diff options
Diffstat (limited to '3131/CH19')
-rw-r--r-- | 3131/CH19/EX19.1/Ex19_1.sce | 28 | ||||
-rw-r--r-- | 3131/CH19/EX19.2/Ex19_2.sce | 15 | ||||
-rw-r--r-- | 3131/CH19/EX19.3/Ex19_3.sce | 8 | ||||
-rw-r--r-- | 3131/CH19/EX19.4/Ex19_4.sce | 7 | ||||
-rw-r--r-- | 3131/CH19/EX19.5/Ex19_5.sce | 4 | ||||
-rw-r--r-- | 3131/CH19/EX19.6/Ex19_6.sce | 8 | ||||
-rw-r--r-- | 3131/CH19/EX19.7/Ex19_7.sce | 9 | ||||
-rw-r--r-- | 3131/CH19/EX19.8/Ex19_8.sce | 9 |
8 files changed, 88 insertions, 0 deletions
diff --git a/3131/CH19/EX19.1/Ex19_1.sce b/3131/CH19/EX19.1/Ex19_1.sce new file mode 100644 index 000000000..95fd683c5 --- /dev/null +++ b/3131/CH19/EX19.1/Ex19_1.sce @@ -0,0 +1,28 @@ +clear all; clc; +disp("Ex 19_1") +a=8//rad/sec +b=0.25//m +v_G_disk=a*b +printf('\n\nSince the disk is rotating about a fixed axis through point B then v_g = %0.0f m/s',v_G_disk) +m=10//kg +H_G=0.5*m*b^2*a +printf('\n\n(clockwise)+H_G = %0.2f kgm^2/s',H_G) +H_B=H_G+m*v_G*b +printf('\n\n(clockwise)+H_B = %0.2f kgm^2/s',H_B) +disp(" ") +disp("I_B=(3/2)*m*r^2") +H_B_new=(3/2)*m*b^2*a +printf('\n\n(clockwise)+H_B = %0.2f kgm^2/s',H_B_new) +disp(" ") +disp("The bar undergoes General Plane Motion") +//Refer figure 19-c +c=3.464//m +w=v_G_disk/c +printf('\n\nw = %0.4f rad/s',w) +v_G_bar=w*v_G +printf('\n\nFor the bar :- v_G = %0.3f m/s',v_G_bar) +H_G_new=(1/12)*5*4^2*w +printf('\n\nFor the bar :- (clockwise)+H_G = %0.2f kgm^2/s',H_G_new) +//Moments of I_Gw and m.v_G about the IC yield +H_IC=H_G_new+2*5*v_G_bar +printf('\n\n(clockwise)+H_IC = %0.1f kgm^2/s',H_IC) diff --git a/3131/CH19/EX19.2/Ex19_2.sce b/3131/CH19/EX19.2/Ex19_2.sce new file mode 100644 index 000000000..dbd6179fe --- /dev/null +++ b/3131/CH19/EX19.2/Ex19_2.sce @@ -0,0 +1,15 @@ +clear all; clc; +disp("Ex 19_2") +a=100 //weight of disk in N +m=100/9.81 // mass of disk in kg +r=0.3 //radius of the disk in m +I_A=0.5*m*r^2 +printf('\n\nMoment of inertia of the disk about its fixed axis of rotation is = %0.3f kgm^2',I_A) +//Principle of Impulse Momentumyields the following 3 equations +//0+A_x*(2)=0 ... equation 1 +//0+A_y*(2)-100*(2)-40*(2)=0 .. equation 2 +//0+4*(2)+[40*(2)]*(0.3)=0.459*w_2 +//Solving these equations yields : +disp("A_x is = 0") +disp("A_y is = 140 N") +disp("w_2 is = 69.7 rad/sec in clockwise direction") diff --git a/3131/CH19/EX19.3/Ex19_3.sce b/3131/CH19/EX19.3/Ex19_3.sce new file mode 100644 index 000000000..bc5b01b75 --- /dev/null +++ b/3131/CH19/EX19.3/Ex19_3.sce @@ -0,0 +1,8 @@ +clear all; clc; +disp("Ex 19_3") +m=100 //kg +k_G=0.35//m +I_G=m*k_G^2 +printf('\n\nMoment of inertia of the spool about its mass centre is = %0.2f kgm^2',I_G) +//Applying Impulse