diff options
Diffstat (limited to '2300/CH9')
-rwxr-xr-x | 2300/CH9/EX9.12.1/Ex9_1.sce | 18 | ||||
-rwxr-xr-x | 2300/CH9/EX9.12.2/Ex9_2.sce | 22 | ||||
-rwxr-xr-x | 2300/CH9/EX9.12.3/Ex9_3.sce | 33 | ||||
-rwxr-xr-x | 2300/CH9/EX9.12.4/Ex9_4.sce | 15 | ||||
-rwxr-xr-x | 2300/CH9/EX9.12.5/Ex9_5.sce | 20 | ||||
-rwxr-xr-x | 2300/CH9/EX9.12.6/Ex9_6.sce | 20 | ||||
-rwxr-xr-x | 2300/CH9/EX9.12.7/Ex9_7.sce | 26 | ||||
-rwxr-xr-x | 2300/CH9/EX9.12.8/Ex9_8.sce | 14 | ||||
-rwxr-xr-x | 2300/CH9/EX9.12.9/Ex9_9.sce | 22 |
9 files changed, 190 insertions, 0 deletions
diff --git a/2300/CH9/EX9.12.1/Ex9_1.sce b/2300/CH9/EX9.12.1/Ex9_1.sce new file mode 100755 index 000000000..af0fe3e9d --- /dev/null +++ b/2300/CH9/EX9.12.1/Ex9_1.sce @@ -0,0 +1,18 @@ +//scilab 5.4.1
+//Windows 7 operating system
+//chapter 9 Basic Voltage and Power Amplifiers
+clc
+clear
+AVm=120//AVm=mid-band gain of an RC-coupled amplifier
+fm=100//fm=frequency in Hz corresponding to the mid-band gain
+AVl=60//AVl=reduced gain
+AVh=AVl
+f=100*10^3//f=frequency in Hz corresponding to the reduced gain
+//|AVl|=(|AVm|)/sqrt(1+(fl/fm)^2) where fl=lower half power frequency
+fl=sqrt((abs(AVm)/abs(AVl))^2 -1)*fm
+format("v",6)
+disp("Hz",fl,"The lower half-power frequency is =")
+//|AVh|=(|AVm|)/sqrt(1+(f/fh)^2) where fh=upper half power frequency
+fh=f/sqrt((abs(AVm)/abs(AVh))^2 -1)
+format("v",5)
+disp("kHz",fh/10^3,"The upper half-power frequency is =")//fh is converted in terms of kHz
diff --git a/2300/CH9/EX9.12.2/Ex9_2.sce b/2300/CH9/EX9.12.2/Ex9_2.sce new file mode 100755 index 000000000..6094dbf0d --- /dev/null +++ b/2300/CH9/EX9.12.2/Ex9_2.sce @@ -0,0 +1,22 @@ +//scilab 5.4.1
+//Windows 7 operating system
+//chapter 9 Basic Voltage and Power Amplifiers
+clc
+clear
+//For two identical transistors employed by an RC-coupled amplifier
+hfe=100//hfe=current gain
+hie=2*10^3//hie=input impedance in ohm
+Cob=2*10^-12//Cob=capacitance in farad quoted by the transistor manufacturers
+C=0.4*10^-6//C=coupling capacitance in farad
+RL=8*10^3//RL=load resistance in ohms for each transistor
+CW=10*10^-12//CW=wiring capacitance in farad
+fl=1/(2*%pi*C*(hie+RL))//fl=lower half power frequency
+format("v",5)
+disp("Hz",fl,"The lower half-power frequency is =")
+hfb=-hfe/(1+hfe)//hfb=current gain for common base transistor
+Coc=Cob/(1+hfb)//Coc=transistor collector capacitance in farad
+Cs=Coc+CW//Cs=shunt capacitance in farad
+Ro=(hie*RL)/(hie+RL)//Ro=equivalent resistance of the parallel combination of hie and RL
+fh=1/(2*%pi*Cs*Ro)//fh=upper half power frequency
+format("v",5)
+disp("kHz",fh/10^3,"The upper half-power frequency is =")//fh is converted in terms of kHz
diff --git a/2300/CH9/EX9.12.3/Ex9_3.sce b/2300/CH9/EX9.12.3/Ex9_3.sce new file mode 100755 index 000000000..7ee178b02 --- /dev/null +++ b/2300/CH9/EX9.12.3/Ex9_3.sce @@ -0,0 +1,33 @@ +//scilab 5.4.1
+//Windows 7 operating system
+//chapter 9 Basic Voltage and Power Amplifiers
+clc
+clear
+//AVm=mid-band gain of an RC-coupled amplifier
+fm=60//fm=frequency in Hz corresponding to the mid-band gain
+//AVl=reduced gain
+//AVh=AVl
+f=600*10^3//f=frequency in Hz corresponding to the reduced gain
+fl=30//fl=The lower half-power frequency in Hz
