summaryrefslogtreecommitdiff
path: root/2297
diff options
context:
space:
mode:
Diffstat (limited to '2297')
-rwxr-xr-x2297/CH2/EX2.1/Ex2_1.sce27
-rwxr-xr-x2297/CH2/EX2.10/Ex2_10.sce17
-rwxr-xr-x2297/CH2/EX2.11/Ex2_11.sce24
-rwxr-xr-x2297/CH2/EX2.12/Ex2_12.sce32
-rwxr-xr-x2297/CH2/EX2.13/Ex2_13.sce12
-rwxr-xr-x2297/CH2/EX2.14/Ex2_14.sce21
-rwxr-xr-x2297/CH2/EX2.15/Ex2_15.sce35
-rwxr-xr-x2297/CH2/EX2.2/Ex2_2.sce23
-rwxr-xr-x2297/CH2/EX2.3/Ex2_3.sce21
-rwxr-xr-x2297/CH2/EX2.4/Ex2_4.sce23
-rwxr-xr-x2297/CH2/EX2.5/Ex2_5.sce20
-rwxr-xr-x2297/CH2/EX2.6/Ex2_6.sce17
-rwxr-xr-x2297/CH2/EX2.7/Ex2_7.sce19
-rwxr-xr-x2297/CH2/EX2.8/Ex2_8.sce19
-rwxr-xr-x2297/CH2/EX2.9/Ex2_9.sce18
-rwxr-xr-x2297/CH3/EX3.1/Ex3_1.sce25
-rwxr-xr-x2297/CH3/EX3.2/Ex3_2.sce31
-rwxr-xr-x2297/CH3/EX3.3/Ex3_3.sce16
-rwxr-xr-x2297/CH3/EX3.4/Ex3_4.sce19
-rwxr-xr-x2297/CH4/EX4.1/Ex4_1.sce15
-rwxr-xr-x2297/CH4/EX4.2/Ex4_2.sce21
-rwxr-xr-x2297/CH4/EX4.3/Ex4_3.sce18
-rwxr-xr-x2297/CH4/EX4.4/Ex4_4.sce15
-rwxr-xr-x2297/CH4/EX4.5/Ex4_5.sce18
-rwxr-xr-x2297/CH4/EX4.6/Ex4_6.sce35
-rwxr-xr-x2297/CH4/EX4.7/Ex4_7.sce22
-rwxr-xr-x2297/CH4/EX4.8/Ex4_8.sce36
-rwxr-xr-x2297/CH4/EX4.9/Ex4_9.sce55
-rwxr-xr-x2297/CH5/EX5.1/Ex5_1.sce18
-rwxr-xr-x2297/CH5/EX5.10/Ex5_10.sce21
-rwxr-xr-x2297/CH5/EX5.11/Ex5_11.sce32
-rwxr-xr-x2297/CH5/EX5.12/Ex5_12.sce10
-rwxr-xr-x2297/CH5/EX5.2/Ex5_2.sce15
-rwxr-xr-x2297/CH5/EX5.3/Ex5_3.sce17
-rwxr-xr-x2297/CH5/EX5.4/Ex5_4.sce20
-rwxr-xr-x2297/CH5/EX5.5/Ex5_5.sce18
-rwxr-xr-x2297/CH5/EX5.6/Ex5_6.sce19
-rwxr-xr-x2297/CH5/EX5.7/Ex5_7.sce19
-rwxr-xr-x2297/CH5/EX5.8/Ex5_8.sce11
-rwxr-xr-x2297/CH5/EX5.9/Ex5_9.sce9
-rwxr-xr-x2297/CH6/EX6.1/Ex6_1.sce20
-rwxr-xr-x2297/CH6/EX6.10/Ex6_10.sce23
-rwxr-xr-x2297/CH6/EX6.11/Ex6_11.sce25
-rwxr-xr-x2297/CH6/EX6.12/Ex6_12.sce33
-rwxr-xr-x2297/CH6/EX6.2/Ex6_2.sce13
-rwxr-xr-x2297/CH6/EX6.3/Ex6_3.sce30
-rwxr-xr-x2297/CH6/EX6.4/Ex6_4.sce21
-rwxr-xr-x2297/CH6/EX6.5/Ex6_5.sce24
-rwxr-xr-x2297/CH6/EX6.6/Ex6_6.sce33
-rwxr-xr-x2297/CH6/EX6.7/Ex6_7.sce20
-rwxr-xr-x2297/CH6/EX6.8/Ex6_8.sce29
-rwxr-xr-x2297/CH6/EX6.9/Ex6_9.sce14
-rwxr-xr-x2297/CH7/EX7.1/Ex7_1.sce22
-rwxr-xr-x2297/CH7/EX7.2/Ex7_2.sce18
-rwxr-xr-x2297/CH7/EX7.3/Ex7_3.sce26
55 files changed, 1214 insertions, 0 deletions
diff --git a/2297/CH2/EX2.1/Ex2_1.sce b/2297/CH2/EX2.1/Ex2_1.sce
new file mode 100755
index 000000000..112f2fd3d
--- /dev/null
+++ b/2297/CH2/EX2.1/Ex2_1.sce
@@ -0,0 +1,27 @@
+// Example 2.1 :current
+clc;
+close;
+clear;
+format('v',7)
+// given :
+//15*I1-5*I2=10 loop 1 equation
+//20*I2-5*I1-5*I3=0 loop 2 equation
+//10*I3-5*I2=0 loop 3 equation
+vs=10;//voltage in volts
+R1=10;//resistance in ohm
+R2=5;//resistance in ohm
+R3=10;//resistance in ohm
+R4=5;//resistance in ohm
+R5=4;//resistance in ohm
+Ra=1;//resistance in ohm
+A=[R1+R2 R2-R1 0;R2-R1 R2+R3+R4 -R4;R4-(R5+Ra) -R4 R4+R5+Ra];//making equations
+nb=7;//number of branches
+nn=5;//number of nodes
+nl=nb-(nn-1);//number of loops
+nvs=1;//number of voltage sources
+nivs=nn-1-nvs;//number of independent voltage variables
+B=[vs;0;0];//making equations
+X=A\B;//solving equations
+I3=X(3,1);//calculating currrent
+disp(I3,"current in resistance Ra=1.0 ohm is ,(A)=")
+//directions of the current are 2 to 3 and 3 to 4 respectively
diff --git a/2297/CH2/EX2.10/Ex2_10.sce b/2297/CH2/EX2.10/Ex2_10.sce
new file mode 100755
index 000000000..260b191f8
--- /dev/null
+++ b/2297/CH2/EX2.10/Ex2_10.sce
@@ -0,0 +1,17 @@
+// Example 2.10 :current equation
+clc;
+close;
+clear;
+// given :
+format('v',5)
+v=100;//volts
+r=50;//in ohms
+l=0.1;//henry
+c=50;//mf
+d=poly(0,"d")
+p=2*10^5+500*d+d^2;
+x=roots(p)
+c1=0;//at t=0 i=0
+c2=1000/imag(x(1,1));//
+disp("it= "+string(c2)+"*e^"+string(real(x(1,1)))+"t*sin"+string(imag(x(1,1)))+"t A")
+
diff --git a/2297/CH2/EX2.11/Ex2_11.sce b/2297/CH2/EX2.11/Ex2_11.sce
new file mode 100755
index 000000000..5e276dc88
--- /dev/null
+++ b/2297/CH2/EX2.11/Ex2_11.sce
@@ -0,0 +1,24 @@
+// Example 2.11 :average & rms value
+clc;
+close;
+format('v',6)
+clear;
+// given :
+vm=10;//voltage in volts
+e=vm/2;//voltage in volts
+t=0:2;//time range
+x=intsplin(t,(5*t)^2);//variab;e
+rms=sqrt(x/2);//rms value of voltage in volts
+av=vm/2;//average value of voltage in volts
+disp("parts (a) saw tooth wave")
+disp(rms,"rms value of e is ,(V)=")
+disp(av,"average value of e is ,(V)=")
+t1=0;//initial time in seconds
+t2=%pi;//final time in seconds
+t3=2*%pi;//time interval
+x=integrate('(sin(t))^2','t',t1,t2);//variable
+rms=sqrt((1/(2*%pi))*x*vm^2);//rms value of voltage in volts
+av=(10/(2*%pi))*integrate('sin(t)','t',t1,t2);//average value of voltage in volts
+disp("parts (b) half wave rectified sine wave form")
+disp(rms,"rms value of e is ,(V)=")
+disp(av,"average value of e is ,(V)=")
diff --git a/2297/CH2/EX2.12/Ex2_12.sce b/2297/CH2/EX2.12/Ex2_12.sce
new file mode 100755
index 000000000..18908668a
--- /dev/null
+++ b/2297/CH2/EX2.12/Ex2_12.sce
@@ -0,0 +1,32 @@
+// Example 2.12 :Circuit constants
+clc;
+close;
+format('v',6)
+clear;
+// given :
+//v=194*cos(800*t+150)V Voltage equation
+//I=11.6*cos(800*t+140)A Current equation
+vm=194/sqrt(2);//voltage in volts
+va=150;//angle in degree
+im=11.6/sqrt(2);//current in amperes
+ia=140;//angle in degree
+zm=vm/im;//resistance in ohms
+za=va-ia;//resistance in ohms
+z1=zm*cosd(za);//reactance in ohms
+z2=zm*sind(za);//reactance in ohms
+z=z1+%i*z2;//resistance in ohms
+disp("part (a)")
+disp(z,"Impedance is ,(Ohm)=")
+disp("part (b)")
+//v=6*sin(1000*t+45)V Voltage equation
+//I=12*cos(1000t-90)A current equation
+vm1=60/sqrt(2);//voltage in volts
+va1=45;//angle in degree
+im1=12/sqrt(2);//current in amperes
+ia1=0;//angle in degree
+zm1=vm1/im1;//resistance in ohms
+za1=va1-ia1;//resistance in ohms
