summaryrefslogtreecommitdiff
path: root/2882/CH6
diff options
context:
space:
mode:
Diffstat (limited to '2882/CH6')
-rwxr-xr-x2882/CH6/EX6.1/6_1.pdfbin0 -> 16061 bytes
-rwxr-xr-x2882/CH6/EX6.1/Ex6_1.sce39
-rwxr-xr-x2882/CH6/EX6.10/Ex6_10.sce29
-rwxr-xr-x2882/CH6/EX6.11/Ex6_11.sce13
-rwxr-xr-x2882/CH6/EX6.12/Ex6_12.sce28
-rwxr-xr-x2882/CH6/EX6.13/Ex6_13.sce19
-rwxr-xr-x2882/CH6/EX6.14/Ex6_14.sce20
-rwxr-xr-x2882/CH6/EX6.15/Ex6_15.sce21
-rwxr-xr-x2882/CH6/EX6.2/Ex6_2.sce40
-rwxr-xr-x2882/CH6/EX6.3/Ex6_3.sce37
-rwxr-xr-x2882/CH6/EX6.4/Ex6_4.sce42
-rwxr-xr-x2882/CH6/EX6.5/Ex6_5.sce38
-rwxr-xr-x2882/CH6/EX6.6/6_6.pdfbin0 -> 47496 bytes
-rwxr-xr-x2882/CH6/EX6.6/Ex6_6.sce64
-rwxr-xr-x2882/CH6/EX6.7/Ex6_7.sce56
-rwxr-xr-x2882/CH6/EX6.8/Ex6_8.sce54
-rwxr-xr-x2882/CH6/EX6.9/Ex6_9.sce36
17 files changed, 536 insertions, 0 deletions
diff --git a/2882/CH6/EX6.1/6_1.pdf b/2882/CH6/EX6.1/6_1.pdf
new file mode 100755
index 000000000..aaa42b747
--- /dev/null
+++ b/2882/CH6/EX6.1/6_1.pdf
Binary files differ
diff --git a/2882/CH6/EX6.1/Ex6_1.sce b/2882/CH6/EX6.1/Ex6_1.sce
new file mode 100755
index 000000000..69f9af669
--- /dev/null
+++ b/2882/CH6/EX6.1/Ex6_1.sce
@@ -0,0 +1,39 @@
+//Tested on Windows 7 Ultimate 32-bit
+//Chapter 6 Single Staje BJT Amplifiers Pg no. 184 and 185
+clear;
+clc;
+
+//Given Data
+//Figure 6.7
+
+VCC=20;//collector supply voltage in volts
+RC=1.5D3;//collector resistance in ohms
+RE=1.8D3;//emitter resistance in ohms
+R1=8.2D3;//divider network resistance R1 in ohms
+R2=3.9D3;//divider network resistance R2 in ohms
+VBE=0.7;//forward voltage drop of emitter diode in volts
+
+//Solution
+
+//For DC load line
+VCEd=0:VCC;//as for load line maximum VCE is at IC=0 mA ie. VCE=VCC
+ICd=(VCC-VCEd)/(RC+RE)*1000;//equation for DC load line
+VB=VCC*R2/(R1+R2);//base to ground voltage in volts
+VE=VB-VBE;//emitter to ground voltage in volts
+IE=VE/RE;//emitter current in milli-amperes
+IC=IE;//collector current is approximately equal to emitter current
+VCE=VCC-IC*(RC+RE);//collector to emitter voltage in volts
+
+//For AC load line
+m=-1/RC;//slope of AC load line i.e. ΔIC/ΔVCE
+c=IC-m*VCE;//load line passes through Q point
+ICa=(m*VCEd+c)*1000;//AC load line equation
+
+plot2d(VCEd,[ICd' ICa'],[1,2],leg="DC LOAD LINE@AC LOAD LINE",rect=[0,0,21,7]);
+plot2d(VCE,IC*1000,-1);
+xlabel("VCE (in Volts)");
+ylabel("IC (in mA)");
+xstring(VCE+.1,IC*1000+.1,"Q point");
+xstring(VCC,.1,"R");
+xstring(.1,VCC/(RC+RE)*1000,"P");
+title("LOAD LINES FOR EXAMPLE 6.1")
diff --git a/2882/CH6/EX6.10/Ex6_10.sce b/2882/CH6/EX6.10/Ex6_10.sce
new file mode 100755
index 000000000..872df58d7
--- /dev/null
+++ b/2882/CH6/EX6.10/Ex6_10.sce
@@ -0,0 +1,29 @@
+//Tested on Windows 7 Ultimate 32-bit
+//Chapter 6 Single Staje BJT Amplifiers Pg no. 202 and 203
+clear;
+clc;
+
+//Given Data
