diff options
Diffstat (limited to '2288')
123 files changed, 2009 insertions, 0 deletions
diff --git a/2288/CH1/EX1.18.3/ex1_18_3.sce b/2288/CH1/EX1.18.3/ex1_18_3.sce new file mode 100755 index 000000000..235b52dc3 --- /dev/null +++ b/2288/CH1/EX1.18.3/ex1_18_3.sce @@ -0,0 +1,16 @@ +// Exa 1.18.3
+clc;
+clear;
+close;
+// Given data
+At = 28;// Atomic weight
+n = 4;
+N_A = 6.023*10^23;
+a = 5.3;// in Å
+a = a * 10^-10;// in m
+m = At/N_A;// in gm
+m = m*10^-3;// in kg
+V = (a)^3;// in m^3
+Rho = (m*n)/V;// in gm/m^3
+Rho = Rho * 10^-3;// in kg/m^3
+disp(Rho,"The volume density in kg/m^3 is");
diff --git a/2288/CH1/EX1.18.4/ex1_18_4.sce b/2288/CH1/EX1.18.4/ex1_18_4.sce new file mode 100755 index 000000000..39b187af2 --- /dev/null +++ b/2288/CH1/EX1.18.4/ex1_18_4.sce @@ -0,0 +1,17 @@ +// Exa 1.18.4
+clc;
+clear;
+close;
+// Given data
+r = 1.278;// in Å
+a = (4*r)/(sqrt(2));// in Å
+a = a * 10^-10;// in m
+V = (a)^3;// in m^3
+At = 63.5;// atomic weight
+N_A = 6.023*10^23;
+m = At/N_A;// in gm
+m = m * 10^-3;// in kg
+n = 4;
+Rho = (m*n)/V;// in gm/m^3
+Rho = Rho * 10^-3;// in kg/m^3
+disp(Rho,"The density of copper crystal in kg/m^3 is");
diff --git a/2288/CH1/EX1.21.1/ex1_21_1.sce b/2288/CH1/EX1.21.1/ex1_21_1.sce new file mode 100755 index 000000000..e40e8b6cf --- /dev/null +++ b/2288/CH1/EX1.21.1/ex1_21_1.sce @@ -0,0 +1,13 @@ +// Exa 1.21.1
+clc;
+clear;
+close;
+// Given data
+d = 2.82;// in Å
+d = d * 10^-10;// in m
+n = 1;
+theta = 10;// in degree
+//Formula 2*d*sin(theta) = n*lembda;
+lembda = 2*d*sind(theta);// in m
+lembda = lembda * 10^10;// in Å
+disp(lembda,"The wavelength of X-ray in Å is ");
diff --git a/2288/CH1/EX1.21.2/ex1_21_2.sce b/2288/CH1/EX1.21.2/ex1_21_2.sce new file mode 100755 index 000000000..7ffc416af --- /dev/null +++ b/2288/CH1/EX1.21.2/ex1_21_2.sce @@ -0,0 +1,13 @@ +// Exa 1.21.2
+clc;
+clear;
+close;
+// Given data
+lembda = 1.6;// in Å
+lembda = lembda * 10^-10;// in m
+theta = 14.2;// in degree
+n = 1;
+//Formula 2*d*sin(theta) = n*lembda;
+d = (n*lembda)/(2*sind(theta));// in m
+d = d * 10^10;// in Å
+disp(d,"The spacing of atomic layer in the crystal in Å is");
diff --git a/2288/CH1/EX1.21.3/ex1_21_3.sce b/2288/CH1/EX1.21.3/ex1_21_3.sce new file mode 100755 index 000000000..e915b00a8 --- /dev/null +++ b/2288/CH1/EX1.21.3/ex1_21_3.sce @@ -0,0 +1,13 @@ +// Exa 1.21.3
+clc;
+clear;
+close;
+// Given data
+n = 1;
+theta = 30;// in degree
+lembda = 1.78;// in Å
+lembda = lembda * 10^-10;// in m
+//Formula 2*d*sin(theta) = n*lembda;
+d = (n*lembda)/(2*sind(theta));// in m
+d = d * 10^10;// in Å
+disp(d,"The interplaner spacing in Å is");
diff --git a/2288/CH1/EX1.21.4/ex1_21_4.sce b/2288/CH1/EX1.21.4/ex1_21_4.sce new file mode 100755 index 000000000..7f0a6848a --- /dev/null +++ b/2288/CH1/EX1.21.4/ex1_21_4.sce @@ -0,0 +1,22 @@ +// Exa 1.21.4
+clc;
+clear;
+close;
+// Given data
+lembda = 0.58;// in Å
+n = 1;
+theta1 = 6.45;// in degree
+d = (n*lembda)/(2*sind(theta1));// in Å
+disp(d,"Part (i) : At angle of 6.45°, Interplaner spacing of the crystal in Å is ");
+theta2 = 9.15;// in degree
+d1 = (n*lembda)/(2*sind(theta2));// in Å
+disp(d1,"Part(ii) : At angle of 9.15°, Interplaner spacing of the crystal in Å is ");
+theta3 = 13;// in degree
+n2 = 1;
+d2 = (n2*lembda)/(2*sind(theta3));// in Å
+disp(d2,"Part(iii) : At angle of 13°, Interplaner spacing of the crystal in Å is ");
+// For
+n=2;
+d2 = (n*lembda)/(2*sind(theta3));// in Å
+disp(d2,"Part (iv) : The interplaner spacing in Å is : ")
+disp(d1,"The interplaner spacing for some other set of reflecting in Å is : ")
diff --git a/2288/CH1/EX1.21.5/ex1_21_5.sce b/2288/CH1/EX1.21.5/ex1_21_5.sce new file mode 100755 index 000000000..b4714afc5 --- /dev/null +++ b/2288/CH1/EX1.21.5/ex1_21_5.sce @@ -0,0 +1,15 @@ +// Exa 1.21.5
+clc;
+clear;
+close;
+// Given data
+a = 2.814;// in Å
+h = 1;
+k = 0;
+l = 0;
+d = a/(sqrt( ((h)^2) + ((k)^2) + ((l)^2) ));// in Å
+n = 2;
+lembda = 0.710;// in Å
+//Formula 2*d*sin(theta) = n*lembda;
+theta = asind(n*lembda/(2*d) );// in degree
+disp(theta,"The glacing angle in degree is");
diff --git a/2288/CH1/EX1.21.6/ex1_21_6.sce b/2288/CH1/EX1.21.6/ex1_21_6.sce new file mode 100755 index 000000000..88c9dc23f --- /dev/null +++ b/2288/CH1/EX1.21.6/ex1_21_6.sce @@ -0,0 +1,15 @@ +// Exa 1.21.6
+clc;
+clear;
+close;
+// Given data
+a = 3.65;// in Å
+h = 1;
+k = 0;
+l = 0;
+d = a/(sqrt( ((h)^2) + ((k)^2) + ((l)^2) ));// in Å
+n = 1;
+theta = 60;// in degree
+//Formula 2*d*sin(theta) = n*lembda;
+lambda = 2*d*sind(theta);// in Å
+disp(lambda,"Wavelength of X ray in Å is");
diff --git a/2288/CH1/EX1.21.7/ex1_21_7.sce b/2288/CH1/EX1.21.7/ex1_21_7.sce new file mode 100755 index 000000000..d4c97f02b --- /dev/null +++ b/2288/CH1/EX1.21.7/ex1_21_7.sce @@ -0,0 +1,22 @@ +// Exa 1.21.7
+clc;
+clear;
+close;
+// Given data
+lembda = 1.54;// in Å
+lembda= lembda*10^-8;// in cm
+At = 63.54;// atomic weight
+density = 9.024;// in gm/cc
+n = 1;
+N_A = 6.023*10^23;
+m = At/N_A;// mass
+a =(density*m)^(1/3);// in cm
+h = 1;
+k = 0;
+l = 0;
+d = a/(sqrt( ((h)^2) + ((k)^2) + ((l)^2) ));// in cm
+n = 1;
+//Formula 2*d*sin(theta) = n*lembda;
+theta = asind( (lembda)/(2*d) );// in degree
+disp(theta,"The glancing angle in degree is");
+
diff --git a/2288/CH1/EX1.21.8/ex1_21_8.sce b/2288/CH1/EX1.21.8/ex1_21_8.sce new file mode 100755 index 000000000..0bf911fad --- /dev/null +++ b/2288/CH1/EX1.21.8/ex1_21_8.sce @@ -0,0 +1,20 @@ +// Exa 1.21.8
+clc;
+clear;
+close;
+// Given data
+a = 3.615;// in Å
+theta = 22;// in degree
+n = 1;
+h = 1;
+k = 1;
+l = 1;
+d = a/(sqrt( ((h)^2) + ((k)^2) + ((l)^2) ));// in Å
+// 2*d*sin(theta) = n*lembda;
+lembda = 2*d*sind(theta);// in Å
+disp(lembda,"The wavelength in Å is");
+n = 2;
+//Formula 2*d*sin(theta) = n*lembda;
+theta = asind(n*lembda/(2*d) );// in degree
+disp(theta,"The glacing angle for second order in degree is");
+disp("To get the 2nd order spectrum the position of the detector should be "+string(2*theta)+" °")
diff --git a/2288/CH1/EX1.21.9/ex1_21_9.sce b/2288/CH1/EX1.21.9/ex1_21_9.sce new file mode 100755 index 000000000..294802c08 --- /dev/null +++ b/2288/CH1/EX1.21.9/ex1_21_9.sce @@ -0,0 +1,16 @@ +// Exa 1.21.9
+clc;
+clear;
+close;
+// Given data
+n = 1;
+lembda = 1.54;// in Å
+theta = 21.7;// in degree
+//Formula 2*d*sin(theta) = n*lembda;
+d = (lembda*n)/(2*sind(theta));// in Å
+h = 1;
+k = 1;
+l = 1;
+// Formula d = a/(sqrt( ((h)^2) + ((k)^2) + ((l)^2) ));
+a = d*(sqrt( ((h)^2) + ((k)^2) + ((l)^2) ));// in Å
+disp(a,"Lattice constant in Å is");
diff --git a/2288/CH1/EX1.22.1/ex1_22_1.sce b/2288/CH1/EX1.22.1/ex1_22_1.sce new file mode 100755 index 000000000..21f0e9f3f --- /dev/null +++ b/2288/CH1/EX1.22.1/ex1_22_1.sce @@ -0,0 +1,11 @@ +// Exa 1.22.1
+clc;
+clear;
+close;
+// Given data
+a = 4.8;// in Å
+h = 2;
+k = 1;
+l = 1;
+d = a/(sqrt( ((h)^2) + ((k)^2) + ((l)^2) ));// in Å
+disp(d,"The distance between d_211 plains in Å is");
diff --git a/2288/CH1/EX1.22.2/ex1_22_2.sce b/2288/CH1/EX1.22.2/ex1_22_2.sce new file mode 100755 index 000000000..30124b321 --- /dev/null +++ b/2288/CH1/EX1.22.2/ex1_22_2.sce @@ -0,0 +1,14 @@ +// Exa 1.22.2
+clc;
+clear;
+close;
+// Given data
+r = 1.28;// in Å
+//Formula r = (a*sqrt(2))/4;
+a = (4*r)/(sqrt(2));// in Å
+a = a * 10^-8;// in cm
+n = 4;
+M = 63.5;
+N_A = 6.023*10^23;
+Rho = (n*M)/(N_A*((a)^3));// in gm/cc
+disp(Rho,"The density in gm/cc is");
diff --git a/2288/CH1/EX1.22.3/ex1_22_3.sce b/2288/CH1/EX1.22.3/ex1_22_3.sce new file mode 100755 index 000000000..8ace03c4c --- /dev/null +++ b/2288/CH1/EX1.22.3/ex1_22_3.sce @@ -0,0 +1,14 @@ +// Exa 1.22.3
+clc;
+clear;
+close;
+// Given data
+a = 2.9;// in Å
+a = a * 10^-8;// in cm
+Rho = 7.87;// in gm/cc
+N_A = 6.023*10^23;
+M = 55.85
+// Rho = (n*M)/(N_A*((a)^3))
+n = (Rho*N_A*((a)^3))/M;// in atoms per unit cell
+disp(round(n),"The number of atoms per unit cell is ");
+
diff --git a/2288/CH1/EX1.22.4/ex1_22_4.sce b/2288/CH1/EX1.22.4/ex1_22_4.sce new file mode 100755 index 000000000..624a339b4 --- /dev/null +++ b/2288/CH1/EX1.22.4/ex1_22_4.sce @@ -0,0 +1,14 @@ +// Exa 1.22.4
+clc;
+clear;
+close;
+// Given data
+M =60;// in gm/mole
+Rho = 6.23;// in gm/cc
+n = 4;
+N_A = 6.023*10^23;
+// Rho = (n*M)/(N_A*((a)^3));
+a = ( (n*M)/(N_A*Rho) )^(1/3);// in cm
+r = (a*sqrt(2))/4;// in cm
+r = r * 10^8;// in Å
+disp(r,"The radius in Å is");
diff --git a/2288/CH1/EX1.22.5/ex1_22_5.sce b/2288/CH1/EX1.22.5/ex1_22_5.sce new file mode 100755 index 000000000..98733d95e --- /dev/null +++ b/2288/CH1/EX1.22.5/ex1_22_5.sce @@ -0,0 +1,14 @@ +// Exa 1.22.5
+clc;
+clear;
+close;
+// Given data
+Rho = 5.96;// in gm/cc
+M = 50;
+n = 2;
+N_A = 6.023*10^23;
+//Formula Rho = (n*M)/(N_A*((a)^3));
+a = ( (n*M)/(N_A*Rho) )^(1/3);// in cm
+r = (a*sqrt(3))/4;// in cm
+P_F = (2*(4/3)*%pi*((r)^3))/((a)^3);// Packing factor
+disp(P_F,"The Packing factor is");
diff --git a/2288/CH1/EX1.22.6/ex1_22_6.sce b/2288/CH1/EX1.22.6/ex1_22_6.sce new file mode 100755 index 000000000..48157ccb4 --- /dev/null +++ b/2288/CH1/EX1.22.6/ex1_22_6.sce @@ -0,0 +1,16 @@ +// Exa 1.22.6
+clc;
+clear;
+close;
+// Given data
+d = 5.2;// in gm/cc
+n = 2;
+M = 120;
+N_A = 6.023*10^23;
+m = M/N_A;//mass of 1 atom in gm
+m = n*m;//mass of unit cell in gm
+g = 20;// in gm
+m = g/m;// in unit cells
+disp(m,"The number of unit cell in its 20 gm is : ");
+
+
diff --git a/2288/CH1/EX1.22.7/ex1_22_7.sce b/2288/CH1/EX1.22.7/ex1_22_7.sce new file mode 100755 index 000000000..ab0e051f8 --- /dev/null +++ b/2288/CH1/EX1.22.7/ex1_22_7.sce @@ -0,0 +1,18 @@ +// Exa 1.22.7
+clc;
+clear;
+close;
+// Given data
+Rho = 2.48;// in gm/cc
+K = 39;// molecular weight of K
+F = 19; // molecular weight of F
+M = K+F;// molecular weight of KF
+n = 4;
+N_A = 6.023*10^23;
