EX6_1.png Binary files differnew file mode 100644 index 000000000..d67362e1d --- /dev/null +++ b/3547/CH6/EX6.1/EX6_1.png diff --git a/3547/CH6/EX6.1/EX6_1.sce b/3547/CH6/EX6.1/EX6_1.sce new file mode 100644 index 000000000..125659261 --- /dev/null +++ b/3547/CH6/EX6.1/EX6_1.sce @@ -0,0 +1,29 @@ +// Example 6.1
+// Calculation of the gain
+// Page no 249
+
+clc;
+clear;
+close;
+
+//Given data
+
+n=1.5; // Refractive ondex of air
+lambda=1550*10^-9; // Wavelength
+c=3*10^8; // Velocity of light
+p=5.73*10^-17; // Power spectral density
+h=6.63*10^-34 // Planck constant
+
+
+// Gain
+f=c/lambda;
+
+G=(p/(2*n*h*f))+1;
+
+//Displaying results in the command window
+printf("\n Gain G = %0.0f ",G);
+
+
+
+
+
diff --git a/3547/CH6/EX6.12/EX6_12.png b/3547/CH6/EX6.12/EX6_12.png Binary files differnew file mode 100644 index 000000000..44a3b301b --- /dev/null +++ b/3547/CH6/EX6.12/EX6_12.png diff --git a/3547/CH6/EX6.12/EX6_12.sce b/3547/CH6/EX6.12/EX6_12.sce new file mode 100644 index 000000000..6e61cc70f --- /dev/null +++ b/3547/CH6/EX6.12/EX6_12.sce @@ -0,0 +1,30 @@ +// Example 6.12
+// Calculation of the ASE power spectral density per polarization.
+// Page no 296
+
+clc;
+clear;
+close;
+
+//Given data
+
+si=30; // Electrical SNRs at the amplifier input
+so=25; // Electrical SNRs at the amplifier output
+po=2; // Signal power at output
+pi=-13; // Signal power at input
+h=6.626*10^-34; // Planck constant
+f=195*10^12;
+
+// The ASE power spectral density per polarization
+fn=si-so;
+fn=10^(fn/10);
+G=po-pi;
+G=10^(G/10);
+r=(h*f*(G*fn-1))/2;
+r=r*10^18;
+
+//Displaying results in the command window
+printf("\n The ASE power spectral density per polarization = %0.3f x 10^-18 W/Hz ",r);
+
+
+
diff --git a/3547/CH6/EX6.13/EX6_13.png b/3547/CH6/EX6.13/EX6_13.png Binary files differnew file mode 100644 index 000000000..a4e00ffd9 --- /dev/null +++ b/3547/CH6/EX6.13/EX6_13.png diff --git a/3547/CH6/EX6.13/EX6_13.sce b/3547/CH6/EX6.13/EX6_13.sce new file mode 100644 index 000000000..4b26f0054 --- /dev/null +++ b/3547/CH6/EX6.13/EX6_13.sce @@ -0,0 +1,25 @@ +// Example 6.13
+// Calculation of the geometric mean of the facet reflectivity R
+// Page no 296
+
+clc;
+clear;
+close;
+
+//Given data
+Gm=20;
+G1=5;
+
+// The geometric mean of the facet reflectivity R
+Gmax=10^(Gm/10); // Peak Gain
+Gs=10^(G1/10); // Single pass gain
+R=(sqrt(Gs)-10)/(sqrt(Gs)-Gs*10);
+
+
+
+
+//Displaying results in the command window
+printf("\n The geometric mean of the facet reflectivity R = %0.3f ",R);
+
+
+
diff --git a/3547/CH6/EX6.14/EX6_14.png b/3547/CH6/EX6.14/EX6_14.png Binary files differnew file mode 100644 index 000000000..9f11e75b1 --- /dev/null +++ b/3547/CH6/EX6.14/EX6_14.png diff --git a/3547/CH6/EX6.14/EX6_14.sce b/3547/CH6/EX6.14/EX6_14.sce new file mode 100644 index 000000000..e8d2d4838 --- /dev/null +++ b/3547/CH6/EX6.14/EX6_14.sce @@ -0,0 +1,32 @@ +// Example 6.13
+// Calculation of the upper bound on the single-pass gain
+// Page no 297
+
+clc;
+clear;
+close;
+
+//Given data
+
+n=3.5; // Refractive index
+c1=3*10^8; // Velocity of light
+L=200*10^-6; // Amplifier length
+a=0.09;
+b=-(1.2*0.1805^2+0.6);
+c=1;
+
+// The geometric mean of the facet reflectivity R
+f=c1/(2*n*L);
+
+x1 =( -1*b+ sqrt ((b ^2) -4*a*c)) /(2* a); // 1 s t r o o t
+x2 =( -1*b- sqrt ((b ^2) -4*a*c)) /(2* a); // 2nd r o o t
+
+
+
+//Displaying results in the command window