+z11=zm1*cosd(za1);//reactance in ohms
+z21=zm1*sind(za1);//reactance in ohms
+z22=z11+%i*z21;//impedance in ohms
+disp(z22,"Impedance is ,(Ohm)=")
diff --git a/2297/CH2/EX2.13/Ex2_13.sce b/2297/CH2/EX2.13/Ex2_13.sce
new file mode 100755
index 000000000..2c16a6b17
--- /dev/null
+++ b/2297/CH2/EX2.13/Ex2_13.sce
@@ -0,0 +1,12 @@
+// Example 2.13 :reading
+clc;
+close;
+format('v',8)
+clear;
+// given :
+v1=230;//voltage in volts
+v2=100;//voltage in volts
+v2=sqrt(v1^2-v2^2);//voltage in volts
+v3=300;//voltage in volts
+disp(v2,"reading V2 is,(V)")
+disp("reading V4 is "+string(v3+v2)+" V or "+string(v3-v2)+" V")
diff --git a/2297/CH2/EX2.14/Ex2_14.sce b/2297/CH2/EX2.14/Ex2_14.sce
new file mode 100755
index 000000000..4d9ae88e9
--- /dev/null
+++ b/2297/CH2/EX2.14/Ex2_14.sce
@@ -0,0 +1,21 @@
+// Example 2.14 :circuit elements
+clc;
+close;
+format('v',6)
+// given :
+//v=311*sin(2500*t+170) V voltage equation
+//I=15.5*sin(2500*t-145)A current equation
+vm=311/sqrt(2);//voltage in volts
+va=170;//angle in degree
+im=15.5/sqrt(2);//current in amperes
+ia=-145;//angle in degree
+zm=vm/im;//resistance in ohms
+za=(va-ia)-360;//resistance ohms
+z1=zm*cosd(za);//resistance in ohms
+z2=zm*sind(za);//resistance in ohms
+z=z1+%i*z2;//resistance in ohms
+t=2500;//time in seconds
+c=(1/(real(z)*t));//capacitance in farads
+disp(z,"Impedance is ,(Ohm)=")
+disp(c*10^6,"capacitance is ,(micro-farads)=")
+
diff --git a/2297/CH2/EX2.15/Ex2_15.sce b/2297/CH2/EX2.15/Ex2_15.sce
new file mode 100755
index 000000000..ba9f762b4
--- /dev/null
+++ b/2297/CH2/EX2.15/Ex2_15.sce
@@ -0,0 +1,35 @@
+// Example 2.15 :parameters
+clc;
+close;
+format('v',6)
+// given :
+z=40+%i*30;//resistance in ohms
+zph=sqrt(real(z)^2+imag(z)^2);//resistance in ohms
+pf=real(z)/zph;//power factor
+v=400;//voltage in volts
+vp=v/(sqrt(3));//voltage in volts
+pc=vp/zph;//current in amperes
+lv=v;//voltage in volts
+lc=pc;//current om amperes
+p=sqrt(3)*v*lc*pf;//power in watts
+disp("part (a) Star")
+disp(round(vp),"phase voltage,(V)=")
+disp(round(pc),"phase current,(A)=")
+disp(lv,"line voltage ,(V)=")
+disp(lc,"line current,(A)=")
+disp(p,"power ,(W)=")
+z1=40+%i*30;//ohms
+zph1=sqrt(real(z1)^2+imag(z1)^2);//ohms
+pf1=real(z1)/zph1;//power factor
+v1=400;//volts
+vp1=v1;//volts
+pc1=vp1/zph1;//amperes
+lv1=v1;//volts
+lc1=pc1*sqrt(3);//amperes
+p1=sqrt(3)*v1*lc1*pf1;//watts
+disp("part (b) Delta")
+disp(round(vp1),"phase voltage,(V)=")
+disp(round(pc1),"phase current,(A)=")
+disp(lv1,"line voltage ,(V)=")
+disp(lc1,"line current,(A)=")
+disp(p1,"power ,(W)=")
diff --git a/2297/CH2/EX2.2/Ex2_2.sce b/2297/CH2/EX2.2/Ex2_2.sce
new file mode 100755
index 000000000..3586610ac
--- /dev/null
+++ b/2297/CH2/EX2.2/Ex2_2.sce
@@ -0,0 +1,23 @@
+// Example 2.2 :current
+clc;
+close;
+clear;
+// given :
+vs1=72;//voltage in volts
+vs2=40;//voltage in volts
+R1=36;//resistance in ohm
+R2=10;//resistance in ohm
+ig=2;//current in amperes
+Rx=8;//resistance in ohm
+//(va-72)/36+(va-40)/10 -2 +va/8=0 node equation at 1
+va=((R2*Rx*vs1)+(R1*Rx*vs2)+(R1*R2*Rx*ig))/((R2*Rx)+(R1*Rx)+(R1*R2));//voltage in volts
+ix1=va/Rx;//current in amperes
+//(R1+R2)*I1-R2*I2+vs2=vs1 loop equation 1
+//R2*I2-R2*I1+Ix*Rx=vs2 loop equation 2
+//Ix=I2+2
+A=[R1+R2 -R2;-R2 R2+Rx];//making equations
+B=[vs1-vs2;vs2-2*Rx];//making equations
+X=A\B;//solving equations
+ix2=X(2,1)+ig;//current in amperes
+disp(ix1,"current through Rx is(by node voltage method), (A)=")
+disp(ix2,"current through Rx is (by loop current method),(A) =")
diff --git a/2297/CH2/EX2.3/Ex2_3.sce b/2297/CH2/EX2.3/Ex2_3.sce
new file mode 100755
index 000000000..402d0fa9f
--- /dev/null
+++ b/2297/CH2/EX2.3/Ex2_3.sce
@@ -0,0 +1,21 @@
+// Example 2.3 :current
+clc;
+close;
+clear;
+format('v',7)
+// given :
+vs1=10;//voltage in volts
+i5=2;//current in amperes
+i2=i5;//current
+r1=1;//resistance in ohms
+r2=5;//resistance in ohms
+r3=5;//resistance in ohms
+rl=10;//resistance in ohms
+r4=5;//resistance ohms
+//(r1+r2+r3)*i1-r2*i2-r3*i3=vs1 loop equaion 1
+//-r2*i1-(r1+r2)*i2+(rl+r2+r3)*i3=0 loop equation 2
+A=[4*(r1+r2+r3) -r2*4;-r2 (rl+r2+r3)];//making equations
+B=[4*(vs1+r2*i2) ; i2*(r2+r3)];//making equations
+X=A\B;//solving equations
+il=i2-X(2,1);//calculating current
+disp(il,"current through Rl is (from b to a),(A)=")
diff --git a/2297/CH2/EX2.4/Ex2_4.sce b/2297/CH2/EX2.4/Ex2_4.sce
new file mode 100755
index 000000000..ee916e339
--- /dev/null
+++ b/2297/CH2/EX2.4/Ex2_4.sce
@@ -0,0 +1,23 @@
+// Example 2.4 :current
+clc;
+close;
+clear;
+format('v',7)
+// given :
+vs1=72;//voltage in volts
+vs2=40;//voltage in volts
+R1=36;//resistance in ohms
+R2=10;//resistance in ohms
+ig=2;//current in amperes
+Rx=8;//resistance in ohms
+disp("Applying Thevenins Theorem ")
+//(vs1-voc)/R1+(v40-voc)/R2 +2 =0 node equation at 1
+voc=(R2*vs1+R1*vs2+R1*R2*ig)/(R1+R2);//voltage in volts
+req=(R1*R2)/(R1+R2);//resistance in ohms
+ix1=(voc)/(req+Rx);//resistance in ohms
+disp(ix1,"current through Rx is, (A)")
+disp("Applying Nortons Theorem ")
+Is=(vs1/R1)+(vs2/R2)+ig;//current in amperes
+ix2=(req*(Is/(Rx+req)));//current in amperes
+disp(ix2,"current through Rx is, (A) =")
+
diff --git a/2297/CH2/EX2.5/Ex2_5.sce b/2297/CH2/EX2.5/Ex2_5.sce
new file mode 100755
index 000000000..f87c876a5
--- /dev/null
+++ b/2297/CH2/EX2.5/Ex2_5.sce
@@ -0,0 +1,20 @@
+// Example 2.5 :Thevenin's and Norton's Equivalent
+clc;
+close;
+format('v',7)
+clear;
+// given :
+vs1=10;//voltage in volts
+R1=50;//resistance in ohms
+R2=50;//resistance in ohms
+R3=25;//resistance in ohms
+disp("(a) Applying Thevenins Theorem ")
+voc=(R1/(R1+R2))*vs1;//voltage in volts
+req=((R1*R2)/(R1+R2))+R3;//resistance in ohms
+disp(voc,"Thevenin equivalent open circuit voltage is, (V)=")