+//Formula Rho = (n*M)/(N_A*((a)^3));
+a = ( (n*M)/(N_A*Rho) )^(1/3);// in cm
+a = a * 10^8;// in Å
+r = (a*sqrt(2))/4;// in Å
+r = 2*r;// in Å
+disp(r,"The distance between ions in Å is");
+
diff --git a/2288/CH2/EX2.15.1/ex2_15_1.sce b/2288/CH2/EX2.15.1/ex2_15_1.sce new file mode 100755 index 000000000..8a59353fb --- /dev/null +++ b/2288/CH2/EX2.15.1/ex2_15_1.sce @@ -0,0 +1,12 @@ +//Exa 2.15.1
+clc;
+clear;
+close;
+// Given data
+del_E = 0.3;// in eV
+T1 = 300;// in K
+T2 = 330;// in K
+// del_E = K * T1 * log(N/N_c) where del_E= E_C-E_F
+// del_E1 = K * T2 * log(N/N_c) where del_E1= E_C-E_F at T= 330 °K
+del_E1 = del_E*(T2/T1);// in eV
+disp("The Fermi level will be "+string(del_E1)+" eV below the conduction band")
diff --git a/2288/CH2/EX2.15.2/ex2_15_2.sce b/2288/CH2/EX2.15.2/ex2_15_2.sce new file mode 100755 index 000000000..da0100cde --- /dev/null +++ b/2288/CH2/EX2.15.2/ex2_15_2.sce @@ -0,0 +1,13 @@ +//Exa 2.15.2
+clc;
+clear;
+close;
+// Given data
+N_c = 2.8 * 10^19;// in cm^-3
+del_E = 0.25;// fermi energy in eV
+KT = 0.0259;
+f_F = exp(-(del_E)/KT);
+disp(f_F,"The probbaility in the condition band is occupied by an electron is ");
+n_o = N_c * exp(-(del_E)/KT);// in cm^-3
+disp(n_o,"The thermal equilibrium electron concentration in cm^-3 is");
+
diff --git a/2288/CH2/EX2.15.3/ex2_15_3.sce b/2288/CH2/EX2.15.3/ex2_15_3.sce new file mode 100755 index 000000000..8316237af --- /dev/null +++ b/2288/CH2/EX2.15.3/ex2_15_3.sce @@ -0,0 +1,13 @@ +//Exa2.15.3
+clc;
+clear;
+close;
+// Given data
+T1 = 300;// in K
+T2 = 400;// in K
+del_E = 0.27;// Fermi level in eV
+KT = (0.0259) * (T2/T1);// in eV
+N_v = 1.04 * 10^19;// in cm^-3
+N_v = N_v * (T2/T1)^(3/2);// in cm^-3
+p_o = N_v * exp(-(del_E)/KT);// in per cm^3
+disp(p_o,"The thermal equilibrium hole concentration in per cm^3 is");
diff --git a/2288/CH2/EX2.16.1/ex2_16_1.sce b/2288/CH2/EX2.16.1/ex2_16_1.sce new file mode 100755 index 000000000..3f53751b2 --- /dev/null +++ b/2288/CH2/EX2.16.1/ex2_16_1.sce @@ -0,0 +1,13 @@ +// Exa 2.16.1
+clc;
+clear;
+close;
+// Given data
+At = 63.5;// atomic weight
+Rho = 1.7*10^-6;// in ohm cm
+d = 8.96;// in gm/cc
+N_A = 6.02*10^23;// in /gm.mole
+e = 1.6*10^-19;// in C
+n = (N_A/At)*d;
+Miu_e = 1/(Rho*n*e);// in cm^2/volt.sec
+disp(Miu_e,"The electron mobility in cm^2/volt-sec is");
diff --git a/2288/CH2/EX2.16.2/ex2_16_2.sce b/2288/CH2/EX2.16.2/ex2_16_2.sce new file mode 100755 index 000000000..4852795ca --- /dev/null +++ b/2288/CH2/EX2.16.2/ex2_16_2.sce @@ -0,0 +1,22 @@ +// Exa 2.16.2
+clc;
+clear;
+close;
+format('e',9)
+// Given data
+l = 0.1;// in m
+A = 1.7;// in mm^2
+A = A * 10^-6;// in m^2
+R = 0.1;// in ohm
+At = 63.5;// atomic weight
+N_A = 6.02*10^23;
+d = 8.96;// in gm/cc
+n = (N_A/At)*d;// in /cc
+n = n * 10^6;// in /m^3
+//Formula R = Rho*(l/A);
+Rho = (R*A)/l;// in ohm m
+Sigma = 1/Rho;// in mho/m
+e = 1.6*10^-19;
+// Formula Sigma = n*e*Miu_e
+Miu_e = Sigma/(n*e);// in m^2/V.sec
+disp(Miu_e,"The mobility in m^2/V-sec is");
diff --git a/2288/CH2/EX2.16.3/ex2_16_3.sce b/2288/CH2/EX2.16.3/ex2_16_3.sce new file mode 100755 index 000000000..28ff5f05d --- /dev/null +++ b/2288/CH2/EX2.16.3/ex2_16_3.sce @@ -0,0 +1,20 @@ +// Exa 2.16.3
+clc;
+clear;
+close;
+// Given data
+format('v',7)
+d = 10.5;// in gm/cc
+At = 108;// atomic weight
+N_A = 6.025*10^23;// in /gm mole
+r = 10^-3;// in m
+q = 1.6*10^-19;// in C
+n = (N_A/At)*d;// in /cm^3
+n = n * 10^6;// in /m^3
+A = %pi*((r)^2);// in m^2
+I = 2;// in A
+// I = q*n*A*v;
+v = I/(n*q*A);// in m/s
+disp(v,"The drift velocity in m/s is");
+
+// Note: There is calculation error to find the value of drift velocity (i.e v), so the answer in the book is wrong.
diff --git a/2288/CH2/EX2.16.4/ex2_16_4.sce b/2288/CH2/EX2.16.4/ex2_16_4.sce new file mode 100755 index 000000000..2627458bc --- /dev/null +++ b/2288/CH2/EX2.16.4/ex2_16_4.sce @@ -0,0 +1,21 @@ +// Exa 2.16.4
+clc;
+clear;
+close;
+format('e',10)
+// Given data
+d = 1.03;// in mm
+d = d *10^-3;// in m
+r = d/2;// in m
+R = 6.51;// in ohm
+l = 300;// in mm
+e = 1.6*10^-19;
+n = 8.4*10^28;// in /m^&3
+A = %pi*r^2;
+// R = Rho*(l/A);
+Rho = (R* A)/l;//in ohm m
+Sigma = 1/Rho;// in mho/m
+disp(Sigma,"The conductivity of copper in mho/m is");
+//Formula sigma = n*e*Miu_e
+Miu_e = Sigma/(n*e);// in m^2/V.sec
+disp(Miu_e,"The mobility in m^2/V-sec is");
diff --git a/2288/CH2/EX2.16.5/ex2_16_5.sce b/2288/CH2/EX2.16.5/ex2_16_5.sce new file mode 100755 index 000000000..a9a1fb1cd --- /dev/null +++ b/2288/CH2/EX2.16.5/ex2_16_5.sce @@ -0,0 +1,14 @@ +// Exa 2.16.5
+clc;
+clear;
+close;
+format('e',8)
+// Given data
+At = 63.5;// atomic weight
+d = 8.96;// in gm/cc
+Miu_e = 43.28;// in cm^2/V.sec
+N_A = 6.02*10^23;// in /gm mole
+e = 1.6*10^-19;// in C
+n = (N_A/At)*d;// in /cc
+Rho = 1/(n*e*Miu_e);// in ohm-cm
+disp(Rho,"The resistivity in ohm-cm is");
diff --git a/2288/CH2/EX2.17.1/ex2_17_1.sce b/2288/CH2/EX2.17.1/ex2_17_1.sce new file mode 100755 index 000000000..0b921937e --- /dev/null +++ b/2288/CH2/EX2.17.1/ex2_17_1.sce @@ -0,0 +1,12 @@ +// Exa 2.17.1
+clc;
+clear;
+close;
+format('e',9)
+// Given data
+Mu_e = 1500;// in cm^2/volt sec
+Mu_h = 500;// in cm^2/volt sec
+n_i = 1.6 * 10^10;// in per cm^3
+e = 1.6 * 10^-19;// in C
+Sigma = n_i * (Mu_e + Mu_h) * e;// in mho/cm
+disp(Sigma,"The conductivity of pure semiconductor in mho/cm is");
diff --git a/2288/CH2/EX2.17.2/ex2_17_2.sce b/2288/CH2/EX2.17.2/ex2_17_2.sce new file mode 100755 index 000000000..1d54cb435 --- /dev/null +++ b/2288/CH2/EX2.17.2/ex2_17_2.sce @@ -0,0 +1,10 @@ +// Exa 2.17.2
+clc;
+clear;
+close;
+// Given data
+Rho = 10;// in Ω-cm
+Mu_d = 500;// in cm^2/v.s.
+e = 1.6*10^-19;
+n_d = 1/(Rho * e * Mu_d);// in per cm^3
+disp(n_d,"The number of donor atom must be added to achieve in per cm^3 is ");
diff --git a/2288/CH2/EX2.17.3/ex2_17_3.sce b/2288/CH2/EX2.17.3/ex2_17_3.sce new file mode 100755 index 000000000..23bf7ef88 --- /dev/null +++ b/2288/CH2/EX2.17.3/ex2_17_3.sce @@ -0,0 +1,14 @@ +//Exa 2.17.3
+clc;
+clear;
+close;
+//Given data
+AvagadroNumber = 6.02 * 10^23;// in atoms/gm.mole
+at_Ge = 72.6;// atom weight of Ge
+e = 1.6 * 10^-19;// in C
+D_Ge = 5.32;// density of Ge in gm/c.c
+Mu = 3800;// in cm^2/v.s.
+C_Ge = (AvagadroNumber/at_Ge) * D_Ge;// concentration of Ge atoms in per cm^3
+n_d = C_Ge/10^8;// in per cc
+Sigma = n_d * Mu * e;// in mho/cm
+disp(Sigma,"The conductivity in mho/cm is");
diff --git a/2288/CH2/EX2.17.4/ex2_17_4.sce b/2288/CH2/EX2.17.4/ex2_17_4.sce new file mode 100755 index 000000000..662ee3f58 --- /dev/null +++ b/2288/CH2/EX2.17.4/ex2_17_4.sce @@ -0,0 +1,12 @@ +// Exa2.17.4
+clc;
+clear;
+close;
+// Given data
+Rho = 0.3623 * 10^-3;// in Ohm m
+Sigma = 1/Rho;//in mho/m
+D = 4.42 * 10^28;// Ge density in atom/m^3
+n_d = D / 10^6;// in atom/m^3
+e = 1.6 * 10^-19;// in C
+Mu = Sigma/(n_d * e);// in m^2/V.sec
+disp(Mu,"The mobility of electron in germanium in m^2/V.sec is");
diff --git a/2288/CH2/EX2.17.5/ex2_17_5.sce b/2288/CH2/EX2.17.5/ex2_17_5.sce new file mode 100755 index 000000000..06266dd42 --- /dev/null +++ b/2288/CH2/EX2.17.5/ex2_17_5.sce @@ -0,0 +1,18 @@ +//Exa 2.17.5
+clc;
+clear;
+close;
+// Given data
+AvagadroNumber = 6.025 * 10^26;// in kg.Mole
+W = 72.59;// atomic weight of Ge
+D = 5.36 * 10^3;//density of Ge in kg/m^3
+Rho = 0.42;// resistivity in Ohm m
+e = 1.6 * 10^-19;// in C
+Sigma = 1/Rho;// in mho/m
+n = (AvagadroNumber/W) * D;// number of Ge atoms present per unit volume
+// Holes per unit volume, H = n*10^-6%
+H= n*10^-8;
+a=H;
+// Formula sigma= a*e*Mu_h
+Mu_h = Sigma/(a * e);// in m^2/V.sec
+disp(Mu_h,"Mobility of holes in m^2/V.sec is");
diff --git a/2288/CH2/EX2.17.6/ex2_17_6.sce b/2288/CH2/EX2.17.6/ex2_17_6.sce new file mode 100755 index 000000000..4ff9b0688 --- /dev/null +++ b/2288/CH2/EX2.17.6/ex2_17_6.sce @@ -0,0 +1,20 @@ +//Exa 2.17.6
+clc;
+clear;
+close;
+// Given data
+e = 1.6 * 10^-19;// in C
+n_i = 2 * 10^19;// in /m^3
+Mu_e = 0.36;// in m^2/v.s
+Mu_h = 0.17;// in m^2/v.s
+A = 1 * 10^-4;// in m^2
+V = 2;//in volts
+l = 0.3;// in mm
+l = l * 10^-3;// in m
+E=V/l;// in volt/m
+Sigma = n_i * e * (Mu_e + Mu_h);// in mho/m
+// J = I/A = Sigma * E
+I= Sigma*E*A;
+disp(I,"The current produced in a small germanium plate in amp is");
+
+
diff --git a/2288/CH2/EX2.17.7/ex2_17_7.sce b/2288/CH2/EX2.17.7/ex2_17_7.sce new file mode 100755 index 000000000..bc487a3f0 --- /dev/null +++ b/2288/CH2/EX2.17.7/ex2_17_7.sce @@ -0,0 +1,13 @@ +// Exa 2.17.7
+clc;
+clear;
+close;
+format('e',10)
+// Given data
+D = 4.2 * 10^28;//density of Ge atoms in atoms/m^3
+N_d = D / 10^6;// in atoms/m^3
+e = 1.6 * 10^-19;// in C
+Mu_e = 0.36;// in m^2/vs
+Sigma_n = N_d * e * Mu_e;// in mho/m
+Rho_n = 1/Sigma_n;// in ohm m
+disp(Rho_n,"The resistivity of drop Ge in ohm m is ");
diff --git a/2288/CH2/EX2.17.8/ex2_17_8.sce b/2288/CH2/EX2.17.8/ex2_17_8.sce new file mode 100755 index 000000000..8642eff03 --- /dev/null +++ b/2288/CH2/EX2.17.8/ex2_17_8.sce @@ -0,0 +1,18 @@ +// Exa 2.17.8
+clc;
+clear;
+close;
+// given data
+e = 1.6 * 10^-19;// in C
+n_i = 1 * 10^19;// in per m^3
+Mu_e = 0.36;// in m^2/volt.sec
+Mu_h = 0.17;// in m^2/volt.sec
+A = 2;// in cm^2
+A = A * 10^-4;// im m^2
+t = 0.1;// in mm
+t = t * 10^-3;// in m
+V = 4;// in volts
+Sigma_i = n_i * e * (Mu_e + Mu_h);// in mho/m
+J = Sigma_i * (V/t);// in Amp/m^2
+I = J * A;// in Amp
+disp(I,"The current produced in a Ge sample in Amp is");
diff --git a/2288/CH2/EX2.17.9/ex2_17_9.sce b/2288/CH2/EX2.17.9/ex2_17_9.sce new file mode 100755 index 000000000..039da1318 --- /dev/null +++ b/2288/CH2/EX2.17.9/ex2_17_9.sce @@ -0,0 +1,12 @@ +//Exa 2.17.9
+clc;
+clear;
+close;
+format('e',9)
+// Given data
+e = 1.6 * 10^-19;// in C
+Mu_h = 500;// in cm^2/V.s.