+//Figure 6.28
+
+VCC=12;//collector supply voltage in volts
+RC=1.5D3;//collector resistance in ohms
+RE=1.5D3;//emitter resistance in ohms
+R1=82D3;//divider network resistance R1 in ohms
+R2=18D3;//divider network resistance R2 in ohms
+VBE=0.7;//forward voltage drop of emitter diode in volts
+VT=25D-3;//voltage equivalent of temperature in volts
+RL=15D3;//load resistance in ohms
+
+//Solution
+
+VB=VCC*R2/(R1+R2);//d.c. base to ground voltage in volts
+VE=VB-VBE;//d.c. emitter to ground voltage in volts
+IE=VE/RE;//d.c. emitter current in amperes
+re=VT/IE;//equivalent BJT model emitter resistance in ohms
+Rin=re;//total input resistance in ohms
+RL_dash=RC*RL/(RC+RL);//equivalent output resistance in ohms
+Gv=RL_dash/re;//voltage gain of CC configuration
+Gi=1;//current gain for a CB amplifier is almost equal to unity
+Gp=Gi*Gv;//a.c. power gain
+printf("Voltage gain Gv = %.1f\n Current gain Gi = %d\n Power gain Gp = %.1f\n Total input resistance Rin = %.2f ohms",Gv,Gi,Gp,Rin);
diff --git a/2882/CH6/EX6.11/Ex6_11.sce b/2882/CH6/EX6.11/Ex6_11.sce
new file mode 100755
index 000000000..4aca65eb4
--- /dev/null
+++ b/2882/CH6/EX6.11/Ex6_11.sce
@@ -0,0 +1,13 @@
+//Tested on Windows 7 Ultimate 32-bit
+//Chapter 6 Single Staje BJT Amplifiers Pg no. 204
+clear;
+clc;
+
+//Given Data
+
+B=190;//current gain of single transistor
+
+//Solution
+
+Bac=B^2;//current gain of superbeta transistor if B is the gain of each of the employed transistor
+printf("Bac = %d",Bac);
diff --git a/2882/CH6/EX6.12/Ex6_12.sce b/2882/CH6/EX6.12/Ex6_12.sce
new file mode 100755
index 000000000..b32ca753f
--- /dev/null
+++ b/2882/CH6/EX6.12/Ex6_12.sce
@@ -0,0 +1,28 @@
+//Tested on Windows 7 Ultimate 32-bit
+//Chapter 6 Single Staje BJT Amplifiers Pg no. 205
+clear;
+clc;
+
+//Given Data
+//Figure 6.31
+
+VCC=18;//collector supply voltage in volts
+RB=3.9D6;//base resistance in ohms
+RE=470;//emitter resistance in ohms
+VBE=1.6;//forward voltage drop of emitter diode of darlington pair in volts
+Bac=10000;//DC current gain beta for darlington pair
+
+//Solution
+
+IB=(VCC-VBE)/(RB+Bac*RE);//base current in amperes
+IE=Bac*IB;//emitter current in amperes
+IC=IE;//collector current is almost equal to emitter current
+VE=IE*RE;//emitter to ground voltage in volts
+VB=VE+VBE;//base to ground voltage in volts
+printf("IB = %.2f μA\n ",IB*10^6);
+printf("IE = %.1f mA\n ",IE*10^3);
+printf("IC = %.1f mA\n ",IC*10^3);
+printf("VE = %.2f Volts\n ",VE);
+printf("VB = %.2f Volts\n ",VB);
+
+//error in calculation in textbook for VB
diff --git a/2882/CH6/EX6.13/Ex6_13.sce b/2882/CH6/EX6.13/Ex6_13.sce
new file mode 100755
index 000000000..82394ffd8
--- /dev/null
+++ b/2882/CH6/EX6.13/Ex6_13.sce
@@ -0,0 +1,19 @@
+//Tested on Windows 7 Ultimate 32-bit
+//Chapter 6 Single Staje BJT Amplifiers Pg no. 207