+printf("\n The geometric mean of the facet reflectivity R = %0.2f GHz ",f*10^-9);
+printf("\n The upper bound on the single-pass gain Gs = %0.2f or ",x1);
+printf("\n The upper bound on the single-pass gain Gs = %0.2f ",x2);
+
+
+// The answers vary due to round off error
diff --git a/3547/CH6/EX6.2/EX6_2.png b/3547/CH6/EX6.2/EX6_2.png Binary files differnew file mode 100644 index 000000000..a35d63017 --- /dev/null +++ b/3547/CH6/EX6.2/EX6_2.png diff --git a/3547/CH6/EX6.2/EX6_2.sce b/3547/CH6/EX6.2/EX6_2.sce new file mode 100644 index 000000000..07e78b58c --- /dev/null +++ b/3547/CH6/EX6.2/EX6_2.sce @@ -0,0 +1,31 @@ +// Example 6.2
+// Calculation of the variance of the signal–ASE beat noise
+// Page no 255
+
+clc;
+clear;
+close;
+
+//Given data
+
+a=1.3*10^-16; // PSD of an amplifier
+f=7*10^9; // Cut off frequency
+Pi=10*10^-6; // Input power
+R=0.8; // Responsivity
+G=20; // Gain of an amplifier
+
+// The variance of the signal–ASE beat noise
+G=10^(G/10);
+P=G*Pi;
+
+r=4*R^2*P*a*f;
+r=r*10^9;
+
+
+
+
+//Displaying results in the command window
+printf("\n The variance of the signal–ASE beat noise current is = %0.2f x 10^-9 A^2",r);
+
+
+// The answers vary due to round off error
diff --git a/3547/CH6/EX6.3/EX6_3.png b/3547/CH6/EX6.3/EX6_3.png Binary files differnew file mode 100644 index 000000000..f360fe551 --- /dev/null +++ b/3547/CH6/EX6.3/EX6_3.png diff --git a/3547/CH6/EX6.3/EX6_3.sce b/3547/CH6/EX6.3/EX6_3.sce new file mode 100644 index 000000000..cf87c17c1 --- /dev/null +++ b/3547/CH6/EX6.3/EX6_3.sce @@ -0,0 +1,99 @@ +// Example 6.3
+// Calculation of the (a) the variance of the signal–ASE beat noise current, (b) the variance of the ASE–ASE beat noise current, and (c) the total variance.
+// Page no 257
+
+clc;
+clear;
+close;
+
+//Given data
+
+G=30; // Gain
+
+nsp=5;
+R=0.8;
+f1=16*10^9;
+fe=9*10^9;
+//Pi1=-60;
+c=3*10^8; // Velocity of light
+h=6.63*10^-34 // Planck constant
+lambda=1530*10^-9; // Wavelegth
+Pi1=-27; // Input power
+Pi2=-60;
+f0=16*10^9;
+
+
+//(a) The variance of the signal–ASE beat noise current for Pin=-27dBm
+Po=G+Pi1;
+Po=10^(Po/10);
+Po=Po*10^-3;
+G=10^(G/10);
+f=c/lambda;
+r=nsp*h*f*(G-1);
+B=8*10^9;
+//B=min(f/2,fe);
+r0=4*R^2*Po*r*B;
+//r0=r0*10^12;
+
+//(b) The variance of the ASE–ASE beat noise current
+
+r1=R^2*r^2*((2*f0)-fe)*fe;
+
+//r1=r1*10^11;
+// (c) The total variance.
+
+rt=r0+r1;
+
+// Displaying results in the command window
+printf("\n (a) The variance of the signal–ASE beat noise current for Pin=-27dBm");
+
+printf("\n The variance of the signal–ASE beat noise current = %0.2f x 10^-8 A^2",r0*10^8);
+printf("\n The variance of the ASE–ASE beat noise current = %0.2f x 10^-11 A^2",r1*10^11);
+
+printf("\n The total variance = %0.3f x 10^-8 A^2",rt*10^8);
+// The answers vary due to round off error
+
+
+//Given data
+
+G=30; // Gain
+nsp=5;
+R=0.8; //
+f1=16*10^9;
+fe=9*10^9;
+//Pi1=-60;
+c=3*10^8; // Velocity of light
+h=6.63*10^-34 // Planck constant
+lambda=1530*10^-9; // Wavelegth
+Pi1=-27; // Input power
+Pi2=-60;
+f0=16*10^9;
+
+//(b) The variance of the signal–ASE beat noise current for Pin=-60dBm
+Po2=G+Pi2;
+Po=10^(Po2/10);
+Po=Po*10^-3;
+G=10^(G/10);
+f=c/lambda;
+r=nsp*h*f*(G-1);
+B=8*10^9;
+//B=min(f/2,fe);
+r0=4*R^2*Po*r*B;
+//r0=r0*10^12;
+
+//(b) The variance of the ASE–ASE beat noise current
+
+r1=R^2*r^2*((2*f0)-fe)*fe;
+
+//r1=r1*10^11;
+// (c) The total variance.