+Mu_e = 1500;// in cm^2/V.s.
+n_i = 1.6 * 10^10;// in per cm^3
+Sigma_i = n_i * e * ( Mu_h + Mu_e);// in mho/cm
+disp(Sigma_i,"Conductivity of pure silicon at room temperature in mho/cm is");
diff --git a/2288/CH2/EX2.19.1/ex2_19_1.sce b/2288/CH2/EX2.19.1/ex2_19_1.sce new file mode 100755 index 000000000..75f052f6b --- /dev/null +++ b/2288/CH2/EX2.19.1/ex2_19_1.sce @@ -0,0 +1,16 @@ +//Exa 2.19.1
+clc;
+clear;
+close;
+//Given data
+l= 0.50*10^-2;// width of ribbon in m
+d= 0.10*10^-3;// thickness of ribbon in m
+A= l*d;// area of ribbon in m^2
+B = 0.8;// in Tesla
+D = 10.5;//density in gm/cc
+I = 2;// in amp
+q = 1.6 * 10^-19;// in C
+n=6*10^28;// number of elec. per m^3
+V_H = ( I * B * d)/(n * q * A);// in volts
+disp(V_H,"The hall Voltage produced in volts is");
+
diff --git a/2288/CH2/EX2.19.2/ex2_19_2.sce b/2288/CH2/EX2.19.2/ex2_19_2.sce new file mode 100755 index 000000000..2f96601a0 --- /dev/null +++ b/2288/CH2/EX2.19.2/ex2_19_2.sce @@ -0,0 +1,20 @@ +//Exa 2.19.2
+clc;
+clear;
+close;
+format('e',8)
+// Given data
+l = 1;// in m
+d = 1;// in cm
+d = d * 10^-2;// in m
+W = 1;// in mm
+W = W * 10^-3;// in m
+A = d * W;// in m^2
+I= 1;// in Amp
+B = 1;// Tesla
+V_H = 0.074 * 10^-6;// in Volts
+Sigma = 5.8 * 10^7;// in mho/m
+R_H = (V_H * A)/(B*I*d);// in m^3/c
+disp(R_H,"The hall coefficient in m^3/c is");
+Mu = Sigma * R_H;// in m^2/volt.sec
+disp(Mu,"The mobility of electrons in copper in m^2/volt-sec is ");
diff --git a/2288/CH2/EX2.20.1/ex2_20_1.sce b/2288/CH2/EX2.20.1/ex2_20_1.sce new file mode 100755 index 000000000..1a03e8879 --- /dev/null +++ b/2288/CH2/EX2.20.1/ex2_20_1.sce @@ -0,0 +1,11 @@ +//Exa2.20.1
+clc;
+clear;
+close;
+// Given data
+n_i = 1.4 * 10^18;// in /m^3
+n_D = 1.4 * 10^24;// in /m^3
+n=n_D;// in /m^3
+p = n_i^2/n;// in /m^3
+R = n/p;
+disp(R,"The ratio of electrons to hole concentration is");
diff --git a/2288/CH2/EX2.20.2/ex2_20_2.sce b/2288/CH2/EX2.20.2/ex2_20_2.sce new file mode 100755 index 000000000..6eaf47327 --- /dev/null +++ b/2288/CH2/EX2.20.2/ex2_20_2.sce @@ -0,0 +1,11 @@ +//Exa 2.20.2
+clc;
+clear;
+close;
+// Given data
+B = 0.48;// in wb/m^2
+R_H = 3.55 * 10^-4;// in m^3/c
+Rho = 0.00912;// in ohm-m
+Sigma = 1/Rho;// in (ohm-m)^-1
+theta_H = atand( Sigma * B * R_H);// in degree
+disp(theta_H,"The hall angle for a hall coefficient in degree is");
diff --git a/2288/CH2/EX2.20.3/ex2_20_3.sce b/2288/CH2/EX2.20.3/ex2_20_3.sce new file mode 100755 index 000000000..0dbe2403e --- /dev/null +++ b/2288/CH2/EX2.20.3/ex2_20_3.sce @@ -0,0 +1,15 @@ +//Exa 2.20.3
+clc;
+clear;
+close;
+//Given data
+R = 9 * 10^-3;// in ohm-m
+R_H = 3.6 * 10^-4;// in m^3
+e = 1.6 * 10^-19;// in C
+Sigma = 1/R;// in (ohm-m)^-1
+Rho = 1/R_H;// in coulomb/m^3
+n = Rho/e;// in /m^3
+disp(n,"Density of charge carriers in per m^3 is");
+Mu = Sigma * R_H;// in m^2/v-s
+disp(Mu,"Mobility of charge carriers in m^2/V-s is");
+
diff --git a/2288/CH2/EX2.24.1/ex2_24_1.sce b/2288/CH2/EX2.24.1/ex2_24_1.sce new file mode 100755 index 000000000..e43c62455 --- /dev/null +++ b/2288/CH2/EX2.24.1/ex2_24_1.sce @@ -0,0 +1,12 @@ +//Exa 2.24.1
+clc;
+clear;
+close;
+// Given data
+e = 1.6 * 10^-19;// in C
+R_H = 0.0145;// in m^3/coulomb
+Mu_e = 0.36;// in m^2/v-s
+E = 100;// in V/m
+n = 1/(e * R_H);// in /m^3
+J = n * e * Mu_e * E;// in A/m^2
+disp(J,"The current density of specimen in A/m^2 is");
diff --git a/2288/CH2/EX2.24.2/ex2_24_2.sce b/2288/CH2/EX2.24.2/ex2_24_2.sce new file mode 100755 index 000000000..a12eb5fb3 --- /dev/null +++ b/2288/CH2/EX2.24.2/ex2_24_2.sce @@ -0,0 +1,17 @@ +//Exa 2.24.2
+clc;
+clear;
+close;
+//Given data
+Mu_e = 7.04 * 10^-3;// in m^2/v-s
+m = 9.1 * 10^-31;
+E_F = 5.5;// in eV
+n = 5.8 * 10^28;
+e = 1.6 * 10^-19;// in C
+Torque = (Mu_e/e) * m;// in sec
+disp(Torque,"Relaxation Time in sec is ");
+Rho = 1 /(n * e * Mu_e);// in ohm-m
+disp(Rho,"Resistivity of conductor in ohm-m is ");
+V_F = sqrt((2 * E_F * e)/m);// in m/s
+disp(V_F,"Velocity of electrons with fermi-energy in m/s is");
+
diff --git a/2288/CH2/EX2.24.3/ex2_24_3.sce b/2288/CH2/EX2.24.3/ex2_24_3.sce new file mode 100755 index 000000000..31a31f318 --- /dev/null +++ b/2288/CH2/EX2.24.3/ex2_24_3.sce @@ -0,0 +1,15 @@ +//Exa 2.24.3
+clc;
+clear;
+close;
+format('v',5)
+// Given data
+E= 5.95;// in eV
+EF= 6.25;// in eV
+delE= 0.01;
+ // delE= 1-1/(1+exp((E-EF)/KT))
+K=1.381*10^-23;// Boltzman Constant in J/K
+T = ((E-EF)/log(1/(1-delE) -1)*1.6*10^-19)/K;// in K
+T= round(T)
+disp(T,"The temperature in K is : ")
+
diff --git a/2288/CH2/EX2.24.4/ex2_24_4.sce b/2288/CH2/EX2.24.4/ex2_24_4.sce new file mode 100755 index 000000000..08be8d9d9 --- /dev/null +++ b/2288/CH2/EX2.24.4/ex2_24_4.sce @@ -0,0 +1,14 @@ +//Exa 2.24.4
+clc;
+clear;
+close;
+// Given data
+N_V = 1.04 * 10^19;// in cm^-3
+T1 = 300;// in K
+T2 = 400;// in K
+del_E = 0.27;// in eV
+N_V = N_V * (T2/T1)^1.5;// in cm^-3
+KT = (0.0259) * (T2/T1);// in eV
+P_o = N_V * exp(-(del_E)/KT);// in cm^-3
+disp(P_o,"The thermal equilibrium hole concentration in silicon in cm^-3 is ");
+
diff --git a/2288/CH2/EX2.24.5/ex2_24_5.sce b/2288/CH2/EX2.24.5/ex2_24_5.sce new file mode 100755 index 000000000..14923f3db --- /dev/null +++ b/2288/CH2/EX2.24.5/ex2_24_5.sce @@ -0,0 +1,17 @@ +//Exa 2.24.5
+clc;
+clear;
+close;
+//Given data
+N_c = 2.8 * 10^19;
+N_V = 1.04 *10^19;
+T1 = 550;// in K
+T2 = 300;// in K
+E_g = 1.12;
+KT = (0.0259) ;
+n_i = sqrt(N_c *N_V *(T1/T2)^3* exp(-(E_g)/KT*T2/T1));// in cm^-3
+// n_o = N_d/2 + sqrt((N_d/2)^2 + (n_i)^2)
+// 1.05*N_d -N_d/2= sqrt((N_d/2)^2 + (n_i)^2)
+N_d=sqrt((n_i)^2/((0.55)^2-1/4));
+disp(N_d,"Minimum donor concentration required in cm^-3 is");
+
diff --git a/2288/CH2/EX2.24.6/ex2_24_6.sce b/2288/CH2/EX2.24.6/ex2_24_6.sce new file mode 100755 index 000000000..e54df4d49 --- /dev/null +++ b/2288/CH2/EX2.24.6/ex2_24_6.sce @@ -0,0 +1,20 @@ +//Exa 2.24.6
+clc;
+clear;
+close;
+//Given data
+T = 300;// in K
+n_o = 10^15;// in cm^-3
+n_i = 10^10;// in cm^-3
+p_o = 10^5;// in cm^-3
+del_n = 10^13;// in cm^-3
+del_p = del_n;// in cm^-3
+KT = 0.0259;// in eV
+delta_E1= KT*log(n_o/n_i);// value of E_F-E_Fi in eV
+delta_E2= KT*log((n_o+del_n)/n_i);// value of E_Fn-E_Fi in eV
+delta_E3= KT*log((p_o+del_p)/n_i);// value of E_Fi-E_Fp in eV
+disp(delta_E1,"The Fermi level for thermal equillibrium in eV is : ")
+disp(delta_E2,"The quase-Fermi level for electrons in non equillibrium in eV is : ")
+disp(delta_E3,"The quasi-Fermi level for holes in non equillibrium in eV is : ")
+disp("The quasi-Fermi level for electrons is above E_Fi ")
+disp("While the quasi-Fermi level for holes is below E_Fi")
diff --git a/2288/CH2/EX2.6.1/ex2_6_1.sce b/2288/CH2/EX2.6.1/ex2_6_1.sce new file mode 100755 index 000000000..dceeb048a --- /dev/null +++ b/2288/CH2/EX2.6.1/ex2_6_1.sce @@ -0,0 +1,14 @@ +// Exa 2.6.1
+clc;
+clear;
+close;
+// Given data
+lembda = 11000;// in Å
+lembda = lembda * 10^-10;// in m
+h = 6.625*10^-34;
+c = 3*10^8;// in m/s
+e = 1.6*10^-19;// in C
+E_g = (h*c)/(lembda*e);// in eV
+disp(E_g,"The energy gap in eV is");
+
+// Note: In the book, there is calculation error to evaluate the value of Eg, so the answer in the book is wrong and the answer of coding is correct.
diff --git a/2288/CH2/EX2.6.2/ex2_6_2.sce b/2288/CH2/EX2.6.2/ex2_6_2.sce new file mode 100755 index 000000000..35e2c0965 --- /dev/null +++ b/2288/CH2/EX2.6.2/ex2_6_2.sce @@ -0,0 +1,13 @@ +// Exa 2.6.2
+clc;
+clear;
+close;
+// Given data
+E_g = 0.75;// in eV
+e = 1.6*10^-19;// in C
+h = 6.63*10^-34;// in J
+c = 3*10^8;// in m/s
+//Formula E_g = (h*c)/(lembda*e);
+lembda = (h*c)/(E_g*e);// in m
+lembda = lembda * 10^10;// in Å
+disp(lembda,"The wavelength in Å is");
diff --git a/2288/CH3/EX3.21.1/ex3_21_1.sce b/2288/CH3/EX3.21.1/ex3_21_1.sce new file mode 100755 index 000000000..cf667781a --- /dev/null +++ b/2288/CH3/EX3.21.1/ex3_21_1.sce @@ -0,0 +1,12 @@ +// Exa 3.21.1
+clc;
+clear;
+close;
+format('e',9)
+// Given data
+N_d = 10^17;// atoms/cm^3
+n_i = 1.5 * 10^10;// in /cm^3
+n_o = 10^17;// in cm^3
+// p_o * n_o = (n_i)^2
+p_o = (n_i)^2 / n_o;//in holes/cm^3
+disp(p_o,"The holes concentration at equilibrium in holes/cm^3 is");
diff --git a/2288/CH3/EX3.21.10/ex3_21_10.sce b/2288/CH3/EX3.21.10/ex3_21_10.sce new file mode 100755 index 000000000..7bac42d35 --- /dev/null +++ b/2288/CH3/EX3.21.10/ex3_21_10.sce @@ -0,0 +1,18 @@ +// Exa 3.21.10
+clc;
+clear;
+close;
+format('e',8)
+// Given data
+Rho = 9.6 * 10^-2;// in ohm-m
+Sigma_n = 1/Rho;// in (ohm-m)^-1
+q = 1.6 * 10^-19;// in C
+Mu_n = 1300 * 10^-4;// in m^2/v-s
+N_D = Sigma_n / (Mu_n * q);// in atoms/m^3
+A_D = N_D;// Atom density in atoms/cm^3
+A_D = A_D * 10^6;// atoms/m^3
+R_si = N_D/A_D;// ratio
+disp(R_si,"The ratio of donor atom to silicon atom is");
+
+// Note: In the book the wrong value of N_D (5*10^22) is putted to evaluate the value of Atom Density (A_D) whereas the value of N_D is calculated as 5*10^20.
