summaryrefslogtreecommitdiff
path: root/2300/CH8/EX8.14.8
diff options
context:
space:
mode:
Diffstat (limited to '2300/CH8/EX8.14.8')
-rwxr-xr-x2300/CH8/EX8.14.8/Ex8_8.sce67
1 files changed, 67 insertions, 0 deletions
diff --git a/2300/CH8/EX8.14.8/Ex8_8.sce b/2300/CH8/EX8.14.8/Ex8_8.sce
new file mode 100755
index 000000000..ab8489f7b
--- /dev/null
+++ b/2300/CH8/EX8.14.8/Ex8_8.sce
@@ -0,0 +1,67 @@
+//scilab 5.4.1
+//Windows 7 operating system
+//chapter 8 Junction Transistors:Biasing and Amplification
+clc
+clear
+//For a CE transistor amplifier circuit with self-bias
+f=1000//f=frequency in Hz
+AV=-200//AV=voltage gain
+hfe=100//hfe=current gain
+hie=1//hie=input impedance in kilo ohms
+Pcmax=75*10^-3//Pcmax=maximum collector dissipation in Watt
+//hre and hoe are to be neglected
+VCC=12//VCC=collector supply voltage
+//AV=-(hfe*RL)/hie where RL is the load resistance
+RL=-(AV*hie)/hfe
+format("v",5)
+disp("The designed values of the components of a CE transistor amplifier are:")
+disp("kilo ohm",RL,"The load resistance RL is =")
+//For the amplifier to be linear,the quiescent point is chosen to lie in the middle of the DC load line
+VCG=VCC/2 //VCG=DC collector to ground voltage
+//VCC=(IC*RL)+VCG where IC=DC collector current
+IC=(VCC-VCG)/RL
+format("v",5)
+disp("mA",IC,"Ihe DC collector current is =")
+Pr=(IC^2)*RL//Pr=power dissipation in RL
+//Pc=the collector dissipation is set at 14.5 mW which is below the value of Pcmax
+//Pc=VCE*IC
+Pc=14.5
+VCE=Pc/IC//VCE=collector-to-emitter voltage drop
+format("v",4)
+VEG=VCG-VCE//VEG=DC voltage drop across resistance Re
+IE=IC//IE=emitter current
+Re=VEG/(IC)
+disp("ohm",Re*1000,"The resistance Re is =")//Re is converted in terms of ohms
+Pe=(IC^2)*Re//Pe=power dissipation in Re
+VBE=0.7//VBE=assumed DC base-to-emitter voltage drop
+VBG=VBE+(IE*Re)//VBG=DC voltage across resistance R2
+//VT=(VCC*R2)/(R1+R2) where VT=Thevenin equivalent voltage
+//RT=(R1*R2)/(R1+R2).............(1) where RT=Thevenin equivalent resistance
+//VBG=VT-(IB*RT)
+//VBG=((VCC*R2)/(R1+R2))-(IB*((R1*R2)/(R1+R2)))..................(2)
+//Let (R2/(R1+R2))=x ..............(3)
+x=VBG/VCC//neglecting the second term on the right hand side of equation (2)
+a=(1-x)/x //a=R1/R2
+//S=((1+b)*(1+RT/Re))/(1+b+(RT/Re)) where S=stability factor and b=current gain=hfe
+//b>>1 hence S=(hfe*(1+RT/Re))/(1+b+(RT/Re))
+//For good stability we choose S=hfe/20
+RT=((hfe-20)/19)*Re
+R1=RT/x//from equation (1) and (3)
+format("v",5)
+disp("kilo ohm",R1,"The resistance R1 is=")
+R2=R1/5.33
+format("v",4)
+disp("kilo ohm",R2,"The resistance R2 is =")
+Pr2=(VBG^2)/R2//Pr2=power dissipation in R2
+Pr1=((VCC-VBG)^2)/R1 //Pr1=power dissipation in R1
+Ce=1/(2*%pi*f*((Re*1000)/10))//Ce=bypass capacitor
+format("v",2)
+disp("micro farad",Ce/10^-6,"The bypass capacitance Ce is =")//Ce is converted in terms of micro farad
+C1=2/(2*%pi*f*100)//C1=coupling capacitor
+format("v",4)
+disp("micro farad",C1/10^-6,"The coupling capacitance C1 is =")//C1 is converted in terms of micro farad
+Rin=20*1000//Rin=assumed input impedance in ohms
+C2=1/(2*%pi*f*0.1*Rin)//C2=coupling capacitor
+format("v",4)
+disp("micro farad",C2/10^-6,"The coupling capacitance C2 is =")//C2 is converted in terms of micro farad
+