+clear;
+clc;
+
+//Given Data
+//Figure 6.31
+
+VCC=18;//collector supply voltage in volts
+RB=3.9D6;//base resistance in ohms
+RE=470;//emitter resistance in ohms
+VBE=1.6;//forward voltage drop of emitter diode of darlington pair in volts
+Bac=10000;//DC current gain beta for darlington pair
+ri=6D3;//emitter diode forward resistance
+
+//Solution
+
+Zin=1/(1/RB+1/(ri+Bac*RE));//input impedance of the circuit
+printf("Zin = %.3f Mega-ohms",Zin/10^6);
diff --git a/2882/CH6/EX6.14/Ex6_14.sce b/2882/CH6/EX6.14/Ex6_14.sce
new file mode 100755
index 000000000..6a3ce1e77
--- /dev/null
+++ b/2882/CH6/EX6.14/Ex6_14.sce
@@ -0,0 +1,20 @@
+//Tested on Windows 7 Ultimate 32-bit
+//Chapter 6 Single Staje BJT Amplifiers Pg no. 207
+clear;
+clc;
+
+//Given Data
+//Figure 6.31
+
+VCC=18;//collector supply voltage in volts
+RB=3.9D6;//base resistance in ohms
+RE=470;//emitter resistance in ohms
+VBE=1.6;//forward voltage drop of emitter diode of darlington pair in volts
+Bac=10000;//DC current gain beta for darlington pair
+
+//Solution
+
+Gi=RB/(RE+RB/Bac);//a.c. circuit current gain
+printf("Gi = %d",Gi);
+
+//error in question as base current can not be obtained without an input also not solved in textbook
diff --git a/2882/CH6/EX6.15/Ex6_15.sce b/2882/CH6/EX6.15/Ex6_15.sce
new file mode 100755
index 000000000..f468c47d6
--- /dev/null
+++ b/2882/CH6/EX6.15/Ex6_15.sce
@@ -0,0 +1,21 @@
+//Tested on Windows 7 Ultimate 32-bit
+//Chapter 6 Single Staje BJT Amplifiers Pg no. 207
+clear;
+clc;
+
+//Given Data
+//Figure 6.31
+
+VCC=18;//collector supply voltage in volts
+RB=3.9D6;//base resistance in ohms
+RE=470;//emitter resistance in ohms
+VBE=1.6;//forward voltage drop of emitter diode of darlington pair in volts
+Bac=10000;//DC current gain beta for darlington pair
+ri=6D3;//emitter forward resistance of darlington pair
+
+//Solution
+
+Zout=1/(1/RE+1/ri+1/(ri/Bac));//output impedance of the overall circuit in ohms
+Gv=(RE+Bac*RE)/(ri+RE+Bac*RE);//a.c. voltage gain
+printf("Zout = %.1f ohms\n ",Zout);
+printf("Gv = %.4f",Gv);
diff --git a/2882/CH6/EX6.2/Ex6_2.sce b/2882/CH6/EX6.2/Ex6_2.sce
new file mode 100755
index 000000000..b83e57718
--- /dev/null
+++ b/2882/CH6/EX6.2/Ex6_2.sce
@@ -0,0 +1,40 @@
+//Tested on Windows 7 Ultimate 32-bit
+//Chapter 6 Single Staje BJT Amplifiers Pg no. 186,187 and 188
+clear;
+clc;
+
+//Given Data
+//Figure 6.9,6.10,6.11,6.12,6.13
+
+VCC=15;//collector supply voltage in volts
+RC=1D3;//collector resistance in ohms
+RE=390;//emitter resistance in ohms
+R1=18D3;//divider network resistance R1 in ohms
+R2=3.9D3;//divider network resistance R2 in ohms
+VBE=0.7;//forward voltage drop of emitter diode in volts
+Bdc=120;//DC CE current gain beta
+Bac=130;//AC CE current gain beta
+
+//Solution
+
+disp("DC analysis for Figure 6.10");