+// So the answer in the book is wrong
diff --git a/2288/CH3/EX3.21.11/ex3_21_11.sce b/2288/CH3/EX3.21.11/ex3_21_11.sce new file mode 100755 index 000000000..45c386ccc --- /dev/null +++ b/2288/CH3/EX3.21.11/ex3_21_11.sce @@ -0,0 +1,11 @@ +// Exa 3.21.11
+clc;
+clear;
+close;
+// Given data
+n_i = 1.5 * 10^10;// in per cm^3
+n_n = 2.25 * 10^15;// in per cm^3
+p_n = (n_i)^2/n_n;// in per cm^3
+disp(p_n,"The equilibrium electron density per cm^3 is");
+h_n = n_n;// in cm^3
+disp(h_n,"Hole density in per cm^3 is");
diff --git a/2288/CH3/EX3.21.12/ex3_21_12.sce b/2288/CH3/EX3.21.12/ex3_21_12.sce new file mode 100755 index 000000000..c8cf7646e --- /dev/null +++ b/2288/CH3/EX3.21.12/ex3_21_12.sce @@ -0,0 +1,9 @@ +// Exa 3.21.12
+clc;
+clear;
+close;
+// Given data
+N_A = 2 * 10^16;// in atoms/cm^3
+N_D = 10^16;// in atoms/cm^3
+C_c = N_A-N_D;// C_c stands for Carrier concentration in /cm^3
+disp(C_c,"Carrier concentration per cm^3 is");
diff --git a/2288/CH3/EX3.21.13/ex3_21_13.sce b/2288/CH3/EX3.21.13/ex3_21_13.sce new file mode 100755 index 000000000..978df763c --- /dev/null +++ b/2288/CH3/EX3.21.13/ex3_21_13.sce @@ -0,0 +1,9 @@ +// Exa 3.21.13
+clc;
+clear;
+close;
+// Given data
+del_n = 10^15;// in cm^3
+Torque_p = 10 * 10^-6;// in sec
+R_g = del_n/Torque_p;// in hole pairs/sec/cm^3
+disp(R_g,"The rate of generation of minority carrier in electron hole pairs/sec/cm^3 is ");
diff --git a/2288/CH3/EX3.21.14/ex3_21_14.sce b/2288/CH3/EX3.21.14/ex3_21_14.sce new file mode 100755 index 000000000..cc312a79d --- /dev/null +++ b/2288/CH3/EX3.21.14/ex3_21_14.sce @@ -0,0 +1,9 @@ +// Exa 3.21.14
+clc;
+clear;
+close;
+// Given data
+v = 1/(20 * 10^-6);// in cm/sec
+E = 10;// in V/cm
+Mu= v/E;// in cm^2/V-sec
+disp(Mu,"The mobility of minority charge carrier in cm^2/V-sec is ");
diff --git a/2288/CH3/EX3.21.15/ex3_21_15.sce b/2288/CH3/EX3.21.15/ex3_21_15.sce new file mode 100755 index 000000000..a0ccd7913 --- /dev/null +++ b/2288/CH3/EX3.21.15/ex3_21_15.sce @@ -0,0 +1,36 @@ +// Exa 3.21.15
+clc;
+clear;
+close;
+// Given data
+q = 1.6 * 10^-19;// in C
+N_D = 4.5 * 10^15;// in /cm^3
+del_p = 10^21;
+e=10;// in cm
+A = 1;// in mm^2
+A = A * 10^-14;// cm^2
+l = 10;// in cm
+Torque_p = 1;// in microsec
+Torque_p = Torque_p * 10^-6;// in sec
+Torque_n = 1;// in microsec
+Torque_n = Torque_n * 10^-6;// in sec
+n_i = 1.5 * 10^10;// in /cm^3
+D_n = 30;// in cm^2/sec
+D_p = 12;// in cm^2/sec
+n_o = N_D;// in /cm^3
+p_o = (n_i)^2/n_o;// in /cm^3
+disp(p_o,"Hole concentration at thermal equilibrium per cm^3 is");
+l_n = sqrt(D_n * Torque_n);// in cm
+disp(l_n,"Diffusion length of electron in cm is");
+l_p = sqrt(D_p * Torque_p);// in cm
+disp(l_p,"Diffusion length of holes in cm is");
+x=34.6*10^-4;// in cm
+dpBYdx = del_p *e;// in cm^4
+disp(dpBYdx,"Concentration gradient of holes at distance in cm^4 is");
+e1 = 1.88 * 10^1;// in cm
+dnBYdx = del_p * e1;// in cm^4
+disp(dnBYdx,"Concentration gradient of electrons in per cm is");
+J_P = -(q) * D_p * dpBYdx;// in A/cm^2
+disp(J_P,"Current density of holes due to diffusion in A/cm^2 is");
+J_n = q * D_n * dnBYdx;// in A/cm^2
+disp(J_n,"Current density of electrons due to diffusion in A/cm^2 is");
diff --git a/2288/CH3/EX3.21.16/ex3_21_16.sce b/2288/CH3/EX3.21.16/ex3_21_16.sce new file mode 100755 index 000000000..bb2d611f4 --- /dev/null +++ b/2288/CH3/EX3.21.16/ex3_21_16.sce @@ -0,0 +1,13 @@ +// Exa 3.21.16
+clc;
+clear;
+close;
+// Given data
+e= 1.6*10^-19;// electron charge in C
+h = 6.626 * 10^-34;// in J-s
+h= h/e;// in eV
+c = 3 * 10^8;// in m/s
+lembda = 5490 * 10^-10;// in m
+f = c/lembda;
+E = h * f;// in eV
+disp(E,"The energy band gap of the semiconductor material in eV is");
diff --git a/2288/CH3/EX3.21.17/ex3_21_17.sce b/2288/CH3/EX3.21.17/ex3_21_17.sce new file mode 100755 index 000000000..f666e2c75 --- /dev/null +++ b/2288/CH3/EX3.21.17/ex3_21_17.sce @@ -0,0 +1,14 @@ +// Exa 3.21.17
+clc;
+clear;
+close;
+// Given data
+y2 = 6 * 10^16;// in /cm^3
+y1 = 10^17;// in /cm^3
+x2 = 2;// in µm
+x1 = 0;// in µm
+D_n = 35;// in cm^2/sec
+q = 1.6 *10^-19;// in C
+dnBYdx = (y2 - y1)/((x2-x1) * 10^-4);
+J_n = q * D_n * dnBYdx;// in A/cm^2
+disp(J_n,"The current density in silicon in A/cm^2 is");
diff --git a/2288/CH3/EX3.21.18/ex3_21_18.sce b/2288/CH3/EX3.21.18/ex3_21_18.sce new file mode 100755 index 000000000..5601b9405 --- /dev/null +++ b/2288/CH3/EX3.21.18/ex3_21_18.sce @@ -0,0 +1,18 @@ +// Exa 3.21.18
+clc;
+clear;
+close;
+// Given data
+q = 1.6 * 10^-19;// in C
+n_n = 5 * 10^20;// in /m^3
+n_n = n_n * 10^-6;// in cm^3
+Mu_n = 0.13;// in m^2/V-sec
+Mu_n = Mu_n * 10^4;// in cm^2/V-sec
+Sigma_n = q * n_n * Mu_n;// in (ohm-cm)^-1
+Rho = 1/Sigma_n;// in Ω-cm
+l = 0.1;// in cm
+A = 100;// µm^2
+A = A * 10^-8;// in cm^2
+R = Rho * (l/A);// in Ohm
+R=round(R*10^-6);// in MΩ
+disp(R,"The resistance of the bar in MΩ is");
diff --git a/2288/CH3/EX3.21.19/ex3_21_19.sce b/2288/CH3/EX3.21.19/ex3_21_19.sce new file mode 100755 index 000000000..97fb4b9b8 --- /dev/null +++ b/2288/CH3/EX3.21.19/ex3_21_19.sce @@ -0,0 +1,8 @@ +// Exa 3.21.19
+clc;
+clear;
+close;
+// Given data
+t_d = 3;// total depletion in µm
+D = t_d/9;// in µm
+disp(D,"Depletion width in µm is");
diff --git a/2288/CH3/EX3.21.20/ex3_21_20.sce b/2288/CH3/EX3.21.20/ex3_21_20.sce new file mode 100755 index 000000000..f0421d2d5 --- /dev/null +++ b/2288/CH3/EX3.21.20/ex3_21_20.sce @@ -0,0 +1,9 @@ +// Exa 3.21.20
+clc;
+clear;
+close;
+// Given data
+n_i = 1.5 * 10^16;// in /m^3
+n_n = 5 * 10^20;// in /m^3
+p_n = (n_i)^2/n_n;// in /m^3
+disp(p_n,"The majority carrier density per m^3 is");
diff --git a/2288/CH3/EX3.21.21/ex3_21_21.sce b/2288/CH3/EX3.21.21/ex3_21_21.sce new file mode 100755 index 000000000..7d8b52f04 --- /dev/null +++ b/2288/CH3/EX3.21.21/ex3_21_21.sce @@ -0,0 +1,18 @@ +// Exa 3.21.21
+clc;
+clear;
+close;
+// Given data
+D_n = 25;// in cm^2/sec
+q = 1.6 * 10^-19;// in C
+y2 = 10^14;// in /cm^3
+y1 = 0;// in /cm^3
+x2 = 0;//in µm
+x1 = 0.5;// in µm
+x1 = x1 * 10^-4;// in cm
+dnBYdx = abs((y2-y1)/(x2-x1));// in /cm^4
+J_n = q * D_n * (dnBYdx);// in /cm^4
+J_n = J_n * 10^-1;// in A/cm^2
+disp(J_n,"The collector current density in A/cm^2 is");
+
+// Note: In the book, the calculated value of dn by dx (2*10^19) is wrong. Correct value is 2*10^18 so the answer in the book is wrong.
diff --git a/2288/CH3/EX3.21.22/ex3_21_22.sce b/2288/CH3/EX3.21.22/ex3_21_22.sce new file mode 100755 index 000000000..c6a433625 --- /dev/null +++ b/2288/CH3/EX3.21.22/ex3_21_22.sce @@ -0,0 +1,13 @@ +//Exa 3.21.22
+clc;
+clear;
+close;
+// Given data
+h = 6.64 * 10^-34;// in J-s
+e= 1.6*10^-19;// electron charge in C
+c= 3 * 10^8;// in m/s
+lembda = 0.87;// in µm
+lembda = lembda * 10^-6;// in m
+E_g = (h * c)/lembda;// in J-s
+E_g= E_g/e;// in eV
+disp(E_g,"The band gap of the material in eV is");
diff --git a/2288/CH3/EX3.21.23/ex3_21_23.sce b/2288/CH3/EX3.21.23/ex3_21_23.sce new file mode 100755 index 000000000..82a1ed2cd --- /dev/null +++ b/2288/CH3/EX3.21.23/ex3_21_23.sce @@ -0,0 +1,21 @@ +// Exa 3.21.23
+clc;
+clear;
+close;
+// Given data
+I_o = 10;// in mW
+e = 1.6 * 10^-19;// in J/eV
+hv = 2;// in eV
+hv1=1.43;// in eV
+alpha = 5 * 10^4;// in cm^-1
+l = 46;// in µm
+l = l * 10^-6;// in m
+I_t = round(I_o * exp(-(alpha) * l));// in mW
+AbsorbedPower= I_o-I_t;// in mW
+AbsorbedPower=AbsorbedPower*10^-3;// in W or J/s
+disp(AbsorbedPower,"The absorbed power in watt or J/s is");
+F= (hv-hv1)/hv;// fraction of each photon energy unit
+EnergyConToHeat= AbsorbedPower*F;// in J/s
+disp(EnergyConToHeat,"The amount of energy converted to heat per second in J/s is : ")
+A= (AbsorbedPower-EnergyConToHeat)/(e*hv1);
+disp(A,"The number of photon per sec given off from recombination events in photons/s is");
diff --git a/2288/CH3/EX3.21.24/ex3_21_24.sce b/2288/CH3/EX3.21.24/ex3_21_24.sce new file mode 100755 index 000000000..9c9807ac8 --- /dev/null +++ b/2288/CH3/EX3.21.24/ex3_21_24.sce @@ -0,0 +1,28 @@ +// Exa 3.21.24
+clc;
+clear;
+close;
+// Given data
+format('e',9)
+Mu_p = 500;// in cm^2/v-s
+kT = 0.0259;
+Toh_p = 10^-10;// in sec
+p_o = 10^17;// in cm^-3
+q= 1.6*10^-19;// in C
+A=0.5;// in square meter
+del_p = 5 * 10^16;// in cm^-3
+n_i= 1.5*10^10;// in cm^-3
+D_p = kT * Mu_p;// in cm/s
+L_p = sqrt(D_p * Toh_p);// in cm
+x = 10^-5;// in cm
+p = p_o+del_p* %e^(x/L_p);// in cm^-3
+// p= n_i*%e^(Eip)/kT where Eip=E_i-F_p
+Eip= log(p/n_i)*kT;// in eV
+Ecp= 1.1/2-Eip;// value of E_c-E_p in eV
+Ip= q*A*D_p/L_p*del_p*%e^(x/L_p);// in A
+disp(Ip,"The hole current in A is : ")
+Qp= q*A*del_p*L_p;// in C
+disp(Qp,"The value of Qp in C is : ")
+
+// Note: There is a calculation error to evalaute the value of hole current but they putted correct value of it to evaluate the value of Qp.
