diff options
Diffstat (limited to '2657/CH27')
-rwxr-xr-x | 2657/CH27/EX27.1/Ex27_1.sce | 26 | ||||
-rwxr-xr-x | 2657/CH27/EX27.2/Ex27_2.sce | 30 | ||||
-rwxr-xr-x | 2657/CH27/EX27.3/Ex27_3.sce | 27 | ||||
-rwxr-xr-x | 2657/CH27/EX27.4/Ex27_4.sce | 29 | ||||
-rwxr-xr-x | 2657/CH27/EX27.5/Ex27_5.sce | 18 | ||||
-rwxr-xr-x | 2657/CH27/EX27.6/Ex27_6.sce | 33 | ||||
-rwxr-xr-x | 2657/CH27/EX27.7/Ex27_7.sce | 50 |
7 files changed, 213 insertions, 0 deletions
diff --git a/2657/CH27/EX27.1/Ex27_1.sce b/2657/CH27/EX27.1/Ex27_1.sce new file mode 100755 index 000000000..17d27deff --- /dev/null +++ b/2657/CH27/EX27.1/Ex27_1.sce @@ -0,0 +1,26 @@ +//Calculations on non supercharged CI engine +clc,clear +//Given: +Pr=500 //Standard reference brake power in kW +eta_m=85 //Mechanical efficiency in percent +br=220 //Standard specific fuel consumption in g/kWh +px=87 //Site ambient air pressure in kPa +Tx=45+273 //Site ambient temperature in K +phix=80/100 //Relative humidity at site +//Solution: +//Refer table 27.1, 27.2 and 27.3 +a=1 //Factor +m=1,n=0.75,q=0 //Exponents +psx=9.6 //Saturation vapour pressure at site in kPa +psr=3.2 //Standard saturation vapour pressure in kPa +pr=100 //Standard total barometric pressure in kPa +Tr=298 //Standard air temperature in K +phir=0.3 //Standard relative humidity +k=((px-a*phix*psx)/(pr-a*phir*psr))^m*(Tr/Tx)^n //The ratio of indicated power +alpha=k-0.7*(1-k)*(100/eta_m-1) //Power adjustment factor +Beta=k/alpha //Fuel consumption adjustment factor +Px=alpha*Pr //Brake power at site in kW +bx=Beta*br //Specific fuel consumption at site in g/kWh +//Results: +printf("\n The site continuous net brake power, Px = %.1f kW",Px) +printf("\n The site continuous specific fuel consumption, bx = %.1f g/kWh\n",bx) diff --git a/2657/CH27/EX27.2/Ex27_2.sce b/2657/CH27/EX27.2/Ex27_2.sce new file mode 100755 index 000000000..e30219abb --- /dev/null +++ b/2657/CH27/EX27.2/Ex27_2.sce @@ -0,0 +1,30 @@ +//Calculations on turbocharged CI engine +clc,clear +//Given: +Pr=1000 //Standard reference brake power in kW +eta_m=90 //Mechanical efficiency in percent +Pir=2 //Boost pressure ratio +Tra=313 //Substitute reference air temperature in K +Pimax=2.36 //Maximum boost pressure ratio +h=4000 //Altitude in m +px=61.5 //Site ambient air pressure in kPa +Tx=323 //Site ambient temperature in K +Tcx=310 //Charge air coolent temperature at site in K +//Solution: +//Refer table 27.1, 27.2 and 27.3 +m=0.7,n=1.2,q=1 //Exponents +pr=100 //Standard total barometric pressure in kPa +Tcr=298 //Standard charge air coolent temperature in K +Tr=298 //Standard air temperature in K +pra=pr*Pir/Pimax //Standard reference pressure in kPa +pra=round(10*pra)/10 +k=(px/pra)^m*(Tra/Tx)^n*(Tcr/Tcx)^q //The ratio of indicated power +alpha=k-0.7*(1-k)*(100/eta_m-1) //Power adjustment factor +Px1=round(alpha*Pr) //Brake power at site in kW +//If reference conditions are not changed +k=(px/pr)^m*(Tr/Tx)^n*(Tcr/Tcx)^q //The ratio of indicated power +alpha=k-0.7*(1-k)*(100/eta_m-1) //Power adjustment factor +Px2=round(alpha*Pr) //Brake power at site in kW +//Results: +printf("\n Power available at an altitude of 4000m, Px = %d kW",Px1) +printf("\n Power available at an altitude of 4000m if reference conditions are not changed, Px = %d kW\n",Px2) diff --git a/2657/CH27/EX27.3/Ex27_3.sce b/2657/CH27/EX27.3/Ex27_3.sce new file mode 100755 index 000000000..7450ea1e7 --- /dev/null +++ b/2657/CH27/EX27.3/Ex27_3.sce @@ -0,0 +1,27 @@ +//Calculations on turbocharged CI engine +clc,clear +//Given: +Px=640 //Brake power at site in kW +px=70 //Site ambient air pressure in kPa +Tx=330 //Site ambient temperature in K +Tcx=300 //Charge air coolent temperature at site in K +eta_m=85 //Mechanical efficiency in percent +py=100 //Test ambient pressure in kPa +Tcy=280 //Charge air coolent temperature at test in K +Ty=300 //Test ambient temperature in K +//Solution: +//Refer table 27.1, 27.2 and 27.3 +m=0.7,n=1.2,q=1 //Exponents +pr=100 //Standard total barometric pressure in kPa +Tcr=298 //Standard charge air coolent temperature in K +Tr=298 //Standard air temperature in K +kr=(px/pr)^m*(Tr/Tx)^n*(Tcr/Tcx)^q //The ratio of indicated power +kr=floor(1000*kr)/1000 +alphar=kr-0.7*(1-kr)*(100/eta_m-1) //Power adjustment factor +Pr=Px/alphar //Standard reference brake power in kW +ky=(py/pr)^m*(Tr/Ty)^n*(Tcr/Tcy)^q //The ratio of indicated power at test +alphay=ky-0.7*(1-ky)*(100/eta_m-1) //Power adjustment factor at test +Py=Pr*alphay //Brake power at test in kW (Round off error) +//Results: +printf("\n Power developed under test ambient conditions, Py = %.0f kW",Py) +//Round off error in the value of 'Py' diff --git a/2657/CH27/EX27.4/Ex27_4.sce b/2657/CH27/EX27.4/Ex27_4.sce new file mode 100755 index 000000000..78712b62e --- /dev/null +++ b/2657/CH27/EX27.4/Ex27_4.sce @@ -0,0 +1,29 @@ +//Simulating site ambient conditions +clc,clear +//Given: +//Datas are taken from Ex. 27.3 +Px=640 //Brake power at site in kW +eta_m=85 //Mechanical efficiency in percent +px=70 //Site ambient air pressure in kPa +py=100 //Standard total barometric pressure in kPa +Tx=330 //Site ambient temperature in K +Ty=300 //Test ambient temperature in K +p2_py=2.5 //Pressure ratio +by=238 //Specific fuel consumption at test in g/kWh +//Solution: +//Refer table 27.1, 27.2 and 27.3 +m=0.7,n=1.2,q=1 //Exponents +ky=(py/px)^m //The ratio of indicated power at test +alphay=ky-0.7*(1-ky)*(100/eta_m-1) //Power adjustment factor at test +Py=round(Px*alphay) //Brake power at test in kW +//From fig 27.1 +Tx_Ty=Tx/Ty //Temperature ratio +p1_py=0.925 //Ratio +p1=p1_py*py //Air pressure after throttle in kPa (printing error) +Betay=ky/alphay //Fuel consumption adjustment factor at test +bx=by/Betay //Specific fuel consumption at site in g/kWh +//Results: +printf("\n Power developed on the test bed, Py = %d kW",Py) +printf("\n The pressure behind the throttle plate, p1 = %.1f kPa",p1) +printf("\n The fuel consumption adjusted to site ambient conditions, bx = %d g/kWh",bx) +//Answer in the book is printed wrong diff --git a/2657/CH27/EX27.5/Ex27_5.sce b/2657/CH27/EX27.5/Ex27_5.sce new file mode 100755 index 000000000..f1df1d157 --- /dev/null +++ b/2657/CH27/EX27.5/Ex27_5.sce @@ -0,0 +1,18 @@ +//Calculations on unsupercharged SI engine +clc,clear +//Given: +Py=640 //Brake power at test in kW +py=98 //Test ambient pressure in kPa +Ty=303 //Test ambient temperature in K +phiy=0.8 //Relative humidity at test +//Solution: +//Refer table 27.1, 27.3 +psy=4.2 //Saturation vapour pressure at test in kPa +psr=3.2 //Standard saturation vapour pressure in kPa +pr=100 //Standard total barometric pressure in kPa +Tr=298 //Standard air temperature in K +phir=0.3 //Standard relative humidity +alpha_a=((pr-phir*psr)/(py-phiy*psy))^1.2*(Ty/Tr)^0.6 //Correction factor for CI engine +Pr=round(alpha_a*Py) //Standard reference