+disp(t=req,"Thevenin equivalent resistance is,(Ohm)=")
+disp("(b) Applying Nortons Theorem ")
+Isc=((vs1)/(R1+(R1*R3)/(R1+R3)))*(R1/(R1+R3));//
+req=((R1*R2)/(R1+R2))+R3;//resistance in ohms
+disp(Isc,"Norton short circuit current is,(A)=")
+disp(t=req,"Norton equivalent resistance is,(Ohm)=")
diff --git a/2297/CH2/EX2.6/Ex2_6.sce b/2297/CH2/EX2.6/Ex2_6.sce
new file mode 100755
index 000000000..1122cc2f9
--- /dev/null
+++ b/2297/CH2/EX2.6/Ex2_6.sce
@@ -0,0 +1,17 @@
+// Example 2.6 :current
+clc;
+close;
+format('v',7)
+clear;
+// given :
+vs1=10;//voltage volts
+r1=100;//resistance in ohms
+r2=600;//resistance in ohms
+r3=150;//resistance in ohms
+r4=850;//resistance in ohms
+rx=50;//resistance in ohms
+voc=vs1*((r3/(r1+r3))-(r4/(r2+r4)));//open circuit voltage in volts
+req=((r1*r3)/(r1+r3))+((r2*r4)/(r2+r4));//equivalent resistance in ohms
+ix=voc/(req+rx)*10^3;//current in amperes
+disp(ix,"current through Rx is (from A to B),(mA)=")
+
diff --git a/2297/CH2/EX2.7/Ex2_7.sce b/2297/CH2/EX2.7/Ex2_7.sce
new file mode 100755
index 000000000..77cdea651
--- /dev/null
+++ b/2297/CH2/EX2.7/Ex2_7.sce
@@ -0,0 +1,19 @@
+// Example 2.7 :Norton's Equivalent
+clc;
+close;
+clear;
+// given :
+vs1=40;//volts
+vs2=20;//volts
+r1=2;//resistance in ohms
+r2=6;//resistance in ohms
+r3=2;//resistance in ohms
+r4=2;//resistance in ohms
+iab=((r1*vs1)/(r2+(r1/2))*((r1+(r3/2))/(r1+r3)));//current in amperes
+iab1=-vs2/r1;//current amperes
+it=iab+iab1;//current amperes
+req1=r1+((r1*r2)/(r1+r2));//equivalent resistance in ohms
+req=(req1*r3)/(req1+r3);//equivalent resistance in ohms
+disp(it,"current is,(A)")
+disp(req,"equivalent resistance is,(ohm)=")
+
diff --git a/2297/CH2/EX2.8/Ex2_8.sce b/2297/CH2/EX2.8/Ex2_8.sce
new file mode 100755
index 000000000..e6b47b2a7
--- /dev/null
+++ b/2297/CH2/EX2.8/Ex2_8.sce
@@ -0,0 +1,19 @@
+// Example 2.8:equation of current and time
+clc;
+close;
+clear;
+format('v',6)
+// given :
+v=100;//voltage in volts
+r=100;//resistance in ohms
+l=0.2;//inductance in henrty
+T=1/(l/r);//calculating time in seconds
+t=500;//time in micro seconds
+i1=1-exp(-T*t*10^-6);//current in amperes
+disp(i1,"current is (when t=500 micro seconds),(A)=")
+v2=50;//voltage in volts
+x=v2/r;//variab;e
+x1=x*((v2/r)+i1);//variable
+t1=t+(10^6*(x1/500));//time in seconds
+disp(ceil(t1),"time at which current will be zero is,(micro-seconds)=")
+//time is caluclated wrong in the textbook as they had not added the values
diff --git a/2297/CH2/EX2.9/Ex2_9.sce b/2297/CH2/EX2.9/Ex2_9.sce
new file mode 100755
index 000000000..9294e5725
--- /dev/null
+++ b/2297/CH2/EX2.9/Ex2_9.sce
@@ -0,0 +1,18 @@
+// Example 2.9 :time
+clc;
+close;
+format('v',6)
+clear;
+// given :
+v=10;//voltage in volts
+r1=500;//resistance in ohms
+is=0;//current in amperes
+r=700;//resistance in ohms
+c=100;//capacitance in micro farads
+x=1/(r*c*10^-6);//variable
+i=30;//current in mA
+y=(i*10^-3)-(v/r1);//variable
+t=-((log(y*(r/v))));//time in seconds
+t1=t/x;//time in seconds
+disp(t1,"time is ,(seconds)=")
+
diff --git a/2297/CH3/EX3.1/Ex3_1.sce b/2297/CH3/EX3.1/Ex3_1.sce
new file mode 100755
index 000000000..0d137bff9
--- /dev/null
+++ b/2297/CH3/EX3.1/Ex3_1.sce
@@ -0,0 +1,25 @@
+// Example 3.1;amper-turns
+clc;
+close;
+clear;
+// given :
+format('v',7)
+bt=[2;2.5;3.0];//making equations from Table
+H=[400 ;600;800];//making equations from Tble
+fsl=10^-3;//Flux in Wb
+cal=4*10^-4;//area in m^2
+fdl=fsl/cal;//magnetic field in Tesla
+hl=H(2);//AT/m
+pll=0.57;//lenth in meter (path length 2345)
+at2345=pll*hl;//ampere turns
+fcl=2*10^-3;//magnetic field in Wb
+fdcl=fcl/cal;//in Tesla
+hcl=H(1);//in AT/m
+lcl=169;//length in mm
+atcl=(lcl*10^-3)*hcl;//ampere turns
+l=1;//length mm
+Hl=((4*%pi))*10^-7;//AT/m
+atrg=fcl/Hl;//AT
+tat=at2345+atcl+atrg;//total ampere turns
+disp(tat,"total ampere-turns required is, (AT)=")
+
diff --git a/2297/CH3/EX3.2/Ex3_2.sce b/2297/CH3/EX3.2/Ex3_2.sce
new file mode 100755
index 000000000..4f5ee78c8
--- /dev/null
+++ b/2297/CH3/EX3.2/Ex3_2.sce
@@ -0,0 +1,31 @@
+// Example 3.2;Kb , Ke and hystresis and eddy current loss
+clc;
+close;
+clear;
+// given :
+format('v',7)
+f1=50;//frequency in Hz
+f2=25;//frequency in Hz
+p1=30.1;//power in W
+p2=12.4;//power in W
+A=[f1 f1^2;f2 f2^2];//making equations
+B=[p1;p2];////making equations
+X=A\B;//calculating parameters
+disp("part (a) Kb and Ke")
+disp(X(1,1),"Kh is")
+disp(X(2,1),"Ke is")
+h25=X(1,1)*f2;//calculating parameters
+e25=X(2,1)*f2^2;//calculating parameters
+h50=X(1,1)*f1;//calculating parameters
+e50=X(2,1)*f1^2;//calculating parameters
+disp("part (b) hystresis and eddy current loss ")
+disp(h25,"hysteresis loss at 25 Hz is , (W)=")
+disp(e25,"eddy current loss at 25 Hz is ,(W)=")
+disp(h50,"hysteresis loss at 50 Hz is ,(W)=")
+disp(e50,"eddy current loss at 50 Hz is ,(W)=")
+W=40;//kg
+h50=X(1,1)*f1;//calculating parameters
+e50=X(2,1)*f1^2;//calculating parameters
+disp("part (c) hystresis and eddy current loss ")
+disp(h50/W,"hysteresis loss per kg at 50 Hz is ,(W)=")
+disp(e50/W,"eddy current loss per kg at 50 Hz is ,(W)=")
diff --git a/2297/CH3/EX3.3/Ex3_3.sce b/2297/CH3/EX3.3/Ex3_3.sce
new file mode 100755
index 000000000..42a4c783d
--- /dev/null
+++ b/2297/CH3/EX3.3/Ex3_3.sce
@@ -0,0 +1,16 @@
+// Example 3.3;hystresis loss per Kg
+clc;
+close;
+clear;
+// given :
+format('v',7)
+l=10;//lengh in mm
+atm=200;//AT/m
+a=4800;//area in m^2
+loss=atm*(l*10^-2)*(a/100);//loss in J/m^3/cycle
+d=7.8*10^3;//kg/m^3
+vikg=1/d;//m^3
+loss1=loss*vikg;//J/cycle
+f=50;//Hz
+tl=loss1*f;//J/s
+disp(tl,"hystersis loss is ,(W/kg)=")
diff --git a/2297/CH3/EX3.4/Ex3_4.sce b/2297/CH3/EX3.4/Ex3_4.sce
new file mode 100755
index 000000000..bf67ff80a
--- /dev/null