+// Hence the value of hole current in the book is wrong
diff --git a/2288/CH3/EX3.21.3/ex3_21_3.sce b/2288/CH3/EX3.21.3/ex3_21_3.sce new file mode 100755 index 000000000..94611607d --- /dev/null +++ b/2288/CH3/EX3.21.3/ex3_21_3.sce @@ -0,0 +1,12 @@ +// Exa 3.21.3
+clc;
+clear;
+close;
+// Given data
+n_i = 1.5 * 10 ^10;// in /cm^3 for silicon
+N_d = 10^17;// in atoms/cm^3
+n_o = 10^17;// electrons/cm^3
+KT = 0.0259;
+// E_r - E_i = KT * log(n_o/n_i)
+del_E = KT * log(n_o/n_i);// in eV
+disp("The energy band for this type material is Ei + "+string(del_E)+" eV");
diff --git a/2288/CH3/EX3.21.4/ex3_21_4.sce b/2288/CH3/EX3.21.4/ex3_21_4.sce new file mode 100755 index 000000000..a82976932 --- /dev/null +++ b/2288/CH3/EX3.21.4/ex3_21_4.sce @@ -0,0 +1,16 @@ +// Exa 3.21.4
+clc;
+clear;
+close;
+format('e',9)
+// Given data
+K = 1.38 * 10^-23;// in J/K
+T = 27;// in degree
+T = T + 273;// in K
+e = 1.6 * 10^-19;// in C
+Mu_e = 0.17;// in m^2/v-s
+Mu_e1 = 0.025;// in m^2/v-s
+D_n = ((K * T)/e) * Mu_e;// in m^2/s
+disp(D_n,"The diffusion coefficient of electrons in m^2/s is");
+D_p = ((K * T)/e) * Mu_e1;// in m^2/s
+disp(D_p,"The diffusion coefficient of holes in m^2/s is ");
diff --git a/2288/CH3/EX3.21.5/ex3_21_5.sce b/2288/CH3/EX3.21.5/ex3_21_5.sce new file mode 100755 index 000000000..15a80b592 --- /dev/null +++ b/2288/CH3/EX3.21.5/ex3_21_5.sce @@ -0,0 +1,21 @@ +// Exa 3.21.5
+clc;
+clear;
+close;
+format('e',9)
+// Given data
+Mu_n = 0.15;// in m^2/v-s
+K = 1.38 * 10^-23; // in J/K
+T = 300;// in K
+del_n = 10^20;// in per m^3
+Toh_n = 10^-7;// in s
+e = 1.6 * 10^-19;// in C
+D_n = Mu_n * ((K * T)/e);// in m^2/s
+disp(D_n,"The diffusion coefficient in m^2/s is");
+L_n = sqrt(D_n * Toh_n);// in m
+disp(L_n,"The Diffusion length in m is");
+J_n = (e * D_n * del_n)/L_n;// in A/m^2
+disp(J_n,"The diffusion current density in A/m^2 is");
+// Note : The value of diffusion coefficient in the book is wrong.
+
+
diff --git a/2288/CH3/EX3.21.6/ex3_21_6.sce b/2288/CH3/EX3.21.6/ex3_21_6.sce new file mode 100755 index 000000000..d1248eb94 --- /dev/null +++ b/2288/CH3/EX3.21.6/ex3_21_6.sce @@ -0,0 +1,14 @@ +// Exa 3.21.6
+clc;
+clear;
+close;
+// Given data
+Sigma = 0.1;// in (ohm-m)^-1
+Mu_n = 1300;
+n_i = 1.5 * 10^10;
+q = 1.6 * 10^-19;// in C
+n_n = Sigma/(Mu_n * q);// in electrons/cm^3
+disp(n_n*10^6,"The concentration of electrons per m^3 is");
+p_n = (n_i)^2/n_n;// in per cm^3
+p_n = p_n * 10^6;// in perm^3
+disp(p_n,"The concentration of holes per m^3 is");
diff --git a/2288/CH3/EX3.21.7/ex3_21_7.sce b/2288/CH3/EX3.21.7/ex3_21_7.sce new file mode 100755 index 000000000..a83207bf4 --- /dev/null +++ b/2288/CH3/EX3.21.7/ex3_21_7.sce @@ -0,0 +1,17 @@ +// Exa 3.21.7
+clc;
+clear;
+close;
+// Given data
+Mu_e = 0.13;// in m^2/v-s
+Mu_h = 0.05;// in m^2/v-s
+Toh_h = 10^-6;// in s
+L = 100;// in µm
+L = L * 10^-6;// in m
+V = 2;// in V
+t_n =L^2/(Mu_e * V);// in s
+disp(t_n,"Electron transit time in seconds is");
+p_g = (Toh_h/t_n) * (1 + Mu_h/Mu_e);//photo conductor gain
+disp(p_g,"Photo conductor gain is");
+
+// Note: There is a calculation error to evaluate the value of t_n. So the answer in the book is wrong
diff --git a/2288/CH3/EX3.21.8/ex3_21_8.sce b/2288/CH3/EX3.21.8/ex3_21_8.sce new file mode 100755 index 000000000..292dbb585 --- /dev/null +++ b/2288/CH3/EX3.21.8/ex3_21_8.sce @@ -0,0 +1,17 @@ +// Exa 3.21.8
+clc;
+clear;
+close;
+//Given data
+n_i = 2.5 * 10^13;
+Mu_n = 3800;
+Mu_p = 1800;
+q = 1.6 * 10^-19;// in C
+Sigma = n_i * (Mu_n + Mu_p) * q;// in (ohm-cm)^-1
+Rho = 1/Sigma;// in ohm-cm
+Rho= round(Rho);
+disp(Rho,"The resistivity of intrinsic germanium in ohm-cm is");
+N_D = 4.4 * 10^22/(1*10^8);// in atoms/cm^3
+Sigma_n = N_D * Mu_n * q;// in (ohm-cm)^-1
+Rho_n = 1/Sigma_n;// in ohm-cm
+disp(Rho_n,"If a donor type impurity is added to the extent of 1 atom per 10^8 Ge atoms, then the resistivity drops in ohm-cm is");
diff --git a/2288/CH3/EX3.21.9/ex3_21_9.sce b/2288/CH3/EX3.21.9/ex3_21_9.sce new file mode 100755 index 000000000..df5b6988e --- /dev/null +++ b/2288/CH3/EX3.21.9/ex3_21_9.sce @@ -0,0 +1,11 @@ +// Exa 3.21.9
+clc;
+clear;
+close;
+// Given data
+n_i = 10^16;// in /m3
+N_D = 10^22;// in /m^3
+n = N_D;// in /m^3
+disp(n,"Electron concentration per m^3 is");
+p = (n_i)^2/n;// in /m^3
+disp(p,"Hole concentration per m^3 is");
diff --git a/2288/CH4/EX4.16.1/ex4_16_1.sce b/2288/CH4/EX4.16.1/ex4_16_1.sce new file mode 100755 index 000000000..989140f8d --- /dev/null +++ b/2288/CH4/EX4.16.1/ex4_16_1.sce @@ -0,0 +1,27 @@ +// EXa 4.16.1
+clc;
+clear;
+close;
+// Given data
+t = 4.4 * 10^22;// total number of Ge atoms/cm^3
+n = 1 * 10^8;// number of impurity atoms
+N_A = t/n;// in atoms/cm^3
+N_A = N_A * 10^6;// in atoms/m^3
+N_D = N_A * 10^3;// in atoms/m^3
+n_i = 2.5 * 10^13;// in atoms/cm^3
+n_i = n_i * 10^6;// in atoms/m^3
+V_T = 26;//in mV
+V_T= V_T*10^-3;// in V
+V_J = V_T * log((N_A * N_D)/(n_i)^2);// in V
+disp(V_J,"The contact potential in V is");
+// Part (b)
+t = 5* 10^22;// total number of Si atoms/cm^3
+N_A = t/n;// in atoms/cm^3
+N_A = N_A * 10^6;// in atoms/m^3
+N_D = N_A * 10^3;// in atoms/m^3
+n_i = 1.5 * 10^10;// in atoms/cm^3
+n_i = n_i * 10^6;// in atoms/m^3
+V_T = 26;//in mV
+V_T= V_T*10^-3;// in V
+V_J = V_T * log((N_A * N_D)/(n_i)^2);// in V
+disp(V_J,"The contact potential in V is");
diff --git a/2288/CH4/EX4.16.10/ex4_16_10.sce b/2288/CH4/EX4.16.10/ex4_16_10.sce new file mode 100755 index 000000000..92df46185 --- /dev/null +++ b/2288/CH4/EX4.16.10/ex4_16_10.sce @@ -0,0 +1,13 @@ +// Exa 4.16.10
+clc;
+clear;
+close;
+// Given data
+I_o = 2.4 * 10^-14;
+I = 1.5;// in mA
+I=I*10^-3;// in A
+Eta = 1;
+V_T = 26;// in mV
+V_T= V_T*10^-3;// in V
+v =log((I + I_o)/I_o) * V_T;// in V
+disp(v,"The forward biasing voltage across the junction in V is");
diff --git a/2288/CH4/EX4.16.11/ex4_16_11.sce b/2288/CH4/EX4.16.11/ex4_16_11.sce new file mode 100755 index 000000000..7aa568f3d --- /dev/null +++ b/2288/CH4/EX4.16.11/ex4_16_11.sce @@ -0,0 +1,10 @@ +// Exa 4.16.11
+clc;
+clear;
+close;
+// Given data
+I_o = 10;// in nA
+// I = I_o * ((e^(v/(Eta * V_T))) - 1)
+// e^(v/(Eta * V_T)<< 1, so neglecting it
+I = I_o * (-1);// in nA
+disp(I,"The Diode current in nA is ");
diff --git a/2288/CH4/EX4.16.12/ex4_16_12.sce b/2288/CH4/EX4.16.12/ex4_16_12.sce new file mode 100755 index 000000000..159b9cc7e --- /dev/null +++ b/2288/CH4/EX4.16.12/ex4_16_12.sce @@ -0,0 +1,18 @@ +// Exa 4.16.12
+clc;
+clear;
+close;
+// Given data
+R = 4.5;// in ohm
+I = 44.4;// in mA
+I=I*10^-3;// in A
+V = R * I;// in V
+Eta = 1;
+V_T = 26;//in mV
+V_T=V_T*10^-3;// in V
+I_o = I/((%e^(V/(Eta * V_T))) -1);// in A
+// At
+V = 0.1;// in V
+r_f = (Eta * V_T)/(I_o * ((%e^(V/(Eta * V_T)))-1));// in ohm
+disp(r_f,"The diode dynamic resistance in Ω is");
+
diff --git a/2288/CH4/EX4.16.13/ex4_16_13.sce b/2288/CH4/EX4.16.13/ex4_16_13.sce new file mode 100755 index 000000000..a5ad750a2 --- /dev/null +++ b/2288/CH4/EX4.16.13/ex4_16_13.sce @@ -0,0 +1,19 @@ +// Exa 4.16.13
+clc;
+clear;
+close;
+// Given data
+V_D = 10;// in V
+// V_S = i*R_L + V_D
+V_S = V_D;// in V (i * R_L = 0)
+disp(V_S,"when diode is OFF, the voltage in volts is : ");
+R_L = 250;// in ohm
+I = V_S/R_L;// in A
+disp(I*10^3,"when diode is ON, the current in mA is");
+V_D= 0:0.1:10;// in V
+I= (V_S-V_D)/R_L*1000;// in mA
+plot(V_D,I)
+xlabel("V_D in volts");
+ylabel("Current in mA")
+title("DC load line");
+disp("DC load line shown in figure")
diff --git a/2288/CH4/EX4.16.14/ex4_16_14.sce b/2288/CH4/EX4.16.14/ex4_16_14.sce new file mode 100755 index 000000000..d74b0e801 --- /dev/null +++ b/2288/CH4/EX4.16.14/ex4_16_14.sce @@ -0,0 +1,13 @@ +// Exa 4.16.14
+clc;
+clear;
+close;
+// Given data
+V = 0.25;// in V
+I_o = 1.2;// in µA
+I_o = I_o * 10^-6;// in A
+V_T = 26;// in mV
+V_T = V_T * 10^-3;// in V
+Eta = 1;
+r = (Eta * V_T)/(I_o * (%e^(V/(Eta * V_T))));// in ohm
+disp(r,"The ac resistance of the diode in ohm is");
diff --git a/2288/CH4/EX4.16.15/ex4_16_15.sce b/2288/CH4/EX4.16.15/ex4_16_15.sce new file mode 100755 index 000000000..ef1c7a1ae --- /dev/null +++ b/2288/CH4/EX4.16.15/ex4_16_15.sce @@ -0,0 +1,15 @@ +// Exa 4.16.15
+clc;
+clear;
+close;
+// Given data
+t = 4.4 * 10^22;// in total number of atoms/cm^3
+n = 1 * 10^8;// number of impurity
+N_A = t/n;// in atoms/cm^3
+N_A = N_A * 10^6;// in atoms/m^3
+N_D = N_A * 10^3;// in atoms/m^3
+V_T = 26;// in mV
+V_T = V_T * 10^-3;// in V
+n_i = 2.5 * 10^19;// in /cm^3
+V_J = V_T * log((N_A * N_D)/(n_i)^2);// in V
+disp(V_J,"The junction potential in V is")
diff --git a/2288/CH4/EX4.16.16/ex4_16_16.sce b/2288/CH4/EX4.16.16/ex4_16_16.sce new file mode 100755 index 000000000..e1de64bc7 --- /dev/null +++ b/2288/CH4/EX4.16.16/ex4_16_16.sce @@ -0,0 +1,19 @@ +// Exa 4.16.16
+clc;
+clear;
+close;
+// Given data
+Eta = 1;
+I_o = 30;// in MuA
+I_o = I_o * 10^-6;// in A
+v = 0.2;// in V
+K = 1.381 * 10^-23;// in J/degree K
+T = 125;// in °C
+T = T + 273;// in K
+q = 1.6 * 10^-19;// in C
+V_T = (K*T)/q;// in V
+r_f = (Eta * V_T)/(I_o * (%e^(v/(Eta * V_T))));// in ohm
+disp(r_f,"The forward dynamic resistance in ohm is");
+r_f1 = (Eta * V_T)/(I_o * (%e^(-(v)/(Eta * V_T))));// in ohm
+disp(r_f1*10^-3,"The Reverse dynamic resistance in kΩ is");
+
diff --git a/2288/CH4/EX4.16.17/ex4_16_17.sce b/2288/CH4/EX4.16.17/ex4_16_17.sce new file mode 100755 index 000000000..b3799eaf4 --- /dev/null +++ b/2288/CH4/EX4.16.17/ex4_16_17.sce @@ -0,0 +1,20 @@ +// Exa 4.16.17
+clc;
+clear;
+close;
+// Given data
+q = 1.6 * 10^-19;// in C
+N_A = 3 * 10^20;// in /m^3
+A = 1;// in µm^2
+A = A * 10^-6;// in m^2
+V = -10;// in V
+V_J = 0.25;// in V
+V_B = V_J - V;// in V
+epsilon_o = 8.854;// in pF/m
+epsilon_o = epsilon_o * 10^-12;// in F/m