+
+rt=r0+r1;
+
+// Displaying results in the command window
+printf("\n \n (b) The variance of the signal–ASE beat noise current for Pin=-60dBm");
+
+printf("\n The variance of the signal–ASE beat noise current = %0.2f x 10^-11 A^2",r0*10^11);
+printf("\n The variance of the ASE–ASE beat noise current = %0.2f x 10^-11 A^2",r1*10^11);
+
+printf("\n The total variance = %0.2f x 10^-11 A^2 ",rt*10^11);
diff --git a/3547/CH6/EX6.4/EX6_4.png b/3547/CH6/EX6.4/EX6_4.png Binary files differnew file mode 100644 index 000000000..e9313df14 --- /dev/null +++ b/3547/CH6/EX6.4/EX6_4.png diff --git a/3547/CH6/EX6.4/EX6_4.sce b/3547/CH6/EX6.4/EX6_4.sce new file mode 100644 index 000000000..c40e22534 --- /dev/null +++ b/3547/CH6/EX6.4/EX6_4.sce @@ -0,0 +1,35 @@ +// Example 6.4
+// Calculation of the amplifier gain
+// Page no 262
+
+clc;
+clear;
+close;
+
+//Given data
+
+Po=0; // Signal output of amplifier
+//f=7*10^9; // Cut off frequency
+B=7.5*10^9; // Bandwidth
+R=0.9; // Responsivity
+c=3*10^8; // Velocity of light
+lambda=1550*10^-9; // Operating frequency
+fn=4.5; // Noise figure
+Ro=0.066*10^-3; // Beat noise current
+h=6.626*10^-34; // Planck constant
+
+// The amplifier gain
+P=10^(Po/10)*10^-3;
+r=Ro^2/(4*R^2*B*P);
+fn=10^(fn/10);
+f=c/lambda;
+G=(1/fn)*(((2*r)/(h*f))+1);
+
+
+
+
+//Displaying results in the command window
+printf("\n The amplifier gain = %0.0f ",G);
+
+
+// The answers vary due to round off error
diff --git a/3547/CH6/EX6.5/EX6_5.png b/3547/CH6/EX6.5/EX6_5.png Binary files differnew file mode 100644 index 000000000..0f84c10d3 --- /dev/null +++ b/3547/CH6/EX6.5/EX6_5.png diff --git a/3547/CH6/EX6.5/EX6_5.sce b/3547/CH6/EX6.5/EX6_5.sce new file mode 100644 index 000000000..b06e4ff9f --- /dev/null +++ b/3547/CH6/EX6.5/EX6_5.sce @@ -0,0 +1,35 @@ +// Example 6.5
+// Calculation of the OSNR in a bandwidth of 12.49 GHz.