+fh=300*10^3//fh=The upper half-power frequency in Hz
+//|AVl|=(|AVm|)/sqrt(1+(fl/fm)^2)
+//Suppose (AVl/AVm)=a=low frequency gain with respect to the mid frequency gain
+//a=1/sqrt(1+(fl/fm)^2)//a=magnitude of the low frequency gain
+a=1/sqrt(1+(fl/fm)^2)
+format("v",5)
+o=atand(fl/fm)//o=phase angle in degree of the low frequency gain
+format("v",5)
+disp("For the low frequency gain with respect to the mid frequency gain ")
+disp(a,"Magnitude=")
+disp("degree",o,"Phase angle=")
+//|AVh|=(|AVm|)/sqrt(1+(f/fh)^2)
+//Suppose (AVh/AVm)=b=high frequency gain with respect to the mid frequency gain
+//b=1/sqrt(1+(f/fh)^2)//b=magnitude of the high frequency gain
+b=1/sqrt(1+(f/fh)^2)
+format("v",6)
+O=-atand(f/fh)//O=phase angle in degree of the high frequency gain
+format("v",6)
+disp("For the high frequency gain with respect to the mid frequency gain ")
+disp(b,"Magnitude=")
+disp("degree",O,"Phase angle=")
+
diff --git a/2300/CH9/EX9.12.4/Ex9_4.sce b/2300/CH9/EX9.12.4/Ex9_4.sce new file mode 100755 index 000000000..84b354714 --- /dev/null +++ b/2300/CH9/EX9.12.4/Ex9_4.sce @@ -0,0 +1,15 @@ +//scilab 5.4.1
+//Windows 7 operating system
+//chapter 9 Basic Voltage and Power Amplifiers
+clc
+clear
+//In a CE class A power amplifier
+RL=12//RL=load resistance in ohms
+n=8//n=primary-to-secondary turns ratio of a transformer
+//Peak-to-peak swing of the signal current is 250mA
+Im=(250*10^-3)/2//Im=ac collector current in Ampere
+RL1=(n^2)*RL//RL1=RL'=resistance reflected to the primary for the resistance RL in presence of an ac signal
+//Pac=(1/2)*Vm*Im where Pac=ac output power
+//Pac=(1/2)*(Im^2)*RL1
+Pac=(1/2)*(Im^2)*RL1
+disp("W",Pac,"The output power is =")
diff --git a/2300/CH9/EX9.12.5/Ex9_5.sce b/2300/CH9/EX9.12.5/Ex9_5.sce new file mode 100755 index 000000000..aef21cb55 --- /dev/null +++ b/2300/CH9/EX9.12.5/Ex9_5.sce @@ -0,0 +1,20 @@ +//scilab 5.4.1
+//Windows 7 operating system
+//chapter 9 Basic Voltage and Power Amplifiers
+clc
+clear
+VCQ=6//VCQ=quiescent collector voltage
+ICQ=50*10^-3//ICQ=quiescent collector current
+VCmin=1
+VCmax=11//VCmin,VCmax=output signal voltage variation
+ICmin=10*10^-3
+ICmax=90*10^-3//ICmin,ICmax=output signal current variation in Ampere
+Ps=VCQ*ICQ//Ps=dc input power to the transistor
+disp("W",Ps,"The dc input power is =")
+Pac=(1/8)*(ICmax-ICmin)*(VCmax-VCmin)//Pac=ac output power delivered to the load
+disp("W",Pac,"The ac output power is =")
+PT=(VCQ*ICQ)-Pac//PT=the collector dissipation
+disp("W",PT,"The collector dissipation is =")
+n=(Pac/Ps)*100//n=the efficiency of the active device
+format("v",5)
+disp("%",n,"The efficiency is =")
diff --git a/2300/CH9/EX9.12.6/Ex9_6.sce b/2300/CH9/EX9.12.6/Ex9_6.sce new file mode 100755 index 000000000..1d47fcb8c --- /dev/null +++ b/2300/CH9/EX9.12.6/Ex9_6.sce @@ -0,0 +1,20 @@ +//scilab 5.4.1
+//Windows 7 operating system
+//chapter 9 Basic Voltage and Power Amplifiers
+clc
+clear
+//In a class B push pull circuit
+//Transformer winding resistances are to be ignored
+n=3//n=primary-to-secondary turns ratio of a transformer
+RL=9//RL=load resistance in ohms
+VCC=15//VCC=collector supply voltage
+RL1=((n/2)^2)*RL//RL1=reflected load resistance for one transistor