+++ b/2297/CH3/EX3.4/Ex3_4.sce
@@ -0,0 +1,19 @@
+// Example 3.4;amper-turns
+clc;
+close;
+clear;
+// given :
+format('v',7)
+r=150;//length in mm
+t=12;//torque in N-m
+f=t/(r*10^-3);//force in N
+np=2;//no. of poles
+fp=f/np;//force per pole in N
+A=400;//area mm^2
+mu=4*%pi*10^-7;//
+b=sqrt((fp*2*mu)/(A*10^-6));//magnetic field in Tesla
+H=b/mu;//in AT/m
+tar=2*0.6*10^-3;//length in meter
+atr=H*tar;//AT
+disp(atr,"ampere turn required is, (AT)=")
+//answer is wrong in the textbook
diff --git a/2297/CH4/EX4.1/Ex4_1.sce b/2297/CH4/EX4.1/Ex4_1.sce
new file mode 100755
index 000000000..39d953458
--- /dev/null
+++ b/2297/CH4/EX4.1/Ex4_1.sce
@@ -0,0 +1,15 @@
+// Example 4.1;NUMBER OF TURNS
+clc;
+close;
+clear;
+// given :
+format('v',7)
+e1=2200;//voltage in volts
+f=50;//frequency in Hz
+e2=220;//voltage in volts
+fd=1.6;//magnetic field in Tesla
+a=3600;//area in mm^2
+n1=(e1/(4.44*f*fd*a*10^-6));//number of turns
+n2=(e2/(4.44*f*fd*a*10^-6));//number of turns
+disp(round(n1),"number of primary winding turns are")
+disp(round(n2),"number of secondary winding turns are")
diff --git a/2297/CH4/EX4.2/Ex4_2.sce b/2297/CH4/EX4.2/Ex4_2.sce
new file mode 100755
index 000000000..fb8bc287a
--- /dev/null
+++ b/2297/CH4/EX4.2/Ex4_2.sce
@@ -0,0 +1,21 @@
+// Example 4.2;components of no load currents,magnetising and working components of exciting current
+clc;
+close;
+clear;
+// given
+format('v',6)
+disp("part (a)")
+nlw=2000;//no load input watts
+pv=11000;//primary voltage
+Iw=nlw/pv;//current in amperes
+Io=0.6;//current in amperes
+Imu=sqrt(Io^2-Iw^2);//current in amperes
+disp(Iw,"iron loss current is, (A)=")
+disp(Imu,"magnetising component is, (A)=")
+pf=0.2;//power factpr
+Io=0.5;//current in amperes
+Iw=Io*(pf);//current in amperes
+Imu=Io*sqrt(1-pf^2);//magnetising component in amperes
+disp(" part (b)")
+disp(Iw,"iron loss current is, (A)=")
+disp(Imu,"magnetising component is, (A)=")
diff --git a/2297/CH4/EX4.3/Ex4_3.sce b/2297/CH4/EX4.3/Ex4_3.sce
new file mode 100755
index 000000000..fd93695dd
--- /dev/null
+++ b/2297/CH4/EX4.3/Ex4_3.sce
@@ -0,0 +1,18 @@
+// Example 4.3;current
+clc;
+close;
+clear;
+// given
+format('v',6)
+pf1=0.866;//power factor
+pf2=0.1736;//power factor
+ph1=acosd(pf1);//phase angle in degree
+ph2=acosd(pf2);//phase angle in degree
+ir=120;//current in amperes
+n2=110;//number of turns
+n1=440;//number of turns
+i2d=(n2/n1)*ir;//current in amperes
+io=5;//current in amperes
+aioi2=ph2-ph1;//change in angle in degree
+i1=sqrt(io^2+i2d^2+(2*io*i2d*cosd(aioi2)));//current in amperes
+disp(i1,"current is, (A)=")
diff --git a/2297/CH4/EX4.4/Ex4_4.sce b/2297/CH4/EX4.4/Ex4_4.sce
new file mode 100755
index 000000000..c9d6ae93f
--- /dev/null
+++ b/2297/CH4/EX4.4/Ex4_4.sce
@@ -0,0 +1,15 @@
+// Example 4.4;core losses
+clc;
+close;
+clear;
+format('v',6)
+// given
+f=50;//frquency in Hz
+hl=650;//hystresis loss
+edl=400;//eddy current loss
+A=hl/f;//parameter
+B=edl/f^2;//parameter
+Ph=A*2*f;//loss in watts
+Pe=B*(2*f)^2;//loss in watts
+pt=Ph+Pe;//total loss in watts
+disp(pt,"total core losses is,(W)")
diff --git a/2297/CH4/EX4.5/Ex4_5.sce b/2297/CH4/EX4.5/Ex4_5.sce
new file mode 100755
index 000000000..dcd25347a
--- /dev/null
+++ b/2297/CH4/EX4.5/Ex4_5.sce
@@ -0,0 +1,18 @@
+// Example 4.5;efficiency and load for maximum efficiency
+clc;
+close;
+clear;
+format('v',5)
+// given
+cl=125;//copper losses
+fcl=2^2*cl;//full load copper losses
+il=457;//iron losses
+pf=0.8;//power factor
+kba=30;//loss
+disp("part (a)")
+fle=((kba*pf)/((kba*pf)+(fcl+il)*10^-3))*100;//full load efficiency in %
+disp(fle,"full load efficiency at 0.8 pf is,(%)=")
+lme=kba*sqrt(il/fcl);//variable
+pfl=(lme/kba)*100;//percentage of full load on which efficiency will be maximum
+disp("part (b)")
+disp(pfl,"percentage of full load on which efficiency will be maximum is,(%)=")
diff --git a/2297/CH4/EX4.6/Ex4_6.sce b/2297/CH4/EX4.6/Ex4_6.sce
new file mode 100755
index 000000000..430bdb15b
--- /dev/null
+++ b/2297/CH4/EX4.6/Ex4_6.sce
@@ -0,0 +1,35 @@
+// Example 4.6;all day efficiency
+clc;
+close;
+clear;
+//given
+format('v',5)
+ef=0.98;//efficiency in %
+kva=15;//kVA
+pf=1;//power factor
+op=kva*pf;//output power in kW
+ip=op/ef;//input power in kW
+loss=ip-op;//loss in kW
+cl=(loss*10^3)/2;//copper loss in W
+il=cl;//iron loss in W
+t1=12;//time in hours
+p1=2;//power in kW
+pf1=0.5;//power factor
+y1=(p1)/pf1;//kVA
+il1=il*t1;//loss in Wh
+cl1=cl*((y1)/kva)^2*t1;//copper loss in Wh
+top1=p1*t1;//kWht1=12;//time in hours
+t2=6;//time in hours
+p2=12;//power in kW
+pf2=0.8;//power factor
+y2=(p2)/pf2;//kVA
+il2=il*t2;//iron loss in Wh
+cl2=cl*((y2/kva)^2)*t2;//copper loss in Wh
+top2=p2*t2;//kWh
+t3=6;//time in hours
+il3=il*t3;//iron loss Wh
+tol=top1+top2;//iron loss kWh
+til=(il1+il2+il3)*10^-3;//total iron loss in kWh
+tcl=(cl1+cl2)*10^-3;//total copper loss in kWh
+ade=((tol)/(tol+til+tcl))*100;//efficiency in %
+disp(ade,"all day efficiency is,(%)=")
diff --git a/2297/CH4/EX4.7/Ex4_7.sce b/2297/CH4/EX4.7/Ex4_7.sce
new file mode 100755
index 000000000..fb1dbee9c
--- /dev/null
+++ b/2297/CH4/EX4.7/Ex4_7.sce
@@ -0,0 +1,22 @@
+// Example 4.7;iron losses
+clc;
+close;
+clear;
+//given
+format('v',6)
+kva=200;//kVA
+pf=0.8;//power factor
+rflo=kva*pf;//kW
+ef=0.96;//efficiency
+ip=rflo/ef;//kW
+tl=ip-rflo;//kW
+e2=800;//volts
+e1=6600;//volts
+n21=((e2/sqrt(3))/e1);//turn ratiom
+r1=4;//ohms
+r2=0.05;//ohms
+roe=(r1)*n21^2+r2;//ohms
+fli=((kva*10^3)/(sqrt(3)*e2));//amperes
+fcl=3*fli^2*roe;//kW
+il=tl-(fcl)*10^-3;//kW
+disp(il,"iron losses is,(kW)=")
diff --git a/2297/CH4/EX4.8/Ex4_8.sce b/2297/CH4/EX4.8/Ex4_8.sce
new file mode 100755
index 000000000..e68b99610
--- /dev/null
+++ b/2297/CH4/EX4.8/Ex4_8.sce