+Rin_dc=Bdc*RE;//dc input resistance in ohms
+if 0.1*Rin_dc>R2 then
+ VB=VCC*R2/(R1+R2);//base to ground voltage in volts , since Rin>10*R2 it can be neglected
+end
+VE=VB-VBE;//emitter to ground voltage in volts
+IE=VE/RE;//emitter current in amperes
+IC=IE;//collector current is approximately equal to emitter current
+VC=VCC-IC*RC;//collector to ground voltage in volts
+VCE=VC-VE;//collector to emitter voltage in volts
+
+printf("IC = %.2f mA\n",IC*1000);
+printf("VCE = %.2f Volts\n",VCE);
+
+disp("AC analysis for Figure 6.12");
+printf("Rin'' = R1||R2||Rin where Rin=Vb/Ib\n");
+printf("Vb=Ie*(re+RE)\n =Bac*Ib*(re+RE)\n");
+printf("(Rin)''= Bac*(re+RE)\n");
+printf("Rout = RC||rC = RC\n as rC>>RC\n");
+
+//decimal error w.r.t. textbook due to approximations
diff --git a/2882/CH6/EX6.3/Ex6_3.sce b/2882/CH6/EX6.3/Ex6_3.sce
new file mode 100755
index 000000000..6f8469aab
--- /dev/null
+++ b/2882/CH6/EX6.3/Ex6_3.sce
@@ -0,0 +1,37 @@
+//Tested on Windows 7 Ultimate 32-bit
+//Chapter 6 Single Staje BJT Amplifiers Pg no. 188
+clear;
+clc;
+
+//Given Data
+//Figure 6.11
+
+VCC=15;//collector supply voltage in volts
+RC=1D3;//collector resistance in ohms
+RE=390;//emitter resistance in ohms
+R1=18D3;//divider network resistance R1 in ohms
+R2=3.9D3;//divider network resistance R2 in ohms
+VBE=0.7;//forward voltage drop of emitter diode in volts
+Bdc=120;//DC CE current gain beta
+Bac=130;//AC CE current gain beta
+VT=0.25D-3;//voltage equivalent of temperature in volts
+Vs=5D-3;//source rms voltage in volts
+Rs=600;//source internal impedance in ohms
+
+//Solution
+
+Rin_dc=Bdc*RE;//dc input resistance in ohms
+if 0.1*Rin_dc>R2 then
+ VB=VCC*R2/(R1+R2);//base to ground voltage in volts , since Rin>10*R2 it can be neglected
+end
+VE=VB-VBE;//emitter to ground voltage in volts
+IE=VE/RE;//emitter current in amperes
+IC=IE;//collector current is approximately equal to emitter current
+VC=VCC-IC*RC;//collector to ground voltage in volts
+VCE=VC-VE;//collector to emitter voltage in volts
+
+re=VT/IE;//equivalent BJT model emitter resistance in ohms
+Rin_dash=Bac*(RE+re);//internal resistance of BJT in ohms
+Rin=1/(1/R1+1/R2+1/Rin_dash);//total internal resistance is Rin=R1||R2||Rin'
+Vb=Rin/(Rs+Rin)*Vs;//signal voltage at base in volts
+printf("Vb = %.2f mV",Vb*1000);
diff --git a/2882/CH6/EX6.4/Ex6_4.sce b/2882/CH6/EX6.4/Ex6_4.sce
new file mode 100755
index 000000000..1271976f7
--- /dev/null
+++ b/2882/CH6/EX6.4/Ex6_4.sce
@@ -0,0 +1,42 @@
+//Tested on Windows 7 Ultimate 32-bit
+//Chapter 6 Single Staje BJT Amplifiers Pg no. 190
+clear;
+clc;
+
+//Given Data
+//Figure 6.11
+
+VCC=15;//collector supply voltage in volts
+RC=1D3;//collector resistance in ohms
+RE=390;//emitter resistance in ohms
+R1=18D3;//divider network resistance R1 in ohms