+Pactot=(VCC^2)/(2*RL1)//Pactot=maximum output power
+format("v",5)
+disp("W",Pactot,"The maximum output power is =")
+Pstot=(2*VCC^2)/(%pi*RL1)//Pstot=the maximum dc power supplied to the two transistors
+format("v",5)
+disp("W",Pstot,"The maximum dc power supplied is =")
+n=(Pactot/Pstot)*100//n=efficiency
+format("v",5)
+disp("%",n,"The efficiency is =")
diff --git a/2300/CH9/EX9.12.7/Ex9_7.sce b/2300/CH9/EX9.12.7/Ex9_7.sce new file mode 100755 index 000000000..9c5dfcf88 --- /dev/null +++ b/2300/CH9/EX9.12.7/Ex9_7.sce @@ -0,0 +1,26 @@ +//scilab 5.4.1
+//Windows 7 operating system
+//chapter 9 Basic Voltage and Power Amplifiers
+clc
+clear
+//In a single tuned amplifier
+L=120*10^-6//L=inductance in henry
+C=100*10^-12//C=capacitance in farad
+R=10//R=resistance in ohms
+hoe=50*10^-6//hoe=output impedance in mho(or S)
+hfe=100//hfe=current gain
+hie=2.5*10^3//hie=input impedance in ohm
+RT=10*10^3//RT=equivalent resistance of RB and Ri in parallel
+fo=1/(2*%pi*sqrt(L*C))//fo=resonant frequency
+format("v",5)
+disp("MHz",fo/10^6,"The resonant frequency is =")//fo is converted in terms of MHz
+Qo=(1/R)*sqrt(L/C)//Qo=Q-factor of the resonant frequency
+Ro=(Qo^2)*R//Ro=maximum impedance Zm
+Rp=1/(hoe+(1/Ro)+(1/RT))//Rp=equivalent resistance of the parallel combination of Ro,ro and RT
+Qe=(Qo*Rp)/Ro//Qe=effective Q-factor
+B=fo/Qe//B=bandwidth
+format("v",6)
+disp("kHz",B/10^3,"The bandwidth is =")//B is converted in terms of kHz
+AVm=-(hfe*Rp)/hie//AVm=maximum voltage gain
+format("v",6)
+disp(AVm,"The maximum voltage gain is =")
diff --git a/2300/CH9/EX9.12.8/Ex9_8.sce b/2300/CH9/EX9.12.8/Ex9_8.sce new file mode 100755 index 000000000..053488844 --- /dev/null +++ b/2300/CH9/EX9.12.8/Ex9_8.sce @@ -0,0 +1,14 @@ +//scilab 5.4.1
+//Windows 7 operating system
+//chapter 9 Basic Voltage and Power Amplifiers
+clc
+clear
+V=10//V=voltage at frequency 5kHz
+Vr=7.07//Vr=voltage at frequency 25kHz
+//x=10*log10(P/Pr) where x=change in decibel(dB) of power P from some standard power Pr
+//P=V^2/R=I^2*R
+//Also Pr=Vr^2/R=Ir^2*R
+//x=10*(log10(V/Vr))^2=20*log10(V/Vr)
+x=20*log10(V/Vr)//x=change in decibel(dB) of voltage V from some standard voltage Vr
+format("v",4)
+disp("dB",x,"The decibel change in the output power level is =")
diff --git a/2300/CH9/EX9.12.9/Ex9_9.sce b/2300/CH9/EX9.12.9/Ex9_9.sce new file mode 100755 index 000000000..50130ecba --- /dev/null +++ b/2300/CH9/EX9.12.9/Ex9_9.sce @@ -0,0 +1,22 @@ +//scilab 5.4.1
+//Windows 7 operating system
+//chapter 9 Basic Voltage and Power Amplifiers
+clc
+clear
+Vorms=2//Vorms=rms output voltage in the midband region of an amplifier
+Pa=42//Pa=power gain in dB
+Pol=0.4//Pol=power output in W at the lower cut-off frequency 100Hz
+Ri=10^3//Ri=input resistance in ohms
+VOrms=2/sqrt(2)//VOrms=rms output voltage at 100Hz
+format("v",6)
+disp("V",VOrms,"1. The rms output voltage at 100Hz,which is the lower cutoff frequency,is =")
+Po=2*Pol//Po=output power in the midband region
+disp("W",Po,"2. The output power in the midband region is =")
+//Let Pi=input power
+//10*log10(Po/Pi)=Pa
+Pi=Po/(10^(Pa/10))
+//Pi=(Vi^2)/Ri where Vi=rms input voltage
+Vi=sqrt(Pi*Ri)
+format("v",7)
+disp("V",Vi,"3. The rms input voltage is =")
+
|