@@ -0,0 +1,36 @@
+// Example 4.8;resistance,reactances and impedances and copper losses
+clc;
+close;
+clear;
+//given
+r1=3.45;//ohms
+r2=0.009;//ohms
+x1=5.2;//ohms
+x2=0.015;//ohms
+kva=100;//kVA
+e1=8800;//volts
+e2=440;//volts
+i1=(kva*10^3)/e1;//in amperes
+i2=(kva*10^3)/e2;//in amperes
+k=e2/e1;//transformation ratio
+ro1=r1+(r2/k^2);//ohms
+xo1=x1+(x2/k^2);//ohms
+ro2=r2+(k^2*r1);//ohms
+xo2=k^2*xo1;//ohms
+zo1=sqrt(ro1^2+xo1^2);//ohms
+zo2=sqrt(ro2^2+xo2^2);//ohms
+disp("part (a) ")
+disp(ro1,"equivalent resistance referred to the primary is,(Ohm)=")
+disp(xo1,"equivalent reactance referred to the primary is,(Ohm)=")
+disp(ro2,"equivalent resistance referred to the secondary is,(Ohm)=")
+disp(xo2,"equivalent reactance referred to the secondary is,(Ohm)=")
+disp(zo1,"equivalent impedance referred to the primary is,(Ohm)=")
+disp(zo2,"equivalent impedance referred to the secondary is,(Ohm)=")
+disp("part (b) ")
+tcl=i1^2*r1+i2^2*r2;//in watts
+tcl1=i1^2*ro1;//in watts
+tcl2=i2^2*ro2;//in watts
+disp(tcl,"total copper losses considering individual resistance is,(W)=")
+disp(tcl1,"total copper losses consdering equivalent resistance (for primary) is,(W)=")
+disp(tcl2,"total copper losses consdering equivalent resistance (for secondary) is,(W)=")
+//copper losses are caculated wrong in the textbook
diff --git a/2297/CH4/EX4.9/Ex4_9.sce b/2297/CH4/EX4.9/Ex4_9.sce
new file mode 100755
index 000000000..05e9e59c4
--- /dev/null
+++ b/2297/CH4/EX4.9/Ex4_9.sce
@@ -0,0 +1,55 @@
+// Example 4.9;parameter of primary side ,regulation and efficiency
+clc;
+close;
+clear;
+//given
+format('v',6)
+po=100;//watts
+v1=200;//volts
+io=1;//amperes
+ocpf=po/(v1*io);//open circuit power factor
+sinpf=sqrt(1-ocpf^2);//
+im=io*sinpf;//in amperes
+iw=io*ocpf;//current in amperes
+rm=v1/iw;//ohms
+xm=v1/im;//in ohms
+vs=15;//volts
+ia=10;//amperes
+zo2=vs/ia;//in ohms
+wa=85;//watts
+ro2=wa/(ia)^2;//ohms
+e2=400;//volts
+e1=200;//volts
+k=e2/e1;//transformation ratio
+zo1=zo2/k^2;//ohms
+ro1=ro2/k^2;//ohms
+xo1=sqrt(zo1^2-ro1^2);//ohms
+disp(" part (a)")
+disp(im,"magnetising component of no load current (Im) is,(A)=")
+disp(iw,"working component of no load current (Iw) is,(A)=")
+disp(rm,"resistance for primary side (Rm) is,(Ohm)=")
+disp(xm,"reactance for primary ohms (Xm) is,(Ohm)=")
+disp(xo1,"impedence for primary side (X01) is,(Ohm)=")
+disp("part (b)")
+kva=4000;//kVA
+i2=kva/e2;//in amperes
+xo2=sqrt(zo2^2-ro2^2);//ohms
+pf=0.8;// power factor
+vlag=i2*(ro2*pf+xo2*sqrt(1-pf^2));//in volts
+prld=(vlag*po)/e2;//
+vlag1=i2*(ro2*pf-xo2*sqrt(1-pf^2));//in volts
+prld1=(vlag1*po)/e2;//
+disp(prld,"percentage regulation on lagging load is,(%)=")
+disp(prld1,"percentage regulation on leading load is,(%)=")
+disp("part (c)")
+cl=85;//copper losses
+nloss=100;//no load losses
+fll=cl+nloss;//full load losses
+pf=0.8;//power factor
+flo=kva*pf;//efficiency
+effl=flo/(flo+fll);//efficiency
+hll=(1/2)^2*cl+nloss;//loss in watts
+op=(1/2)*kva*pf;//ouput power in watts
+efhl=op/(hll+op);//efficiency at half load
+disp(effl*100,"efficiency at full load is,(%)=")
+disp(efhl*100,"efficiency at half load is,(%)=")
diff --git a/2297/CH5/EX5.1/Ex5_1.sce b/2297/CH5/EX5.1/Ex5_1.sce
new file mode 100755
index 000000000..da8457116
--- /dev/null
+++ b/2297/CH5/EX5.1/Ex5_1.sce
@@ -0,0 +1,18 @@
+// Example 5.1 : resistance
+clc;
+clear;
+// given :
+format('v',9)
+n=50;//number of turns
+B=1;//magnetic field in tesla
+I=1;//current in amperes
+L=4;//length in cm
+d=3;//dia in cm
+Td=n*B*I*L*d*10^-4;//torque in N-m
+cd1=2.4*10^-4;//controlling torque
+id=cd1/Td;//current in amperes
+fsv=100;//full scale voltage
+trv=fsv/id;//ohms
+adr=10000;//ohms
+r=trv-adr;//ohms
+disp(r,"required resistance is,(ohm)=")
diff --git a/2297/CH5/EX5.10/Ex5_10.sce b/2297/CH5/EX5.10/Ex5_10.sce
new file mode 100755
index 000000000..abcdb5b55
--- /dev/null
+++ b/2297/CH5/EX5.10/Ex5_10.sce
@@ -0,0 +1,21 @@
+// Example 5.10;true resistance of the unknown resistor , percentage error and reading voltmeter
+clc;
+clear;
+// given :
+format('v',7)
+disp("part (i)")
+ra=0.1;//ohms
+vr=18;//voltage in volts
+am=0.2;//current in amperes
+apr=vr/am;//in ohms
+rv=5000;//ohms
+im=vr/rv;//amperes
+rxi=am-(im);//in amperes
+rx=vr/rxi;//ohms
+disp(rx,"true value of resistance is,(Ohm)=")
+per=((rx-apr)/rx)*100;//percentage error
+disp("part (ii)")
+disp(per,"percentage error is,(%)=")
+rvv=am*(ra+rx);//reading of voltmeter
+disp("part (iii)")
+disp(rvv,"reading of voltmeter is,(V)=")
diff --git a/2297/CH5/EX5.11/Ex5_11.sce b/2297/CH5/EX5.11/Ex5_11.sce
new file mode 100755
index 000000000..e0216f983
--- /dev/null
+++ b/2297/CH5/EX5.11/Ex5_11.sce
@@ -0,0 +1,32 @@
+// Example 5.11;resistance
+clc;
+clear;
+// given :
+format('v',6)
+im=10;//mA
+i=100;//mA
+m=i/im;//multiplying factor
+rm=50;//ohms
+rsh=rm/(m-1);//in ohms
+disp("part (i)")
+disp(rsh,"resistance of shunt (range 0-100mA) Rsh1 is,(Ohm)=")
+i1=500;//mA
+m1=i1/im;//multiplying factor
+rm1=50;//ohms
+rsh1=rm1/(m1-1);//in ohms
+disp("part (ii)")
+disp(rsh1,"resistance of shunt (range 0-500mA) Rsh2 is,(Ohm)=")
+im2=1;//A
+i2=100;//A
+m2=i2/im2;//multiplying factor
+rm2=50;//ohms
+rsh2=rm2/(m2-1);//in ohms
+disp("part (iii)")
+disp(rsh2,"resistance of shunt (range 0-1A) Rsh2 is,(Ohm)=")
+im3=1;//A
+i3=500;//A
+m3=i3/im3;//multiplying factor
+rm3=50;//ohms
+rsh3=rm3/(m3-1);//in ohms
+disp("part (iv)")
+disp(rsh3,"resistance of shunt (range 0-5A) Rsh2 is,(Ohm)=")
diff --git a/2297/CH5/EX5.12/Ex5_12.sce b/2297/CH5/EX5.12/Ex5_12.sce
new file mode 100755
index 000000000..7fae0c3c7
--- /dev/null
+++ b/2297/CH5/EX5.12/Ex5_12.sce
@@ -0,0 +1,10 @@
+// Example 5.12;load power
+clc;
+clear;
+format('v',6)
+// given :
+k=600;//in rev./kwh.