+epsilon_r = 16;
+epsilon = epsilon_o * epsilon_r;
+W = sqrt((V_B * 2 * epsilon)/(q * N_A));// in m
+disp(W*10^6,"The width of depletion layer in µm is");
+C_T = (epsilon * A)/W;// in pF
+disp(C_T*10^12,"the space charge capacitance in pF is");
diff --git a/2288/CH4/EX4.16.18/ex4_16_18.sce b/2288/CH4/EX4.16.18/ex4_16_18.sce new file mode 100755 index 000000000..97f538720 --- /dev/null +++ b/2288/CH4/EX4.16.18/ex4_16_18.sce @@ -0,0 +1,15 @@ +// Exa 4.16.18
+clc;
+clear;
+close;
+// Given data
+W = 2 * 10^-4;// in cm
+W = W * 10^-2;// in m
+A = 1;// in mm^2
+A = A * 10^-6;// in m^2
+epsilon_r = 16;
+epsilon_o = 8.854 * 10^-12;// in F/m
+epsilon = epsilon_r * epsilon_o;
+C_T = (epsilon * A)/W;// in F
+disp(C_T*10^12,"The barrier capacitance in pF is");
+
diff --git a/2288/CH4/EX4.16.19/ex4_16_19.sce b/2288/CH4/EX4.16.19/ex4_16_19.sce new file mode 100755 index 000000000..c5604daf8 --- /dev/null +++ b/2288/CH4/EX4.16.19/ex4_16_19.sce @@ -0,0 +1,26 @@ +// Exa 4.16.19
+clc;
+clear;
+close;
+// Given data
+C_T = 100;// in pF
+C_T=C_T*10^-12;// in F
+epsilon_r = 12;
+epsilon_o = 8.854 * 10^-12;// in F/m
+epsilon = epsilon_r * epsilon_o;
+Rho_p = 5;// in ohm-cm
+Rho_p = Rho_p * 10^-2;// in ohm-m
+V_j = 0.5;// in V
+V = -4.5;// in V
+Mu_p = 500;// in cm^2
+Mu_p = Mu_p * 10^-4;// in m^2
+Sigma_p = 1/Rho_p;// in per ohm-m
+qN_A = Sigma_p/ Mu_p;
+V_B = V_j - V;
+W = sqrt((V_B * 2 * epsilon)/qN_A);// in m
+//C_T = (epsilon * A)/W;
+A = (C_T * W)/ epsilon;// in m
+D = sqrt(A * (4/%pi));// in m
+D = D * 10^3;// in mm
+disp(D,"The diameter in mm is");
+
diff --git a/2288/CH4/EX4.16.2/ex4_16_2.sce b/2288/CH4/EX4.16.2/ex4_16_2.sce new file mode 100755 index 000000000..8ad78a0c7 --- /dev/null +++ b/2288/CH4/EX4.16.2/ex4_16_2.sce @@ -0,0 +1,25 @@ +// Exa 4.16.2
+clc;
+clear;
+close;
+// Given data
+V_T = 26;// in mV
+V_T=V_T*10^-3;// in V
+n_i = 2.5 * 10^13;
+Sigma_p = 1;
+Sigma_n = 1;
+Mu_n = 3800;
+q = 1.6 * 10^-19;// in C
+Mu_p = 1800;
+N_A = Sigma_p/(2* q * Mu_p);// in /cm^3
+N_D = Sigma_n /(q * Mu_n);// in /cm^3
+V_J = V_T * log((N_A * N_D)/(n_i)^2);// in V
+disp(V_J,"For Ge the height of the energy barrier in V is");
+// For Si p-n juction
+n_i = 1.5 * 10^10;
+Mu_n = 1300;
+Mu_p = 500;
+N_A = Sigma_p/(2* q * Mu_p);// in /cm^3
+N_D = Sigma_n /(q * Mu_n);// in /cm^3
+V_J = V_T * log((N_A * N_D)/(n_i)^2);// in V
+disp(V_J,"For Si p-n junction the height of the energy barrier in V is");
diff --git a/2288/CH4/EX4.16.20/ex4_16_20.sce b/2288/CH4/EX4.16.20/ex4_16_20.sce new file mode 100755 index 000000000..92eba580f --- /dev/null +++ b/2288/CH4/EX4.16.20/ex4_16_20.sce @@ -0,0 +1,19 @@ +// Exa 4.16.20
+clc;
+clear;
+close;
+// Given data
+q = 1.6 * 10^-19;// in C
+Mu_p = 500;// in cm^2/V-sec
+Rho_p = 3.5;// in ohm-cm
+Mu_n = 1500;// in cm^2/V-sec
+Rho_n = 10;// in ohm-cm
+N_A = 1/(Rho_p * Mu_p * q);// in /cm^3
+N_D = 1/(Rho_n * Mu_n * q);// in /cm^3
+V_J = 0.56;// in V
+n_i = 1.5 * 10^10;// in /cm^3
+V_T = V_J/log((N_A * N_D)/(n_i)^2);// in V
+// V_T = T/11600
+T = V_T * 11600;// in K
+T = T - 273;// in °C
+disp(T,"The Temperature of junction in °C is");
diff --git a/2288/CH4/EX4.16.21/ex4_16_21.sce b/2288/CH4/EX4.16.21/ex4_16_21.sce new file mode 100755 index 000000000..ea2691a73 --- /dev/null +++ b/2288/CH4/EX4.16.21/ex4_16_21.sce @@ -0,0 +1,13 @@ +// Exa 4.16.21
+clc;
+clear;
+close;
+// Given data
+V_T = 26;// in mV
+V_T = V_T * 10^-3;// in V
+Eta = 1;
+// I = -90% for Io, so
+IbyIo= 0.1;
+// I = I_o * ((e^(v/(Eta * V_T)))-1)
+V = log(IbyIo) * V_T;// in V
+disp(V,"The reverse bias voltage in volts is");
diff --git a/2288/CH4/EX4.16.22/ex4_16_22.sce b/2288/CH4/EX4.16.22/ex4_16_22.sce new file mode 100755 index 000000000..e41bcad24 --- /dev/null +++ b/2288/CH4/EX4.16.22/ex4_16_22.sce @@ -0,0 +1,17 @@ +// Exa 4.16.22
+clc;
+clear;
+close;
+// Given data
+R = 5;// in ohm
+I = 50;// in mA
+I=I*10^-3;// in A
+V = R * I;// in V
+Eta = 1;
+V_T = 26;// in mV
+V_T=V_T*10^-3;// in V
+I_o = I/((%e^(V/(Eta * V_T))) - 1);// in A
+disp(I_o*10^6,"Reverse saturation current in µA is");
+v1 = 0.2;// in V
+r = (Eta * V_T)/(I_o * (%e^(v1/(Eta * V_T))));// in ohm
+disp(r,"Dynamic resistance of the diode in Ω is");
diff --git a/2288/CH4/EX4.16.3/ex4_16_3.sce b/2288/CH4/EX4.16.3/ex4_16_3.sce new file mode 100755 index 000000000..20fc88685 --- /dev/null +++ b/2288/CH4/EX4.16.3/ex4_16_3.sce @@ -0,0 +1,32 @@ +//Exa 4.16.3
+clc;
+clear;
+close;
+// Given data
+Eta = 1;
+V_T = 26;// in mV
+V_T= V_T*10^-3;// in V
+// I = I_o * (%e^(V/(Eta*V_T)) - 1) and I = -(0.9) * I_o;
+V= log(1-0.9)*V_T;// in V
+disp(V,"The voltage in volts is : ")
+// Part (ii)
+V1=0.05;// in V
+V2= -0.05;// in V
+ratio= (%e^(V1/(Eta*V_T))-1)/(%e^(V2/(Eta*V_T))-1)
+disp(ratio,"The ratio of the current for a forward bias to reverse bias is : ")
+// Part (iii)
+Io= 10;// in µA
+Io=Io*10^-3;// in mA
+//For
+V=0.1;// in V
+I = Io * (%e^(V/(Eta*V_T)) - 1);// in mA
+disp(I,"For V=0.1 V , the value of I in mA is : ")
+//For
+V=0.2;// in V
+I = Io * (%e^(V/(Eta*V_T)) - 1);// in mA
+disp(I,"For V=0.2 V , the value of I in mA is : ")
+//For
+V=0.3;// in V
+I = Io * (%e^(V/(Eta*V_T)) - 1);// in mA
+disp(I*10^-3,"For V=0.3 V , the value of I in A is : ")
+disp("From three value of I, for small rise in forward voltage, the diode current increase rapidly")
diff --git a/2288/CH4/EX4.16.4/ex4_16_4.sce b/2288/CH4/EX4.16.4/ex4_16_4.sce new file mode 100755 index 000000000..f477618e5 --- /dev/null +++ b/2288/CH4/EX4.16.4/ex4_16_4.sce @@ -0,0 +1,16 @@ +//Exa 4.16.4
+clc;
+clear;
+close;
+// Given data
+// Part (i)
+T1= 25;// in °C
+T2= 80;// in °C
+// Formula Io2= Io1*2^((T2-T1)/10)
+AntiFactor= 2^((T2-T1)/10);
+disp(round(AntiFactor),"Anticipated factor for Ge is : ")
+// Part (ii)
+T1= 25;// in °C
+T2= 150;// in °C
+AntiFactor= 2^((T2-T1)/10);
+disp(round(AntiFactor),"Anticipated factor for Si is : ")
diff --git a/2288/CH4/EX4.16.5/ex4_16_5.sce b/2288/CH4/EX4.16.5/ex4_16_5.sce new file mode 100755 index 000000000..028d4114e --- /dev/null +++ b/2288/CH4/EX4.16.5/ex4_16_5.sce @@ -0,0 +1,16 @@ +//Exa 4.16.5
+clc;
+clear;
+close;
+// Given data
+I=5;// in µA
+V=10;// in V
+T1= 0.11;// in °C^-1
+T2= 0.07;// in °C^-1
+// Io+I_R=I (i)
+// dI_by_dT= dIo_by_dT (ii)
+// 1/Io*dIo_by_dT = T1 and 1/I*dI_by_dT = T2, So
+Io= T2*I/T1;// in µA
+I_R= I-Io;// in µA
+R= V/I_R;// in MΩ
+disp(R,"The leakage resistance in MΩ is : ")
diff --git a/2288/CH4/EX4.16.6/ex4_16_6.sce b/2288/CH4/EX4.16.6/ex4_16_6.sce new file mode 100755 index 000000000..33a1b3b25 --- /dev/null +++ b/2288/CH4/EX4.16.6/ex4_16_6.sce @@ -0,0 +1,16 @@ +//Exa 4.16.6
+clc;
+clear;
+close;
+// Given data
+Eta = 1;
+T = 125;// in °C
+T = T + 273;// in K
+V_T = 8.62 * 10^-5 * 398;// in V
+I_o = 30;// in µA
+I_o= I_o*10^-6;// in A
+v = 0.2;// in V
+r_f = (Eta * V_T)/(I_o * %e^(v/(Eta* V_T)));// in ohm
+disp(r_f,"The dynamic resistance in the forward direction in ohm is ");
+r_r = (Eta * V_T)/(I_o * %e^(-v/(Eta* V_T)));// in ohm
+disp(r_r*10^-3,"The dynamic resistance in the reverse direction in kohm is");
diff --git a/2288/CH4/EX4.16.7/ex4_16_7.sce b/2288/CH4/EX4.16.7/ex4_16_7.sce new file mode 100755 index 000000000..0df43f123 --- /dev/null +++ b/2288/CH4/EX4.16.7/ex4_16_7.sce @@ -0,0 +1,10 @@ +// Exa 4.16.7
+clc;
+clear;
+close;
+// Given data
+epsilon = 16/(36 * %pi * 10^11);// in F/cm
+A = 1 * 10^-2;
+W = 2 * 10^-4;
+C_T = (epsilon * A)/W;// in F
+disp(C_T*10^12,"The barrier capacitance in pF is");
diff --git a/2288/CH4/EX4.16.8/ex4_16_8.sce b/2288/CH4/EX4.16.8/ex4_16_8.sce new file mode 100755 index 000000000..edde6e33e --- /dev/null +++ b/2288/CH4/EX4.16.8/ex4_16_8.sce @@ -0,0 +1,33 @@ +//Exa 4.16.8
+clc;
+clear;
+close;
+//Given data
+A = 1;// in mm^2
+A = A * 10^-6;// in m^2
+N_A = 3 * 10^20;// in atoms/m^3
+q = 1.6 *10^-19;// in C
+V_o = 0.2;// in V
+epsilon_r=16;
+epsilon_o= 8.854*10^-12;// in F/m
+epsilon=epsilon_r*epsilon_o;
+// Part (a)
+V=-10;// in V
+// V_o - V = 1/2*((q * N_A )/epsilon) * W^2
+W = sqrt(((V_o - V) * 2 * epsilon)/(q * N_A));// m
+C_T1 = (epsilon * A)/W;// in F
+disp(W*10^6,"The width of the depletion layer for an applied reverse voltage of 10V in µm is ");
+// Part (b)
+V=-0.1;// in V
+W = sqrt(((V_o - V) * 2 * epsilon)/(q * N_A));// m
+C_T2 = (epsilon * A)/W;// in F
+disp(W*10^6,"The width of the depletion layer for an applied reverse voltage of 0.1V in µm is ");
+// Part (c)
+V=0.1;// in V
+W = sqrt(((V_o - V) * 2 * epsilon)/(q * N_A));// m
+disp(W*10^6,"The width of the depletion layer for an applied for a forward bias of 0.1V in µm is ");
+// Part (d)
+disp(C_T1*10^12,"The space charge capacitance for an applied reverse voltage of 10V in pF is");
+disp(C_T2*10^12,"The space charge capacitance for an applied reverse voltage of 0.1V in pF is");
+
+
diff --git a/2288/CH4/EX4.16.9/ex4_16_9.sce b/2288/CH4/EX4.16.9/ex4_16_9.sce new file mode 100755 index 000000000..352b24435 --- /dev/null +++ b/2288/CH4/EX4.16.9/ex4_16_9.sce @@ -0,0 +1,12 @@ +// Exa 4.16.9
+clc;
+clear;
+close;
+// Given data
+I_o = 1.8 * 10^-9;// A
+v = 0.6;// in V
+Eta = 2;
+V_T = 26;// in mV
+V_T=V_T*10^-3;// in V
+I = I_o *(%e^(v/(Eta * V_T)));// in A
+disp(I*10^3,"The current in the junction in mA is");
diff --git a/2288/CH5/EX5.11.1.a/ex5_11_1a.sce b/2288/CH5/EX5.11.1.a/ex5_11_1a.sce new file mode 100755 index 000000000..5ae3cd1f4 --- /dev/null +++ b/2288/CH5/EX5.11.1.a/ex5_11_1a.sce @@ -0,0 +1,15 @@ +// Exa 5.11.1(a)
+clc;
+clear;
+close;
+// Given data
+beta_dc = 90;
+I_C = 15;// in mA
+I_C = I_C * 10^-3;// in A
+I_B = I_C/beta_dc;// in A
+disp(I_B*10^6,"The base current in µA is");
+I_E = I_C + I_B;// in A
+I_E = I_E * 10^3;// in mA
+disp(I_E,"The Emitter current in mA is");
+alpha_dc = beta_dc/(1+beta_dc);