Momentum Principle, we get 2 equtions with integral terms in them and on solving them, we get : +disp("w_2=1.05 rad/sec in clockwise direction") diff --git a/3131/CH19/EX19.4/Ex19_4.sce b/3131/CH19/EX19.4/Ex19_4.sce new file mode 100644 index 000000000..e379cb706 --- /dev/null +++ b/3131/CH19/EX19.4/Ex19_4.sce @@ -0,0 +1,7 @@ +clear all; clc; +disp("Ex 19_4") +//Applying Impulse Momentum Principle, we get the following two equations: +//0.4*w_1+T*(3)*0.2=0.4*w_2 .. equation 1 +//-6*2+T*3-58.86*3=-6*(v_B)2 .. equation 2 +//Solving the above two equations simultaneosly +disp("(v_B)2=13.0 m/s in the downward direction") diff --git a/3131/CH19/EX19.5/Ex19_5.sce b/3131/CH19/EX19.5/Ex19_5.sce new file mode 100644 index 000000000..815c307cf --- /dev/null +++ b/3131/CH19/EX19.5/Ex19_5.sce @@ -0,0 +1,4 @@ +clear all; clc; +disp("Ex 19_5") +//Referring figure 19-8 +disp("r_p=r(bar)+ ((k_G)^2)/r(bar)") diff --git a/3131/CH19/EX19.6/Ex19_6.sce b/3131/CH19/EX19.6/Ex19_6.sce new file mode 100644 index 000000000..b1ca58357 --- /dev/null +++ b/3131/CH19/EX19.6/Ex19_6.sce @@ -0,0 +1,8 @@ +clear all; clc; +disp("Ex 19_6") +// Using Principle of Conservation of Angular Momentum, +//Eqn 1 : (0.2-0.03)*10*(v_G)1+0.156*w_1=0.2*10*(v_G)2+0.156*w_2 +//Since no slipping occurs,equation 1 reduces to (v_G)2=0.892*(v_G)1 +//Using Conservation of Energy Principle, Equation 2 is: 0.5*10*(v_G)2^2 + 0.5*0.156*w_2^2+0=0+{98.1*0.03} +//Put w_2=5*(v_G)2 and equation 1 in the above equation, +disp("(v_G)1=0.729 m/s") diff --git a/3131/CH19/EX19.7/Ex19_7.sce b/3131/CH19/EX19.7/Ex19_7.sce new file mode 100644 index 000000000..8ae0c1a83 --- /dev/null +++ b/3131/CH19/EX19.7/Ex19_7.sce @@ -0,0 +1,9 @@ +clear all; clc; +disp("Ex 19_7") +//Using Principle of Conservation of Angular Momentum: +//Equation 1 becomes : 1.039=0.003*(v_B)2+2.50*(v_G)2+0.417*w_2 +//Since the rod is pinned at O, form figure 19-10c +//(v_G)2=0.5*w_2 +//(v_B)2=0.75*w_2 +//Puttin the above two values in equation 1, we get the value of w_2 +disp("w_2 = 0.623 rad/sec in the anticlockwise direction") diff --git a/3131/CH19/EX19.8/Ex19_8.sce b/3131/CH19/EX19.8/Ex19_8.sce new file mode 100644 index 000000000..cce238320 --- /dev/null +++ b/3131/CH19/EX19.8/Ex19_8.sce @@ -0,0 +1,9 @@ +clear all; clc; +disp("Ex 19_8") +//Referring figure 19-12b and 19-12c +//Using the principle of Conservation of Angular Momenutum and since (v_G)2=0.5*w_2 +//Equation 1 becomes : 5.0=0.5*(v_B)2+1.67*w_2 +//Using the coefficient of restitution theory, we have 4.0=0.5*w_2-(v_B)2 +//Solving the above two equatons, +disp("(v_B)2= 2.177 m/sec towards the left") +disp("w_2= 3.64 rad/sec in the anticlockwise direction") |