+nr=5;//number of revolutions
+t=20;//time in seconds
+lp=(1/k)*nr*((60*60)/t);//power in kW
+disp(lp,"load power is,(kW)=")
diff --git a/2297/CH5/EX5.2/Ex5_2.sce b/2297/CH5/EX5.2/Ex5_2.sce
new file mode 100755
index 000000000..384461c24
--- /dev/null
+++ b/2297/CH5/EX5.2/Ex5_2.sce
@@ -0,0 +1,15 @@
+// Example 5.2 : resistance
+clc;
+clear;
+// given :
+format('v',9)
+fsf=20;//full scale deflection current in mA
+v=200;//voltage in mV
+ri=v/fsf;//resistance in ohms
+x=199.98;//current in amperes
+rsh=(v*10^-3)/x;//ohms
+fs2=1000;//volts
+trv=fs2/(fsf*10^-3);//ohms
+rse=trv-ri;//reqquired resistance in ohms
+disp(rse,"total resistance of the voltmeter is,(ohm)=")
+//in the text book approximately value of resistance is taken as 50000 ohm
diff --git a/2297/CH5/EX5.3/Ex5_3.sce b/2297/CH5/EX5.3/Ex5_3.sce
new file mode 100755
index 000000000..c5fd29ae9
--- /dev/null
+++ b/2297/CH5/EX5.3/Ex5_3.sce
@@ -0,0 +1,17 @@
+// Example 5.3 : power factor
+clc;
+clear;
+// given :
+format('v',6)
+w1=2000;//power in watts
+w2=500;//power in watts
+an=atand(sqrt(3)*(((w1-w2)/(w1+w2))));//angle in degree
+disp("part (a)")
+pf=cosd(an);//power factor
+disp(pf,"power factor is ,=")
+disp("part (b)")
+w1=2000;//power in watts
+w2=-500;//power in watts
+an=atand(sqrt(3)*(((w1-w2)/(w1+w2))));//angle in degree
+pf=cosd(an);//power factor
+disp(pf,"power factor is ,=")
diff --git a/2297/CH5/EX5.4/Ex5_4.sce b/2297/CH5/EX5.4/Ex5_4.sce
new file mode 100755
index 000000000..1fbf05730
--- /dev/null
+++ b/2297/CH5/EX5.4/Ex5_4.sce
@@ -0,0 +1,20 @@
+// Example 5.4;reading
+clc;
+clear;
+disp("part (i)")
+// given :
+format('v',6)
+vm=100;//volts
+rc=10;//ohms
+im=vm/rc;//amperes
+t=0:2*%pi;//time rane
+x=intsplin(t,(sin(t))^2);//variable
+Irms=sqrt((1/(2*%pi))*im^2*x);//current in amperes
+disp(Irms,"indication of moving iron instrument is,(A)=")
+disp("part (ii)")
+t1=0;//time interval
+t2=%pi;//time inerval
+x=integrate('sin(t)','t',t1,t2);//variable
+Iav=(1/%pi)*x*(im/2);//current in amperes
+disp(Iav,"indication of moving coil instrument is,(A)=")
+//answer of part a is calculated wrong in the textbook
diff --git a/2297/CH5/EX5.5/Ex5_5.sce b/2297/CH5/EX5.5/Ex5_5.sce
new file mode 100755
index 000000000..d477d0710
--- /dev/null
+++ b/2297/CH5/EX5.5/Ex5_5.sce
@@ -0,0 +1,18 @@
+// Example 5.5;reading
+clc;
+clear;
+format('v',5)
+// given :
+fsd=100;//full scale division in amperes
+fsd1=100;//full scale division in mA
+csh=fsd-(fsd*10^-3);//difference in currents in amperes
+rx=0.8;//resistance in ohms
+r1=((fsd1*10^-3*rx)/csh);//resistance in ohms
+rx1=1;//resistance in ohms
+r2=((fsd1*10^-3*rx1)/csh);//resistance in ohms
+em1=((rx*r1)/(rx+r1));//resistance in ohms
+em2=((rx1*r2)/(rx1+r2));//resistance in ohms
+crm1=((em2*10^4*fsd)/((em2*10^4)+(em1*10^4)));//current in amperes
+crm2=((em1*10^4*fsd)/((em1*10^4)+(em2*10^4)));//current in amperes
+disp(crm1,"current read by meter 1 is,(A)=")
+disp(crm2,"current read by meter 2 is,(A)=")
diff --git a/2297/CH5/EX5.6/Ex5_6.sce b/2297/CH5/EX5.6/Ex5_6.sce
new file mode 100755
index 000000000..211ca3a89
--- /dev/null
+++ b/2297/CH5/EX5.6/Ex5_6.sce
@@ -0,0 +1,19 @@
+// Example 5.6;multiplier and sensivity
+clc;
+clear;
+// given :
+format('v',6)
+rm=50;//resistance in ohms
+rsh=rm;//shunt resistance in ohms
+it=2;//current in mA
+erms=10;//rms voltage in volts
+ede=0.45*erms;//voltage in volts
+rd1=400;//resistance in ohms
+x=(rm*rsh)/(rm+rsh);//resistance in ohms
+r1=ede/(it*10^-3);//resistance in ohms
+rs=r1-x-rd1;//resistance in ohms
+disp("part (a)")
+disp(rs,"multiplier resistance Rs is,(Ohm)=")
+S=r1/erms;//sensivity in ohms/V
+disp("part (b)")
+disp(S,"sensivity is,(Ohm/V)=")
diff --git a/2297/CH5/EX5.7/Ex5_7.sce b/2297/CH5/EX5.7/Ex5_7.sce
new file mode 100755
index 000000000..3d280f268
--- /dev/null
+++ b/2297/CH5/EX5.7/Ex5_7.sce
@@ -0,0 +1,19 @@
+// Example 5.7;apparent resistance of the unknown resistor,actual resistance of the unknown resistor and percentage error
+clc;
+clear;
+// given :
+format('v',7)
+v=200;//voltage in volts
+i=5;//current in mA
+tr=v/i;//resistance in kilo ohms
+disp("part (a)")
+disp(tr,"apparent resistance of unknown resistor is,(kilo-Ohm)=")
+S=1000;//sensivity in ohms/V
+V1=250;//voltage in volts
+rv=V1*S*10^-3;//resistance in kilo ohms
+rx=(V1*tr)/(V1-tr);//resistance in kilo ohms
+disp("part (b)")
+disp(rx,"actual resistance of unknown resistor is,(kilo-Ohm)=")
+per=(rx-tr)/rx;//percentage error
+disp("part (c)")
+disp(per*100,"percentage error is,(%)=")
diff --git a/2297/CH5/EX5.8/Ex5_8.sce b/2297/CH5/EX5.8/Ex5_8.sce
new file mode 100755
index 000000000..686c51b22
--- /dev/null
+++ b/2297/CH5/EX5.8/Ex5_8.sce
@@ -0,0 +1,11 @@
+// Example 5.8;resolution
+clc;
+clear;
+format('v',6)
+// given :
+fsr=200;//full scale reading in volts
+d=100;//number of divisions
+sc=1/10;//scale
+sd1=fsr/d;//one sccale divisions
+R=sc*sd1;//resolution
+disp(R,"resolution is, (V)=")
diff --git a/2297/CH5/EX5.9/Ex5_9.sce b/2297/CH5/EX5.9/Ex5_9.sce
new file mode 100755
index 000000000..2e4f21618
--- /dev/null
+++ b/2297/CH5/EX5.9/Ex5_9.sce
@@ -0,0 +1,9 @@
+// Example 5.9;resolution
+clc;
+clear;
+format('v',6)
+// given :
+fsr=9.999;//full scale reading in volts
+d=9999;//number of divisions
+R=(1/d)*fsr*10^3;//resolution
+disp(R,"resolution is ,(mV)=")
diff --git a/2297/CH6/EX6.1/Ex6_1.sce b/2297/CH6/EX6.1/Ex6_1.sce
new file mode 100755
index 000000000..3d2d61839
--- /dev/null
+++ b/2297/CH6/EX6.1/Ex6_1.sce
@@ -0,0 +1,20 @@
+//Example 6.1// Terminal voltage
+clc;
+clear;
+close;
+//given data :
+format('v',7)
+Z=440;// number of lap
+N=900;// revolutions in rpm
+fi=0.07;//fluxin Wb
+P=4;// number of pole
+A=4;//constant
+Ia=50;// armature current in Amperes
+E=462;//voltage in V
+E=(P*fi*Z*N)/(60*A);//general voltage in volts
+R=0.002;// resistance in ohm
+C=110;// conductors
+Re=C*R;//resistance of each path in ohm
+Ra=Re/A;//armature resistance in ohm
+V=E-(Ia*Ra);//terminal voltage in volts
+disp(V,"Terminal voltage,(V) = ")
diff --git a/2297/CH6/EX6.10/Ex6_10.sce b/2297/CH6/EX6.10/Ex6_10.sce
new file mode 100755
index 000000000..a204483af
--- /dev/null
+++ b/2297/CH6/EX6.10/Ex6_10.sce
@@ -0,0 +1,23 @@
+//Example 6.10// Speed ,motor speed,and frequency
+clc;
+clear;
+close;
+format ('v',8)
+//given data :