+disp(alpha_dc,"The value of alpha_dc is");
diff --git a/2288/CH5/EX5.11.1/ex5_11_1.sce b/2288/CH5/EX5.11.1/ex5_11_1.sce new file mode 100755 index 000000000..8992808e6 --- /dev/null +++ b/2288/CH5/EX5.11.1/ex5_11_1.sce @@ -0,0 +1,12 @@ +// Exa 5.11.1
+clc;
+clear;
+close;
+// Given data
+bita = 50;
+I_B= 20;// in µA
+I_B=I_B*10^-6;// in A
+I_C= bita*I_B;// in A
+I_E= I_C+I_B;// in A
+I_E = I_E * 10^3;// in mA
+disp(I_E,"The Emitter current in mA is");
diff --git a/2288/CH5/EX5.11.3/ex5_11_3.sce b/2288/CH5/EX5.11.3/ex5_11_3.sce new file mode 100755 index 000000000..187e65df3 --- /dev/null +++ b/2288/CH5/EX5.11.3/ex5_11_3.sce @@ -0,0 +1,13 @@ +// Exa 5.11.3
+clc;
+clear;
+close;
+// Given data
+del_ic = 1.8;// in mA
+del_ie = 1.89;// in mA
+alpha = del_ic / del_ie;
+bita = alpha/(1 - alpha);
+del_ib = del_ic/bita;// in mA
+del_ib = del_ib * 10^3;// in µA
+disp(del_ib,"The change in I_B in µA is");
+
diff --git a/2288/CH5/EX5.11.4/ex5_11_4.sce b/2288/CH5/EX5.11.4/ex5_11_4.sce new file mode 100755 index 000000000..a123b8013 --- /dev/null +++ b/2288/CH5/EX5.11.4/ex5_11_4.sce @@ -0,0 +1,25 @@ +//Exa 5.11.4
+clc;
+clear;
+close;
+// Given data
+V_CC = 10;// in V
+R_C = 3;// in k Ω
+R_C= R_C*10^3;// in Ω
+bita = 100;
+I_CO = 20;// in nA
+I_CO = I_CO * 10^-9;// in A
+V_BB = 5;// in V
+R_B = 200;// in kΩ
+R_B= R_B*10^3;// in Ω
+V_BE = 0.7;// in V
+// Applying KVL to the base circuit, V_BB= I_B*R_B+V_BE
+I_B = (V_BB - V_BE)/R_B;// in A
+disp(I_B*10^6,"The base current in µA is");
+I_C = (bita * I_B) + I_CO;// in A
+disp(I_C*10^3,"The collector current in mA is");
+I_E = I_C + I_B;// in A
+disp(I_E*10^3,"Emitter current in mA is");
+V_CE = V_CC - (I_C * R_C);// in V
+disp(V_CE,"Collector emitter voltage in V is");
+
diff --git a/2288/CH5/EX5.11.5/ex5_11_5.sce b/2288/CH5/EX5.11.5/ex5_11_5.sce new file mode 100755 index 000000000..5debee0b4 --- /dev/null +++ b/2288/CH5/EX5.11.5/ex5_11_5.sce @@ -0,0 +1,11 @@ +//Exa 5.11.5
+clc;
+clear;
+close;
+// Given data
+bita = 100;
+I_CBO = 4;// in µA
+I_B = 40;// in µA
+I_C = (bita * I_B) + ((1+bita) * I_CBO);// in µA
+I_C = I_C * 10^-3;// in msA
+disp(I_C,"The collector current in mA is");
diff --git a/2288/CH5/EX5.11.6/ex5_11_6.sce b/2288/CH5/EX5.11.6/ex5_11_6.sce new file mode 100755 index 000000000..67beb34d3 --- /dev/null +++ b/2288/CH5/EX5.11.6/ex5_11_6.sce @@ -0,0 +1,18 @@ +// Exa 5.11.6
+clc;
+clear;
+close;
+// Given data
+del_IC = 1 * 10^-3;// in A
+del_IB = 10 * 10^-6;// in A
+CurrentGain= del_IC/del_IB;
+disp(CurrentGain,"The current gain is");
+del_IC= del_IC*10^3;// in mA
+del_IB= del_IB*10^6;// in µA
+I_B=0:0.1:50;// in µA
+I_C= I_B/del_IB+del_IC;// in mA
+plot(I_B,I_C)
+xlabel("Base current in µA");
+ylabel("Collector current in mA")
+title("Transfer Characteristics ")
+disp("Transfer Characteristics is shown in figure")
diff --git a/2288/CH5/EX5.11.7/ex5_11_7.sce b/2288/CH5/EX5.11.7/ex5_11_7.sce new file mode 100755 index 000000000..34161649a --- /dev/null +++ b/2288/CH5/EX5.11.7/ex5_11_7.sce @@ -0,0 +1,11 @@ +//Exa 5.11.7
+clc;
+clear;
+close;
+//Given data
+I_CEo = 21;// in µA
+I_CBO = 1.1;// in µA
+beta_dc = (I_CEo/I_CBO) - 1;
+disp(beta_dc,"Value of beta_dc is");
+alpha_dc = beta_dc/(1 + beta_dc);
+disp(alpha_dc,"The value of alpha_dc is");
diff --git a/2288/CH5/EX5.14.1/ex5_14_1.sce b/2288/CH5/EX5.14.1/ex5_14_1.sce new file mode 100755 index 000000000..e8c5c432f --- /dev/null +++ b/2288/CH5/EX5.14.1/ex5_14_1.sce @@ -0,0 +1,13 @@ +// Exa 5.14.1
+clc;
+clear;
+close;
+// Given data
+I_CBO = 3;//in µA
+I_CBO= I_CBO*10^-3;// in mA
+I_C= 15;// in mA
+// But it is given that I_C= 99.5% of I_E, SO
+I_E= I_C/99.5*100;// in mA
+alpha_dc= I_C/I_E;
+disp(alpha_dc,"The value of alpha_dc is : ")
+disp(I_E,"The value of I_E in mA is : ")
diff --git a/2288/CH5/EX5.14.10/ex5_14_10.sce b/2288/CH5/EX5.14.10/ex5_14_10.sce new file mode 100755 index 000000000..8b7b2ffbc --- /dev/null +++ b/2288/CH5/EX5.14.10/ex5_14_10.sce @@ -0,0 +1,27 @@ +// Exa 5.14.10
+clc;
+clear;
+close;
+// Given data
+V_ECsat= 0.2;// in V
+V_CC= 10;// in V
+V_EBsat= 0.8;// in V
+
+// Part (i)
+bita= 100;
+R_B= 220;// in kΩ
+// Applying KVL to collector circuit, V_CC= V_EC+ICRC
+ICRC= V_CC-V_ECsat;// in V
+// Applying KVL to input loop, V_CC= V_EBsat+I_B*R_B (i)
+I_B= (V_CC-V_EBsat)/R_B;// in mA
+I_C= bita*I_B;// in mA
+R_Cmin= ICRC/I_C;// in kΩ
+disp(R_Cmin,"The minimum value of R_C in kΩ is : ")
+// Part (ii)
+R_C= 1.2;// in kΩ
+I_Csat= ICRC/R_C;// in mA
+I_B= I_Csat/bita;// in mA
+// From eq (i)
+R_B= (V_CC-V_EBsat)/I_B;// in kΩ
+disp(R_B,"The maximum value of R_B in kΩ is : ")
+
diff --git a/2288/CH5/EX5.14.11/ex5_14_11.sce b/2288/CH5/EX5.14.11/ex5_14_11.sce new file mode 100755 index 000000000..335bd52da --- /dev/null +++ b/2288/CH5/EX5.14.11/ex5_14_11.sce @@ -0,0 +1,35 @@ +//Exa 5.14.11
+clc;
+clear;
+close;
+// Given data
+bita= 100;
+V_BEsat= 0.8;// in V
+V_CEsat= 0.2;// in V
+V_BEact= 0.7;// in V
+V_CC = 10;// in V
+R_E = 1;// in kΩ
+R_C = 2;// in kΩ
+R_B= 100;// in kΩ
+bita=100;
+alpha= bita/(1+bita);
+// Applying KVL to collector circuit
+// V_CC= I_Csat*R_C +V_CE +R_E*I_E
+// but I_E= alpha*I_Csat
+I_Csat= (V_CC-V_CEsat)/(R_C+R_E*alpha);// in mA
+I_Bmin= I_Csat/bita;// in mA
+// Applying KVL to base loop
+// V_CC= I_B*R_B +V_BEsat +I_E*R_E
+// but I_E= I_Csat+I_B
+I_B= (V_CC-V_BEsat-I_Csat*R_E)/(R_B+R_E);// in mA
+disp(I_B*10^3,"The value of I_B in µA is : ")
+disp(I_Bmin*10^3,"The minimum value of I_B in µA is : ")
+if I_B>I_Bmin then
+ disp("Since the value of I_B is greater than the value of I_Bmin, ")
+ disp("Hence the transistor is in saturation .")
+end
+I_E= (1+bita)*I_Bmin;// in mA
+R_E= (V_CC-V_BEact-I_Bmin*R_B)/I_E;// in kΩ
+disp(R_E,"The value of R_E in kΩ is : ")
+disp("So R_E should be greater than this value in order to bring the transistor just out of saturation ")
+
diff --git a/2288/CH5/EX5.14.12/ex5_14_12.sce b/2288/CH5/EX5.14.12/ex5_14_12.sce new file mode 100755 index 000000000..45f87f3bf --- /dev/null +++ b/2288/CH5/EX5.14.12/ex5_14_12.sce @@ -0,0 +1,28 @@ +// Exa 5.14.12
+clc;
+clear;
+close;
+// Given data
+V_CC = 9;// in V
+V_BE = 0.8;// in V
+V_CE = 0.2;// in V
+R_B = 50;// in kΩ
+R_C=2;// in kΩ
+R_E = 1;// in kΩ
+bita=70;
+// Applying KVL to input loop, V_CC= I_B*R_B +V_BE +I_E*R_E
+// V_CC- V_BE= (R_B+R_E)*I_B + R_E*I_C (i)
+// Applying KVL to output loop, V_CC= R_C*I_C +V_CE +I_C*R_E +I_B*R_E
+//I_B = ((V_CC- V_CE)-(R_C+R_E)*I_C)/R_E (ii)
+// From eq (i) and (ii)
+I_C= ( (V_CC- V_BE)-(R_B+R_E)* (V_CC- V_CE)/R_E)/(1-(R_B+R_E)*(R_C+R_E));// in mA
+I_B = ((V_CC- V_CE)-(R_C+R_E)*I_C)/R_E// in mA
+I_Bmin= I_C/bita;// in mA
+if I_B>I_Bmin then
+ disp("Since the value of I_B ("+string(I_B)+" mA) is greater than the value of I_Bmin ("+string(I_Bmin)+" mA)")
+ disp("So the transistor is in saturation ")
+end
+V_C= V_CC-I_C*R_C;// in V
+disp(V_C,"The value of collector voltage in volts is : ")
+bita= I_C/I_B;
+disp(bita,"The minimum value of bita that will change the state of the trasistor is : ")
diff --git a/2288/CH5/EX5.14.2/ex5_14_2.sce b/2288/CH5/EX5.14.2/ex5_14_2.sce new file mode 100755 index 000000000..db78c94e1 --- /dev/null +++ b/2288/CH5/EX5.14.2/ex5_14_2.sce @@ -0,0 +1,15 @@ +//Exa 5.14.2
+clc;
+clear;
+close;
+//Given data
+alpha_dc = 0.99;
+I_CBO = 10;// in µA
+I_CBO= I_CBO*10^-6;// in A
+I_E = 10;// in mA
+I_E= I_E*10^-3;// in A
+I_C = (alpha_dc * I_E) + I_CBO;// in A
+disp(I_C*10^3,"The value of I_C in mA is");
+I_B = I_E - I_C;// in A
+I_B = I_B * 10^6;// in µA
+disp(I_B,"The value of I_B in µA is");
diff --git a/2288/CH5/EX5.14.3/ex5_14_3.sce b/2288/CH5/EX5.14.3/ex5_14_3.sce new file mode 100755 index 000000000..ecd6af474 --- /dev/null +++ b/2288/CH5/EX5.14.3/ex5_14_3.sce @@ -0,0 +1,16 @@ +// Exa 5.14.3
+clc;
+clear;
+close;
+format('v',9)
+// Given data
+alpha_dc = 0.99;
+I_C = 6;// in mA
+I_C= I_C*10^-3;// in A
+I_CBO = 15;// in µA
+I_CBO= I_CBO*10^-6;// in A
+I_E = (I_C - I_CBO)/alpha_dc;// in A
+I_B = I_E - I_C;// in A
+I_B= I_B*10^6;// in µA
+I_B= round(I_B)
+disp(I_B,"The value of I_B in µA is");
diff --git a/2288/CH5/EX5.14.5/ex5_14_5.sce b/2288/CH5/EX5.14.5/ex5_14_5.sce new file mode 100755 index 000000000..123bd2178 --- /dev/null +++ b/2288/CH5/EX5.14.5/ex5_14_5.sce @@ -0,0 +1,14 @@ +//Exa 5.14.5
+clc;
+clear;
+close;
+// Given data
+alpha_dc = 0.98;
+I_CBO = 12;// in µA
+I_CBO = I_CBO * 10^-6;// in A
+I_B = 120;// in µA
+I_B = I_B * 10^-6;// in A
+beta_dc = alpha_dc/(1-alpha_dc);
+I_E = ((1 + beta_dc) * I_B) + ((1 + beta_dc) * I_CBO);//in A
+I_E = I_E * 10^3;// in mA
+disp(I_E,"The value of I_E in mA is");
diff --git a/2288/CH5/EX5.14.6/ex5_14_6.sce b/2288/CH5/EX5.14.6/ex5_14_6.sce new file mode 100755 index 000000000..a3b8dddac --- /dev/null +++ b/2288/CH5/EX5.14.6/ex5_14_6.sce @@ -0,0 +1,29 @@ +//Exa 5.14.6
+clc;
+clear;
+close;
+// Given data
+bita= 100;
+V_BEsat= 0.8;// in V
+V_CEsat= 0.2;// in V
+V_BEact= 0.7;// in V
+V_CC = 10;// in V
+V_BB=5;// in V
+R_E = 2;// in kΩ
+R_C = 3;// in kΩ
+R_B= 50;// in kΩ
+// Applying KVL to collector loop
+// V_CC= I_Csat*R_C +V_CEsat +I_E*R_E and I_E= I_Csat+I_B, So
+//I_B= ((V_CC-V_CEsat)-(R_C+R_E)*I_Csat)/R_E; (i)
+// Applying KVL to base loop
+// V_BB-I_B*R_B -V_BEsat-I_E*R_E =0 and I_E= I_Csat+I_B, So
+//V_BB-V_BEsat= R_E*I_Csat + (R_B+R_E)*I_B (ii)
+// From eq (i) and (ii)
+I_B = ((V_BB-V_BEsat)*5- (V_CC-V_CEsat)*2) / ((R_B+R_E)*5 - R_E*2) ;// in mA
+I_Csat= ((V_CC-V_CEsat)-R_E*I_B)/(R_C+R_E);// in mA
+I_Bmin= I_Csat/bita;// in mA
+if I_B<I_Bmin then
+ disp("Since the value of I_B ("+string(I_B*10^3)+"µA) is less than the value of I_Bmin ("+string(I_Bmin*10^3)+"µA)");
+ disp("So the transistor is not in the saturation region. But it is conducting hence it can not be in cutoff.")