+R2=3.9D3;//divider network resistance R2 in ohms
+VBE=0.7;//forward voltage drop of emitter diode in volts
+Bdc=120;//DC CE current gain beta
+Bac=130;//AC CE current gain beta
+VT=25D-3;//voltage equivalent of temperature in volts
+
+//Solution
+
+Rin_dc=Bdc*RE;//dc input resistance in ohms
+if 0.1*Rin_dc>R2 then
+ VB=VCC*R2/(R1+R2);//base to ground voltage in volts , since Rin>10*R2 it can be neglected
+end
+VE=VB-VBE;//emitter to ground voltage in volts
+IE=VE/RE;//emitter current in amperes
+IC=IE;//collector current is approximately equal to emitter current
+VC=VCC-IC*RC;//collector to ground voltage in volts
+VCE=VC-VE;//collector to emitter voltage in volts
+re=VT/IE;//equivalent BJT model emitter resistance in ohms
+
+disp("(i)");
+printf("Without emitter bypass capacitor.\n");
+gain=RC/(re+RE);//base to collector voltage gain
+printf("Base to collector voltage gain = %.2f\n",gain);
+
+disp("(ii)");
+printf("With RE shorted.\n");
+gain=RC/re;//base to collector voltage gain
+printf("Base to collector voltage gain = %d\n",gain);
+
+//gain deviation due to approximations in textbook
diff --git a/2882/CH6/EX6.5/Ex6_5.sce b/2882/CH6/EX6.5/Ex6_5.sce
new file mode 100755
index 000000000..24ddde16e
--- /dev/null
+++ b/2882/CH6/EX6.5/Ex6_5.sce
@@ -0,0 +1,38 @@
+//Tested on Windows 7 Ultimate 32-bit
+//Chapter 6 Single Staje BJT Amplifiers Pg no. 191 and 192
+clear;
+clc;
+
+//Given Data
+//Figure 6.9
+
+VCC=15;//collector supply voltage in volts
+RC=1D3;//collector resistance in ohms
+RE=390;//emitter resistance in ohms
+R1=18D3;//divider network resistance R1 in ohms
+R2=3.9D3;//divider network resistance R2 in ohms
+VBE=0.7;//forward voltage drop of emitter diode in volts
+Bdc=120;//DC CE current gain beta
+Bac=130;//AC CE current gain beta
+VT=25D-3;//voltage equivalent of temperature in volts
+Vs=5D-3;//source rms voltage in volts
+Rs=600;//source internal impedance in ohms
+re=5;//equivalent BJT model emitter resistance in ohms
+RL=6.8D3;//load resistance in ohms
+C2=50D-6;//emitter bypass capacitance in farads
+
+//Solution
+
+disp("(i)");
+RL_dash=RC*RL/(RC+RL);//a.c. value of collector resistance in ohms
+Gv=RL_dash/re;//a.c. voltage gain
+printf("A.C. Voltage gain Gv = %.1f\n",Gv);
+
+disp("(ii)");
+Rin_dash=Bac*(RE+re);//internal resistance of BJT in ohms
+Rin=1/(1/R1+1/R2+1/Rin_dash);//total internal resistance is Rin=R1||R2||Rin'
+f=Rin/(Rs+Rin);//input attenuation factor
+Gv_dash=f*Gv;//overall a.c. voltage gain
+printf("Overall A.C. Voltage gain Gv'' = %.1f\n",Gv_dash);
+
+//gain deviation due to approximations in textbook
diff --git a/2882/CH6/EX6.6/6_6.pdf b/2882/CH6/EX6.6/6_6.pdf
new file mode 100755
index 000000000..bf624916e
--- /dev/null
+++ b/2882/CH6/EX6.6/6_6.pdf
Binary files differ
diff --git a/2882/CH6/EX6.6/Ex6_6.sce b/2882/CH6/EX6.6/Ex6_6.sce