+disp("part (a)")
+f=50;//frquency in Hz
+P=4;// number of pole
+Ns=(120*f)/P;//speed in rom
+disp(Ns," The speed of rotating magnetic field,(rpm) = ")
+disp("part (b)")
+S=0.035;// slip
+N=Ns*(1-S);//motor speed in rpm
+disp(N,"Motor speed,(rpm) = ")
+disp("part (c)")
+S=0.04;// slip
+F=S*f;//frequency in Hz
+disp("Frequency "+string (F)+" Hz or "+string(120)+" rpm ")
+disp("part (d)")
+f=50;// in Hz
+F=f;//frequency in Hz
+disp(F,"Frequency of rotor current,(Hz) = ")
diff --git a/2297/CH6/EX6.11/Ex6_11.sce b/2297/CH6/EX6.11/Ex6_11.sce
new file mode 100755
index 000000000..df6858248
--- /dev/null
+++ b/2297/CH6/EX6.11/Ex6_11.sce
@@ -0,0 +1,25 @@
+//Example 6.11// current per phase and power factor
+clc;
+clear;
+close;
+format('v',6)
+v1=100;//emf in volts
+vi=v1/sqrt(3);//induced emf in volts
+r1=1;//rotor resistance ohms per phase
+r2=4;//rotor reactance ohms per phase
+r=sqrt(r1^2+r2^2);//rotor impedence per phase
+rcp=(vi/r);//rotor current per phase
+pf=(1/r);//power factor
+disp("part (a)")
+disp(rcp,"rotor current per phase is,(A)=")
+disp(pf,"power factor is,=")
+r3=3;//ohms
+r4=r1+r3;//rotor resistance ohms per phase
+r2=4;//rotor reactance ohms per phase
+r=sqrt(r4^2+r2^2);//rotor impedence per phase
+rcp=(vi/r);//rotor current per phase
+pf=(r4/r);//power factor
+disp("part (b)")
+disp(rcp,"rotor current per phase is,(A)=")
+disp(pf,"power factor is,=")
+
diff --git a/2297/CH6/EX6.12/Ex6_12.sce b/2297/CH6/EX6.12/Ex6_12.sce
new file mode 100755
index 000000000..c8d02b21c
--- /dev/null
+++ b/2297/CH6/EX6.12/Ex6_12.sce
@@ -0,0 +1,33 @@
+//Example 6.12// emf
+clc;
+clear;
+close;
+format('v',7)
+disp("part (a) generator ")
+kva=4;//kVA
+v=110;//volts
+re=3;//syncronous reacrance in ohms
+ip=((kva*10^3)/(sqrt(3)*v));//phase current in Amperes
+ep=v/(sqrt(3));//phase voltage in volts
+e1=ep+%i*(ip*3);//line voltage in volts
+e11=sqrt((real(e1)^2)+imag(e1)^2);//line voltage per phase in volts
+pf=0.8;//power factor
+e12=(sqrt((real(e1)*pf)^2+(((imag(e1)*sqrt(1-pf^2))+imag(e1)))^2));//
+e13=(sqrt((real(e1)*pf)^2+(((imag(e1)*sqrt(1-pf^2))-imag(e1)))^2));//
+disp(e11,"emf when the armature current is full load unit pf is,(V)=")
+disp(e12,"emf when the armature current is full load 0.8 pf (lag) is,(V)=")
+disp(e13,"emf when the armature current is full load 0.8 pf (lead) is,(V)=")
+disp("part (b) motor")
+kva=4;//kVa
+v=110;//volts
+re=3;//syncronous reacrance in ohms
+ip=((kva*10^3)/(sqrt(3)*v));//phase current in Amperes
+ep=v/(sqrt(3));//phase voltage in volts
+e1=ep-%i*(ip*3);//line voltage in volts
+e11=sqrt((real(e1)^2)+imag(e1)^2);//line voltage per phase in volts
+pf=0.8;//power factor
+e12=(sqrt((real(e1)*pf)^2+(((imag(e1)*sqrt(1-pf^2))-imag(e1)))^2));//
+e13=(sqrt((real(e1)*pf)^2+(((imag(e1)*sqrt(1-pf^2))+imag(e1)))^2));//
+disp(e11,"emf when the armature current is full load unit pf is,(V)=")
+disp(e12,"emf when the armature current is full load 0.8 pf (lag) is,(V)=")
+disp(e13,"emf when the armature current is full load 0.8 pf (lead) is,(V)=")
diff --git a/2297/CH6/EX6.2/Ex6_2.sce b/2297/CH6/EX6.2/Ex6_2.sce
new file mode 100755
index 000000000..a43c0409d
--- /dev/null
+++ b/2297/CH6/EX6.2/Ex6_2.sce
@@ -0,0 +1,13 @@
+//Example 6.2// e.m.f
+clc;
+clear;
+close;
+format('v',6)
+//given data :
+V=200;//voltage
+Ra=0.1;//resistance in ohm
+Ia=50;//armature current in Amperes
+E=V+(Ia*Ra);//generator voltage in volts
+Eb=V-(Ia*Ra);//motor voltage in volts
+disp(E,"emf when machine acts as generator,(V) = ")
+disp(Eb,"emf when machine acts as motor,(V) = ")
diff --git a/2297/CH6/EX6.3/Ex6_3.sce b/2297/CH6/EX6.3/Ex6_3.sce
new file mode 100755
index 000000000..19acbd9b7
--- /dev/null
+++ b/2297/CH6/EX6.3/Ex6_3.sce
@@ -0,0 +1,30 @@
+//Example 6.3// spped ,torque and efficiency
+clc;
+clear;
+close;
+format('v',6)
+v=200;//voltage in volts
+r=100;//resistance in ohms
+ish=v/r;//shunt current in amperes
+i=4;//current in amperes
+nla=i-ish;//no load armature current in amperes
+w=8;//powerin kW
+ifl=(w*10^3)/v;//full load current in amperes
+fla=ifl-ish;//full load armature current in amperes
+r1=0.6;//internal resistance in ohms
+ebo=(v-(ish*r1));//voltage in volts
+eb=(v-(fla*r1));//voltage in volts
+no=700;//number of rpm
+n=no*(eb/ebo);//number of rpm
+ta=((eb*fla*60)/(2*n));//armature torque in N-m
+nlpi=v*i;//no load power input in watts
+cl=(ish^2*r1);//copper losses in watts
+cl=nlpi-cl;//total copper lossses in Watts
+flacl=(fla^2*r1);//full load armmature copper losses in Watts
+tfll=flacl+cl;//total full load losses in Watts
+flo=(w*10^3)-tfll;//full load output in Watts
+ef=((flo)/(w*10^3))*100;//efficiency
+disp(n,"speed is,(rpm)=")
+disp(ta,"armature torque is, (N-m)=")
+disp(ef,"full load motor efficiency is ,(%)=")
+//armature torque is calculated wrong in the textbook
diff --git a/2297/CH6/EX6.4/Ex6_4.sce b/2297/CH6/EX6.4/Ex6_4.sce
new file mode 100755
index 000000000..1a1205a99
--- /dev/null
+++ b/2297/CH6/EX6.4/Ex6_4.sce
@@ -0,0 +1,21 @@
+//Example 6.4// speed
+clc;
+clear;
+close;
+//given data :
+format('v',6)
+fi=0.02// flux in Wb
+P=4;// number of poles
+A=2;//constant
+Z=151*A;//turns
+V=200;// in volts
+Rsh=50;//shunt resistance in ohm
+Ra=0.01;// armature resistance in ohm
+Pr=40000;//power required in Watts
+Il=Pr/V;//load current in amperes
+Ish=V/Rsh;//shunt current in amperes
+Ia=Il+Ish;//armature current in amperes
+E=V+(Ia*Ra);//generated voltage
+N=(60*A*E)/(fi*P*Z);//rpm
+disp(N,"The speed of the machine,(rpm) = ")
+//answer is wrong in the textbook
diff --git a/2297/CH6/EX6.5/Ex6_5.sce b/2297/CH6/EX6.5/Ex6_5.sce
new file mode 100755
index 000000000..33ff15100
--- /dev/null
+++ b/2297/CH6/EX6.5/Ex6_5.sce
@@ -0,0 +1,24 @@
+//Example 6.5// Power
+clc;
+clear;
+close;
+//given data :
+format('v',6)
+fp=0.024;// flux per pole
+lf=1.2;// leakage factor
+fi=fp/lf;// in Wb
+Z=756;//turns
+P=4;// number of pole
+N=1000;// in rpm
+A=4;//constant
+E=(fi*Z*N*P)/(60*A);//generated voltage
+il=1/10;//load current in amperes
+ish=1/100;//shunt current in amperes
+ra=1;//armature resistance in ohms
+is=il+ish;//current in amperes
+v=((E)/(1+(ra*is)));//volts
+r2=10;//ohms
+il=v/r2;//amperes
+pc=il*v;//Watts
+disp(pc,"Power consumed is,(W)=")
+//answer is wrong in the textbook