brake power in kW +//Results: +printf("\n The power at standard reference conditions, Pr = %d kW",Pr) diff --git a/2657/CH27/EX27.6/Ex27_6.sce b/2657/CH27/EX27.6/Ex27_6.sce new file mode 100755 index 000000000..b9b165f49 --- /dev/null +++ b/2657/CH27/EX27.6/Ex27_6.sce @@ -0,0 +1,33 @@ +//Calculations on turbocharged CI engine +clc,clear +//Given: +Py=896 //Brake power at test in kW +py=96 //Test ambient pressure in kPa +Ty=302 //Test ambient temperature in K +phiy=0.2 //Relative humidity at test +px=98 //Site ambient air pressure in kPa +Tx=315 //Site ambient temperature in K +phix=0.4 //Relative humidity at site +N=1800 //Engine speed in rpm +V_s=51.8 //Swept volume in litres +m_f=54.5 //Fuel delivery in gm/s +pi=2.6 //Pressure ratio +//Solution: +//Refer table 27.1, 27.3 +psy=4.8 //Saturation vapour pressure at test in kPa +psx=8.2 //Saturation vapour pressure at site in kPa +q=m_f*1000/(N/(2*60)*V_s) //Fuel delivery in mg/litrecycle +qc=round(q/pi) //Corrected fuel delivery inmg/litrecycle +//Applying condition given in fig 27.2 for value of engine factor (fm) +if (qc <= 40) then + fm=0.3; +elseif (qc >= 65) then + fm=1.2; +else + fm=0.036*qc-1.14; +end +fa=((px-phix*psx)/(py-phiy*psy))^0.7*(Ty/Tx)^1.5 //Atmospheric factor +alpha_d=fa^fm //Correction factor for CI engine +Px=alpha_d*Py //Brake power at site in kW +//Results: +printf("\n Power at site ambient conditions, Px = %d kW",Px) diff --git a/2657/CH27/EX27.7/Ex27_7.sce b/2657/CH27/EX27.7/Ex27_7.sce new file mode 100755 index 000000000..4cf5203eb --- /dev/null +++ b/2657/CH27/EX27.7/Ex27_7.sce @@ -0,0 +1,50 @@ +//Calculations on turbocharged CI engine +clc,clear +//Given: +Py=700 //Brake power at test in kW +py=96 //Test ambient pressure in kPa +Ty=302 //Test ambient temperature in K +phiy=0.2 //Relative humidity at test +px=69 //Site ambient air pressure in kPa +Tx=283 //Site ambient temperature in K +phix=0.4 //Relative humidity at site +N=1200 //Engine speed in rpm +V_s=45 //Swept volume in litres +m_f=51.3 //Fuel delivery in gm/s +pi=2.0 //Pressure ratio +eta_m=85 //Mechanical efficiency in percent +//Solution: +pr=100 //Standard total barometric pressure in kPa +Tr=298 //Standard air temperature in K +phir=0.3 //Standard relative humidity +//Refer table 27.1, 27.3 +psy=4.1 //Saturation vapour pressure at test in kPa +psx=1.2 //Saturation vapour pressure at site in kPa +psr=3.2 //Standard saturation vapour pressure in kPa +q=m_f*1000/(N/(2*60)*V_s) //Fuel delivery in mg/litrecycle +qc=round(q/pi) //Corrected fuel delivery in mg/litrecycle +//Applying condition given in fig 27.2 for value of engine factor (fm) +if (qc <= 40) then + fm=0.3; +elseif (qc >= 65) then + fm=1.2; +else + fm=0.036*qc-1.14; +end +fa=((px-phix*psx)/(py-phiy*psy))^0.7*(Ty/Tx)^1.5 //Atmospheric factor +alpha_d=fa^fm //Correction factor for CI engine +//Applying condition given in section 27.4.2 +if (alpha_d > 0.9) & (alpha_d < 1.1) then + Px=alpha_d*Py +else + fa=((pr-phir*psr)/(py-phiy*psy))^0.7*(Ty/Tr)^1.5 //Atmospheric factor + alpha_d=fa^fm //Correction factor for CI engine + Pr=alpha_d*Py //Standard reference brake power in kW + m=0.7,n=2 //Exponents + k=(px/pr)^m*(Tr/Tx)^n //The ratio of indicated power + alpha=k-0.7*(1-k)*(100/eta_m-1) //Power adjustment factor + Px=alpha*Pr //Brake power at site in kW +end +//Results: +printf("\n Power at site ambient conditions, Px = %d kW",Px) +//Answer in the book is wrong |