+// Page no 263
+
+clc;
+clear;
+close;
+
+//Given data
+
+G=25; // Gain
+c=3*10^8; // Velocity of light
+h=6.63*10^-34 // Planck constant
+lambda=1545*10^-9; // Wavelegth
+Pi=-22; // Input power
+fn=6;
+B=12.49*10^9;
+
+// The OSNR in a bandwidth of 12.49 GHz
+Po=G+Pi;
+Po=10^(Po/10);
+Po=Po*10^-3;
+fn=10^(fn/10);
+G=10^(G/10);
+f=c/lambda;
+r=(G*fn-1)*(h*f/2);
+O=Po/(2*r*B);
+O=10*log10(O);
+
+// Displaying results in the command window
+printf("\n The OSNR in a bandwidth of 12.49 GHz = %0.2f dB",O);
+
+
+
+// The answers vary due to round off error
diff --git a/3547/CH6/EX6.6/EX6_6.png b/3547/CH6/EX6.6/EX6_6.png Binary files differnew file mode 100644 index 000000000..2407b4671 --- /dev/null +++ b/3547/CH6/EX6.6/EX6_6.png diff --git a/3547/CH6/EX6.6/EX6_6.sce b/3547/CH6/EX6.6/EX6_6.sce new file mode 100644 index 000000000..190c4b4ca --- /dev/null +++ b/3547/CH6/EX6.6/EX6_6.sce @@ -0,0 +1,40 @@ +// Example 6.6
+// Calculation of the single-pass gain and 3-dB bandwidth
+// Page no 268
+
+clc;
+clear;
+close;
+
+//Given data
+
+c1=3*10^8; // Velocity of light
+f=7*10^9; // Cut off frequency
+L=500*10^-6; // Input power
+Gp=15; // Peak gain
+n=3.2;
+Gs=2.52;
+R=0.32;
+a=0.1024;
+b=-0.6546;
+c=1;
+
+// The single-pass gain
+
+x1 =( -1*b+ sqrt ((b ^2) -4*a*c)) /(2* a); // 1 s t r o o t
+x2 =( -1*b- sqrt ((b ^2) -4*a*c)) /(2* a); // 2nd r o o t
+
+// The 3-dB bandwidth
+G=10^(Gp/10);
+x=(1-(R*x2))/(2*sqrt(R*x2));
+f=(c1/(%pi*L*n))*asin(x);
+// f=f*10^-9;
+
+// Displaying results in the command window
+
+printf ( 'Single pass gain Gs= %0.2f or' , x1);
+printf ( ' \n Single pass gain Gs= %0.2f ' , x2);
+printf("\n The the 3-dB bandwidth = %0.2f GHz ",f*10^-9);
+
+
+// The answers vary due to round off error
diff --git a/3547/CH6/EX6.7/EX6_7.png b/3547/CH6/EX6.7/EX6_7.png Binary files differnew file mode 100644 index 000000000..91cac0060 --- /dev/null +++ b/3547/CH6/EX6.7/EX6_7.png diff --git a/3547/CH6/EX6.7/EX6_7.sce b/3547/CH6/EX6.7/EX6_7.sce new file mode 100644 index 000000000..db5a0bf63 --- /dev/null +++ b/3547/CH6/EX6.7/EX6_7.sce @@ -0,0 +1,40 @@ +// Example 6.6
+// Calculation of (a) the saturation power and (b) the bias current I
+// Page no 273
+
+clc;
+clear;
+close;
+
+//Given data
+
+c=3*10^8; // Velocity of light
+lambda=1530*10^-9; // Wavelength
+t=0.3 // Overlap factor
+r=7.3*10^-20; // Gain cross section
+r0=1*10^-9; // Carrier lifetime
+q=1.609*10^-19;
+v=7.5*10^-16; // Active volume
+h=6.63*10^-34 // Planck constant
+A=5*10^-6; // Effective area
+g=4.82*10^3; // Small signal gain coeffifient
+N=3.5*10^23; //
+
+// (a) the saturation power and
+
+
+f=c/lambda;
+Ps=(h*f*A)/(t*r*r0);
+Ps=Ps*10^-3;
+
+// (b) the bias current I
+
+I=(g/(r*r0)+N/r0)*q*v;
+I=I*10^3;
+// Displaying results in the command window
+printf("\n The saturation power Psat = %0.3f mW ",Ps);
+
+printf("\n The bias current I = %0.3f mA ",I);
+
+
+// The answers vary due to round off error
diff --git a/3547/CH6/EX6.9/EX6_9.png b/3547/CH6/EX6.9/EX6_9.png Binary files differnew file mode 100644 index 000000000..30ad5b3b4 --- /dev/null +++ b/3547/CH6/EX6.9/EX6_9.png diff --git a/3547/CH6/EX6.9/EX6_9.sce b/3547/CH6/EX6.9/EX6_9.sce new file mode 100644 index 000000000..760f07395 --- /dev/null +++ b/3547/CH6/EX6.9/EX6_9.sce @@ -0,0 +1,30 @@ +// Example 6.9
+// Calculation of the variance of the signal–ASE beat noise current.
+// Page no 290
+
+clc;
+clear;
+close;
+
+//Given data
+
+si=30; // Electrical SNRs at the amplifier input
+so=25; // Electrical SNRs at the amplifier output
+p=0; // Signal power at output
+r=-126; // Signal power at input
+R=0.9; // Planck constant
+f=195*10^12; // Frequency
+b=20*10^9; // Bandwidth
+
+// The variance of the signal–ASE beat noise current
+p1=10^(p/10)*10^-3;
+rn=10^(r/10)*10^-3;
+r1=rn*b;
+r0=2*R^2*p1*r1;
+
+
+//Displaying results in the command window
+printf("\n The variance of the signal–ASE beat noise current = %0.2f x 10^-9 A^2 W/Hz",r0*10^9);
+
+
+// The value of noise power given in example as -126 but for calculation it is taken as -128 in book. Therefore answer is varying.
|