diff --git a/2297/CH6/EX6.6/Ex6_6.sce b/2297/CH6/EX6.6/Ex6_6.sce
new file mode 100755
index 000000000..c4f33043d
--- /dev/null
+++ b/2297/CH6/EX6.6/Ex6_6.sce
@@ -0,0 +1,33 @@
+//Example 6.6: e.m.f ,copper losses ,output of the prime mover ,commercial, mechanical and electrical efficiencies
+clc;
+clear;
+close;
+format('v',6)
+//given data :
+Il=190;//load current in Amperes
+V=250;// voltage in volts
+Ra=0.02;//armature resistance in ohm
+Rsh=25;//shunt resistance in ohm
+Ish=V/Rsh;//shunt current in amperes
+Ia=Ish+Il;//armature current in amperes
+E=V+(Ia*Ra);//generated voltage
+disp("part (a)")
+disp(E,"emf genereted,(V) = ")
+Cl=(Ia^2*Ra);// armeture copper losses
+Sl=Ish*V;// shunt copper losses
+T=(Cl+Sl)*10^-3;//copper losses in k-Watt
+disp("part (b)")
+disp(T,"Total copper losses,(kW) = ")
+Eo=V*Il;//output voltage in volts
+I_l=950;//iron loss in watt
+O=Eo+I_l+(T*10^3);//output in watt
+disp(O,"Output of the prime mover,(W) = ")
+Ep=O-I_l;// electrical power in W
+Me=(Ep/O)*100;//Mechanical efficiency
+disp("part (c)")
+disp(Me,"Mechanical efficiency,(%) = ")
+Ee=(Eo/Ep)*100;//Electrical efficiency
+disp(Ee,"Electrical efficiency,(%) = ")
+Ce=(Eo/O)*100;//Commercial efficiency
+disp(Ce,"Commercial efficiency,(%) = ")
+
diff --git a/2297/CH6/EX6.7/Ex6_7.sce b/2297/CH6/EX6.7/Ex6_7.sce
new file mode 100755
index 000000000..b9a4a3356
--- /dev/null
+++ b/2297/CH6/EX6.7/Ex6_7.sce
@@ -0,0 +1,20 @@
+//Example 6.7// resistance
+clc;
+clear;
+close;
+format('v',6)
+n=1000;//turns in rpm
+ra=0.3;//armature resistance in ohms
+rf=40;//field resistance in ohms
+it=5;//field current in amperes
+if1=4;//field current in amperes
+e1=220;//emf in volts
+e2=200;//emf in volts
+ia=35;//armature current in amperes
+eb=(e1-(ia*ra));//emf in volts
+x=((eb-e2)/(it*if1));//additional field current in amperes
+ce=e1-e2;//change in emf in volts
+ix=if1+x;//total current in amperes
+rt=(e1/ix);//total resistance in ohms
+adr=rt-rf;//additional resistance required in ohms
+disp(adr,"additional resistance required is,(Ohm)=")
diff --git a/2297/CH6/EX6.8/Ex6_8.sce b/2297/CH6/EX6.8/Ex6_8.sce
new file mode 100755
index 000000000..6c88f4dd8
--- /dev/null
+++ b/2297/CH6/EX6.8/Ex6_8.sce
@@ -0,0 +1,29 @@
+//Example 6.8// resistance and speed
+clc;
+clear;
+close;
+format('v',7)
+v1=240;//primary voltage
+r1=0.2;//primary resistance in ohm
+i1=40;//primary current in volts
+eb1=(v1-i1*r1);//primary emf
+n11=1800;//number of turns on primary side in rpm
+n21=1600;//number of turns on secondary side in rpm
+i2=10;//secondary current in amperes
+x=((n21/n11)*(i2/i1)*eb1);//variable
+r=((v1-(i2*r1))-x)/i2;//resistance in ohm
+disp("part (a)")
+disp(r,"resistance to be added is,(Ohm)=")
+disp("part (b)")
+n11=1800;//number of turns on primary side
+n21=900;//number of turns on secondary side in rpm
+i2=60;//secondary current in amperes
+x=((n21/n11)*(1.18)*eb1);//variable
+r=((v1-(i2*r1))-x)/i2;//resistance in ohms
+disp(r,"resistance to be added is,(Ohm)=")
+eb2=228;//secondary emf in volts
+eb1=232;//primary emf in volts
+p1=100;//primary power in watt
+p2=118;//secondary power in watt
+n2=((eb2/eb1)*(p1/p2)*n11);//speed in rpm
+disp(ceil(n2),"speed is,(rpm)=")
diff --git a/2297/CH6/EX6.9/Ex6_9.sce b/2297/CH6/EX6.9/Ex6_9.sce
new file mode 100755
index 000000000..8df637c42
--- /dev/null
+++ b/2297/CH6/EX6.9/Ex6_9.sce
@@ -0,0 +1,14 @@
+//Example 6.9// speed
+clc;
+clear;
+close;
+format('v',6)
+i1=50;//primary current in amperes
+i2=i1/(sqrt(2));//secondary current in amperes
+r1=0.2;//primary resistance in ohms
+v1=220;//primary voltage in volts
+eb1=((v1-(i1*r1)));//primary emf in volts
+eb2=((v1-(i2*r1)));//secondary emf in volts
+n1=1000//primary speed in rpm
+n2=(n1*(eb2/eb1)*(i1/i2));//seconadry speed in rpm
+disp(n2,"speed is,(rpm)=")
diff --git a/2297/CH7/EX7.1/Ex7_1.sce b/2297/CH7/EX7.1/Ex7_1.sce
new file mode 100755
index 000000000..0453f5678
--- /dev/null
+++ b/2297/CH7/EX7.1/Ex7_1.sce
@@ -0,0 +1,22 @@
+//Example 7.1// width and length
+clc;
+clear;
+close;
+format('v',6)
+vph=400;//phase voltage in volts
+n=3;//number of phase
+kw=36;//power in kW
+r=((vph^2)/(n*((kw*10^3)/n)));//resistance in ohms
+p=1.016*10^-6;//resitivity
+t=0.3;//thickness in mm
+x=(((r*t*10^-3)/(p)));//variable
+t1=1000;//initial temperature in degree celsius
+t1k=273+t1;//initial temperature in kelvin
+t2=650;//final temperature in degree celsius
+t2k=273+t2;//final temperature in kelvin
+h=((3*10^4)*((t1k/1000)^4-(t2k/1000)^4));//W/m^2
+y=((kw*10^3)/(3*2*h));//variable
+l=sqrt(x*y);//length in meter
+w=y/l;//width in meter
+disp(l,"length is,(m)=")
+disp(w*10^3,"width is,(mm)=")
diff --git a/2297/CH7/EX7.2/Ex7_2.sce b/2297/CH7/EX7.2/Ex7_2.sce
new file mode 100755
index 000000000..0ee18e4d9
--- /dev/null
+++ b/2297/CH7/EX7.2/Ex7_2.sce
@@ -0,0 +1,18 @@
+//Example 7.2// power required
+clc;
+clear;
+close;
+format('v',6)
+l=0.2;//length in meter
+w=0.1;//width in meter
+th=25;//thickness in mm
+vw=l*w*th*10^-3;//volume in m^3
+ww=600;//weight of wood in kg/m^3
+ww1=vw*ww;//weight of wood kg
+shw=1500;//specific heat of wood in J/kg/degree celsius
+t=200;//temperature in degree celsius
+rg=t*shw*ww1;//energy in joules
+h=(rg/(3.6*10^3));//Wh
+t=15;//time in minutes
+pr=h*(60/t);//power required in Watt
+disp(pr,"power required is,(W)=")
diff --git a/2297/CH7/EX7.3/Ex7_3.sce b/2297/CH7/EX7.3/Ex7_3.sce
new file mode 100755
index 000000000..bfec38c49
--- /dev/null
+++ b/2297/CH7/EX7.3/Ex7_3.sce
@@ -0,0 +1,26 @@
+//Example 7.3// voltage and current
+clc;
+clear;
+close;
+l=0.2;//length meter
+w=0.1;//width in meter
+th=25;//thickness in mm
+vw=l*w*th*10^-3;//volume of wood in m^3
+ww=600;//weight of wood in kg/m^3
+ww1=vw*ww;//weight of wood kg
+shw=1500;//specific heat of wood in J/kg/degree celsius
+t=200;//temperature in degree celsius
+rg=t*shw*ww1;//energy in joules
+h=(rg/(3.6*10^3));//Wh
+t=15;//time in minutes
+pr=h*(60/t);//power required in Watt
+eo=8.854*10^-12;//permittivity constant
+er=5;//permittivity of wood
+c=((eo*er*l*w)/(th*10^-3));//capacitance in Farads
+f=50;//frequency in MHz
+pf=0.5;//power factor
+ph=acosd(pf);//phase angle degree
+v=sqrt((pr)/(c*2*%pi*f*10^6*0.05));//voltage in volts
+disp(round(v),"voltage is ,(V)=")
+ic=v*2*%pi*f*10^6*c;//current in amperes
+disp(ic,"current is,(A)=")