new file mode 100755
index 000000000..022d84060
--- /dev/null
+++ b/2882/CH6/EX6.6/Ex6_6.sce
@@ -0,0 +1,64 @@
+//Tested on Windows 7 Ultimate 32-bit
+//Chapter 6 Single Staje BJT Amplifiers Pg no. 193,194 and 195
+clear;
+clc;
+
+//Given Data
+//Figure 6.18,6.19,6.20
+
+VCC=15;//collector supply voltage in volts
+RC=5.6D3;//collector resistance in ohms
+RE0=390;//unbypassed emitter resistance in ohms
+RE1=390;//bypased emitter resistance in ohms
+R1=33D3;//divider network resistance R1 in ohms
+R2=4.7D3;//divider network resistance R2 in ohms
+VBE=0.7;//forward voltage drop of emitter diode in volts
+Bdc=140;//DC CE current gain beta
+Bac=160;//AC CE current gain beta
+VT=25D-3;//voltage equivalent of temperature in volts
+Vs=15D-3;//source rms voltage in volts
+Rs=600;//source internal impedance in ohms
+RL=68D3;//load resistance in ohms
+C1=10D-6;//input coupling capacitance in farads
+C2=50D-6;//emitter bypass capacitance in farads
+C3=10D-6;//output coupling capacitance in farads
+
+
+//Solution
+
+//DC analysis
+Rin_dc=Bdc*(RE0+RE1);//dc input resistance in ohms
+if 0.1*Rin_dc>R2 then
+ VB=VCC*R2/(R1+R2);//base to ground voltage in volts , since Rin>10*R2 it can be neglected
+end
+VE=VB-VBE;//emitter to ground voltage in volts
+IE=VE/(RE0+RE1);//emitter current in amperes
+IC=IE;//collector current is approximately equal to emitter current
+VC=VCC-IC*RC;//collector to ground voltage in volts
+
+//AC analysis
+re=VT/IE;//equivalent BJT model emitter resistance in ohms
+Rin_dash=Bac*(RE0+re);//internal resistance of BJT in ohms
+Rin=1/(1/R1+1/R2+1/Rin_dash);//total internal resistance is Rin=R1||R2||Rin'
+f=Rin/(Rs+Rin);//input attenuation factor
+RL_dash=1/(1/RC+1/RL);//effective load resistance
+Gv=RL_dash/(re+RE0);//a.c. voltage gain
+Gv_dash=f*Gv;//overall a.c. voltage gain
+vc=Gv_dash*Vs;//a.c voltage at collector in volts
+printf("Output voltage will be a.c. signal of amplitude %d mV \nCollector voltage will be the same voltage mounted on a d.c. level of %.1f Volts",vc*1000,VC);
+//plotting the curves
+t=0:0.01:2*3.14;//one period
+y1=VC+vc*sin(t);//total collector voltage
+y2=vc*1000*sin(t);//output voltage
+
+subplot(2,1,1);
+plot(y1);
+title("(a)Collector Voltage");
+ylabel("Vc (volts)");
+xlabel("time period");
+
+subplot(2,1,2);
+plot(y2);
+title("(b)Output Voltage");
+ylabel("Vc (milli-volts)");
+xlabel("time period");
diff --git a/2882/CH6/EX6.7/Ex6_7.sce b/2882/CH6/EX6.7/Ex6_7.sce
new file mode 100755
index 000000000..15db098d3
--- /dev/null
+++ b/2882/CH6/EX6.7/Ex6_7.sce
@@ -0,0 +1,56 @@
+//Tested on Windows 7 Ultimate 32-bit
+//Chapter 6 Single Staje BJT Amplifiers Pg no. 195 and 196
+clear;
+clc;
+
+//Given Data
+//Figure 6.18,6.19,6.20
+
+VCC=15;//collector supply voltage in volts
+RC=5.6D3;//collector resistance in ohms
+RE0=390;//unbypassed emitter resistance in ohms
+RE1=390;//bypased emitter resistance in ohms
+R1=33D3;//divider network resistance R1 in ohms
+R2=4.7D3;//divider network resistance R2 in ohms
+VBE=0.7;//forward voltage drop of emitter diode in volts
+Bdc=140;//DC CE current gain beta
+Bac=160;//AC CE current gain beta
+VT=25D-3;//voltage equivalent of temperature in volts
+Vs=15D-3;//source rms voltage in volts
+Rs=600;//source internal impedance in ohms
+C1=10D-6;//input coupling capacitance in farads
+C2=50D-6;//emitter bypass capacitance in farads
+C3=10D-6;//output coupling capacitance in farads
+RL=[3.3D3 10D3 33D3 100D3 500D3 %inf] ;//load resistances in ohms
+
+
+//Solution
+
+for i=1:6
+
+printf("Case (%d)\n RL = %.1f kilo-ohms\n",i,RL(i)/1000);
+Rin_dc=Bdc*(RE0+RE1);//dc input resistance in ohms
+if 0.1*Rin_dc>R2 then
+ VB=VCC*R2/(R1+R2);//base to ground voltage in volts , since Rin>10*R2 it can be neglected
+end
+VE=VB-VBE;//emitter to ground voltage in volts
+IE=VE/(RE0+RE1);//emitter current in amperes
+IC=IE;//collector current is approximately equal to emitter current
+VC=VCC-IC*RC;//collector to ground voltage in volts
+re=VT/IE;//equivalent BJT model emitter resistance in ohms
+Rin_dash=Bac*(RE0+re);//internal resistance of BJT in ohms
+Rin=1/(1/R1+1/R2+1/Rin_dash);//total internal resistance is Rin=R1||R2||Rin'
+f=Rin/(Rs+Rin);//input attenuation factor
+if RL(i)==%inf then
+ RL_dash=RC;//effective load resistance
+else
+ RL_dash=1/(1/RC+1/RL(i));//effective load resistance
+end
+Gv=RL_dash/(re+RE0);//a.c. voltage gain
+Gv_dash=f*Gv;//overall a.c. voltage gain
+vc=Gv_dash*Vs;//a.c voltage at collector in volts
+
+printf("Output voltage vc = %.2f mV\n",vc*1000);
+end
+
+//error in answers in textbook due to approximations
diff --git a/2882/CH6/EX6.8/Ex6_8.sce b/2882/CH6/EX6.8/Ex6_8.sce
new file mode 100755
index 000000000..4f0956f60
--- /dev/null
+++ b/2882/CH6/EX6.8/Ex6_8.sce
@@ -0,0 +1,54 @@
+//Tested on Windows 7 Ultimate 32-bit
+//Chapter 6 Single Staje BJT Amplifiers Pg no. 197
+clear;
+clc;
+
+//Given Data
+//Figure 6.18,6.19,6.20
+
+VCC=15;//collector supply voltage in volts
+RC=5.6D3;//collector resistance in ohms
+RE0=390;//unbypassed emitter resistance in ohms
+RE1=390;//bypased emitter resistance in ohms
+R1=33D3;//divider network resistance R1 in ohms
+R2=4.7D3;//divider network resistance R2 in ohms
+VBE=0.7;//forward voltage drop of emitter diode in volts
+Bdc=140;//DC CE current gain beta
+Bac=160;//AC CE current gain beta
+VT=25D-3;//voltage equivalent of temperature in volts
+Vs=15D-3;//source rms voltage in volts
+Rs=600;//source internal impedance in ohms
+C1=10D-6;//input coupling capacitance in farads
+C2=50D-6;//emitter bypass capacitance in farads
+C3=10D-6;//output coupling capacitance in farads
+RL=68D3;//load resistance in ohms
+
+//Solution
+
+Rin_dc=Bdc*(RE0+RE1);//dc input resistance in ohms
+if 0.1*Rin_dc>R2 then
+ VB=VCC*R2/(R1+R2);//base to ground voltage in volts , since Rin>10*R2 it can be neglected
+end
+VE=VB-VBE;//emitter to ground voltage in volts
+IE=VE/(RE0+RE1);//emitter current in amperes
+IC=IE;//collector current is approximately equal to emitter current
+VC=VCC-IC*RC;//collector to ground voltage in volts
+
+re=VT/IE;//equivalent BJT model emitter resistance in ohms
+Rin_dash=Bac*(RE0+re);//internal resistance of BJT in ohms
+Rin=1/(1/R1+1/R2+1/Rin_dash);//total internal resistance is Rin=R1||R2||Rin'
+Vb=Rin/(Rs+Rin)*Vs;//signal voltage at base in volts
+Ib=Vb/Rin_dash;//base current due to source
+Is=Vs/(Rin+Rs);//current driven from source in amperes
+Ic=Bac*Ib;//collector a.c. current
+Gi_dash=Ic/Is;//overall a.c. current gain
+RL_dash=RC*RL/(RC+RL);//a.c. value of collector resistance in ohms
+Gv=RL_dash/re;//a.c. voltage gain
+f=Rin/(Rs+Rin);//input attenuation factor
+Gv_dash=f*Gv;//overall a.c. voltage gain
+Gp_dash=Gv_dash*Gi_dash;//a.c. power gain
+
+printf("Current gain Gi'' = %.2f and power gain Gp'' = %.2f",Gi_dash,Gp_dash);
+
+
+//error in calculation and missing calculation of power gain in textbook
diff --git a/2882/CH6/EX6.9/Ex6_9.sce b/2882/CH6/EX6.9/Ex6_9.sce
new file mode 100755
index 000000000..ef2a635b5
--- /dev/null
+++ b/2882/CH6/EX6.9/Ex6_9.sce
@@ -0,0 +1,36 @@
+//Tested on Windows 7 Ultimate 32-bit
+//Chapter 6 Single Staje BJT Amplifiers Pg no. 200
+clear;
+clc;
+
+//Given Data
+//Figure 6.25
+
+VCC=15;//collector supply voltage in volts
+RE=1.5D3;//emitter resistance in ohms
+R1=12D3;//divider network resistance R1 in ohms
+R2=10D3;//divider network resistance R2 in ohms
+VBE=0.7;//forward voltage drop of emitter diode in volts
+Bac=150;//AC CE current gain beta
+VT=25D-3;//voltage equivalent of temperature in volts
+Vs=1;//input rms a.c. voltage in volts
+Rs=600;//source internal impedance in ohms
+RL=12D3;//load resistance in ohms
+
+//Solution
+
+Req=RE*RL/(RE+RL);//equivalent output resistance in ohms
+Rin_dash=Bac*Req;//base input resistance
+Rin=1/(1/R1+1/R2+1/Rin_dash);//total input resistance in ohms
+VB=VCC*R2/(R1+R2);//d.c. base to ground voltage in volts
+VE=VB-VBE;//d.c. emitter to ground voltage in volts
+IE=VE/RE;//d.c. emitter current in amperes
+re=VT/IE;//equivalent BJT model emitter resistance in ohms
+Gv=Req/(Req+re);//voltage gain of CC configuration
+Ie=Gv*Vs/Req;//a.c. emitter current in amperes
+Iin=Vs/Rin;//a.c. input current in amperes
+Gi=Ie/Iin;//a.c. current gain
+Gp=Gi*Gv;//a.c. power gain
+printf("Voltage gain Gv = %.3f\n Current gain Gi = %.2f\n Power gain Gp = %.2f\n Total input resistance Rin = %.2f kilo-ohms",Gv,Gi,Gp,Rin/1000);
+
+//decimal errors in textbook due to approximations