+ disp("Therefore the transistor is in the active region")
+end
diff --git a/2288/CH5/EX5.14.7/ex5_14_7.sce b/2288/CH5/EX5.14.7/ex5_14_7.sce new file mode 100755 index 000000000..ffd3efb58 --- /dev/null +++ b/2288/CH5/EX5.14.7/ex5_14_7.sce @@ -0,0 +1,24 @@ +//Exa 5.14.7
+clc;
+clear;
+close;
+// Given data
+bita= 100;
+V_BEsat= 0.8;// in V
+V_CEsat= 0.2;// in V
+V_BEact= 0.7;// in V
+V_CC = 10;// in V
+V_BB=5;// in V
+R_E = 2;// in kΩ
+R_C = 3;// in kΩ
+R_B= 50;// in kΩ
+// Applying KVL to input loop
+// V_BB= I_B*R_B+(1+bita)*I_B*R_E+V_BEact or
+I_B= (V_BB-V_BEact)/(R_B+(1+bita)*R_E);// in mA
+I_C= bita*I_B;// in mA
+// Applying KVL to collector circuit
+// V_CC= I_Csat*R_C +V_CEsat +(I_C+I_B)*R_E
+V_CEact= V_CC-I_B*R_E-I_C*(R_C+R_E);// in V
+disp(I_B*10^3,"The value of I_B in µA is : ")
+disp(I_C,"The value of I_C in mA is : ")
+disp(V_CEact,"The value of V_CE in volts is : ")
diff --git a/2288/CH5/EX5.14.8/ex5_14_8.sce b/2288/CH5/EX5.14.8/ex5_14_8.sce new file mode 100755 index 000000000..c872e8692 --- /dev/null +++ b/2288/CH5/EX5.14.8/ex5_14_8.sce @@ -0,0 +1,18 @@ +//Exa 5.14.8
+clc;
+clear;
+close;
+//Given data
+bita = 100;
+V_CEsat = 0.2;// in V
+R_B = 150;// in kohm
+R_C = 2;// in kohm
+V_CC = 10;// in V
+V_BEsat = 0.8;// in V
+I_B = (V_CC - V_BEsat)/R_B;// in mA
+I_C = (V_CC - V_CEsat)/R_C;// in mA
+I_Bmin = I_C/bita;// in mA
+if I_B>I_Bmin then
+ disp("Since the value of I_B ("+string(I_B*10^3)+"µA) is greater than the value of I_Bmin ("+string(I_Bmin*10^3)+"µA)");
+ disp("So the transistor is in the saturation region.")
+end
diff --git a/2288/CH5/EX5.14.9/ex5_14_9.sce b/2288/CH5/EX5.14.9/ex5_14_9.sce new file mode 100755 index 000000000..db59be3c8 --- /dev/null +++ b/2288/CH5/EX5.14.9/ex5_14_9.sce @@ -0,0 +1,21 @@ +//Exa 5.14.9
+clc;
+clear;
+close;
+//Given data
+bita = 100;
+V_CE = 0.2;//in V
+V_BE = 0.8;// in V
+R_C= 500;// in Ω
+R_B= 44*10^3;// in Ω
+R_E= 1*10^3;// in Ω
+V_CC= 15;// in V
+V_GE= -15;// in V
+// Applying KVL to collector circuit
+// V_CC-V_GE - I_Csat*R_C-V_CE-I_E*R_E=0, but I_Csat= bita*I_Bmin and I_E= 1+bita
+I_Bmin= (V_CC-V_GE-V_CE)/(R_C*bita+(1+bita)*R_E);// in A
+// Applying KVL to the base emitter circuit
+// V_BB-I_Bmin*R_B-V_BE-I_E*R_E + V_CC=0
+V_BB= I_Bmin*R_B + V_BE + (1+bita)*I_Bmin*R_E-V_CC;// in V
+disp(I_Bmin*10^3,"The value of I_B(min) in mA is : ")
+disp(V_BB,"The value of V_BB in volts is : ")
diff --git a/2288/CH5/EX5.9.1/ex5_9_1.sce b/2288/CH5/EX5.9.1/ex5_9_1.sce new file mode 100755 index 000000000..68ae07a79 --- /dev/null +++ b/2288/CH5/EX5.9.1/ex5_9_1.sce @@ -0,0 +1,15 @@ +// Exa 5.9.1
+clc;
+clear;
+close;
+// Given data
+V_EE = 8;// in V
+V_BE = 0.7;// in V
+R_E = 1.5;// in k ohm
+I_E = (V_EE - V_BE)/R_E;// in mA
+I_C = I_E;// in mA
+disp(I_C,"The value of I_C in mA is");
+V_CC = 18;// in V
+R_C = 1.2;// in kΩ
+V_CB = V_CC - (I_C * R_C);// in V
+disp(V_CB,"The value of V_CB in V is");
diff --git a/2288/CH5/EX5.9.2/ex5_9_2.sce b/2288/CH5/EX5.9.2/ex5_9_2.sce new file mode 100755 index 000000000..39816c7c3 --- /dev/null +++ b/2288/CH5/EX5.9.2/ex5_9_2.sce @@ -0,0 +1,10 @@ +// Exa 5.9.2
+clc;
+clear;
+close;
+// Given data
+alpha = 0.9;
+I_E = 1;// mA
+I_C = alpha * I_E;// in mA
+I_B = I_E - I_C;// in mA
+disp(I_B,"The value of base current in mA is");
diff --git a/2288/CH6/EX6.9.1/ex6_9_1.sce b/2288/CH6/EX6.9.1/ex6_9_1.sce new file mode 100755 index 000000000..640ba5f4d --- /dev/null +++ b/2288/CH6/EX6.9.1/ex6_9_1.sce @@ -0,0 +1,20 @@ +//Exa 6.9.1
+clc;
+clear;
+close;
+// Given data
+q = 1.6 * 10^-19;// in C
+N_D = 10^15;// in electrons/cm^3
+N_D = N_D * 10^6;// in electrons/m^3
+epsilon_r = 12;
+epsilon_o = (36 * %pi * 10^9)^-1;
+epsilon = epsilon_o * epsilon_r;
+a = 3 * 10^-4;// in cm
+a = a * 10^-2;// in m
+V_P = (q * N_D * a^2)/( 2 * epsilon);// in V
+disp(V_P,"The Pinch off voltage in V is");
+// V_GS = V_P * (1-(b/a))^2
+b = (1-0.707) *a;// in m
+disp(b*10^6,"The value of b in µm is : ")
+disp("Hence the channel width has been reduced to about one third of its value for V_GS = 0");//
+// Note : The unit of b in the book is wrong since the value of b is calculated in µm.
diff --git a/2288/CH6/EX6.9.2/ex6_9_2.sce b/2288/CH6/EX6.9.2/ex6_9_2.sce new file mode 100755 index 000000000..2393a2ed0 --- /dev/null +++ b/2288/CH6/EX6.9.2/ex6_9_2.sce @@ -0,0 +1,12 @@ +// Exa 6.9.2
+clc;
+clear;
+close;
+// Given data
+I_DSS = 8;// in mA
+V_P = -4;// in V
+I_D = 3;// in mA
+V_GS = V_P * (1 - sqrt(I_D/I_DSS));// in V
+disp(V_GS,"The value of V_GS in V is");
+V_DS = V_GS - V_P;// in V
+disp(V_DS,"The value of V_DS in V is");
diff --git a/2288/CH6/EX6.9.3/ex6_9_3.sce b/2288/CH6/EX6.9.3/ex6_9_3.sce new file mode 100755 index 000000000..896ac854c --- /dev/null +++ b/2288/CH6/EX6.9.3/ex6_9_3.sce @@ -0,0 +1,11 @@ +// Exa 6.9.3
+clc;
+clear;
+close;
+// Given data
+V_P = -4;// in V
+I_DSS = 9;// in mA
+I_DSS = I_DSS * 10^-3;// in A
+V_GS = -2;// in V
+I_D = I_DSS * ((1 - (V_GS/V_P))^2);// in A
+disp(I_D*10^3,"The drain current in mA is ");
diff --git a/2288/CH6/EX6.9.4/ex6_9_4.sce b/2288/CH6/EX6.9.4/ex6_9_4.sce new file mode 100755 index 000000000..c9fa3f17e --- /dev/null +++ b/2288/CH6/EX6.9.4/ex6_9_4.sce @@ -0,0 +1,12 @@ +// Exa 6.9.4
+clc;
+clear;
+close;
+// Given data
+I_DSS = 12;// in mA
+I_DSS = I_DSS * 10^-3;// in A
+V_P = -(6);// in V
+V_GS = -(1);// in V
+g_mo = (-2 * I_DSS)/V_P;// in A/V
+g_m = g_mo * (1 - (V_GS/V_P));// in S
+disp(g_m*10^3,"The value of transconductance in mS is");
diff --git a/2288/CH6/EX6.9.5/ex6_9_5.sce b/2288/CH6/EX6.9.5/ex6_9_5.sce new file mode 100755 index 000000000..33fa00284 --- /dev/null +++ b/2288/CH6/EX6.9.5/ex6_9_5.sce @@ -0,0 +1,14 @@ +//Exa 6.9.5
+clc;
+clear;
+close;
+// Given data
+I_DSS = 10;// in mA
+I_DSS = I_DSS * 10^-3;// in A
+V_P = -(5);// in V
+V_GS = -(2.5);// in V
+g_m = ((-2 * I_DSS)/V_P) * (1 -(V_GS/V_P));// in S
+g_m = g_m * 10^3;// in mS
+disp(g_m,"The Transconductance in mS is");
+I_D = I_DSS * ((1 - (V_GS/V_P))^2);// in A
+disp(I_D*10^3,"The drain current in mA is");
diff --git a/2288/CH7/EX7.23.1/ex7_23_1.sce b/2288/CH7/EX7.23.1/ex7_23_1.sce new file mode 100755 index 000000000..51a8a908c --- /dev/null +++ b/2288/CH7/EX7.23.1/ex7_23_1.sce @@ -0,0 +1,25 @@ +// Exa 7.23.1
+clc;
+clear;
+close;
+// Given data
+N_A = 7.5*10^24;// in atoms/m^3
+N_D = 1.5*10^22;// in atoms/m^3
+I_lembda = 12.5*10^-3;// in A/cm^2
+D_e = 25*10^-4;// in m^2/s
+D_h = 1*10^-3;// in m^2/s
+Torque_eo = 500;// in ns
+Torque_ho = 100;// in ns
+n_i = 1.5*10^16;// in /m^3
+e = 1.6*10^-19;
+P_C = 12.5;// in mA/cm^2
+L_e = sqrt(D_e*Torque_ho*10^-9);// in m
+L_e = L_e * 10^6;// in µm
+L_h = sqrt(D_h*Torque_ho*10^-9);// in m
+L_h = L_h * 10^6;// in µm
+J_s = e*((n_i)^2)*( (D_e/(L_e*10^-6*N_A)) + (D_h/(L_h*10^-6*N_D)) );// in A/m^2
+J_s = J_s * 10^-4;// in A/cm^2
+V_T = 26;// in mV
+V_OC = V_T*log( 1+(I_lembda/J_s) );// in mV
+V_OC = V_OC * 10^-3;// in V
+disp(V_OC,"Open circuit voltage in V is");
diff --git a/2288/CH7/EX7.23.2/ex7_23_2.sce b/2288/CH7/EX7.23.2/ex7_23_2.sce new file mode 100755 index 000000000..8fba3da96 --- /dev/null +++ b/2288/CH7/EX7.23.2/ex7_23_2.sce @@ -0,0 +1,15 @@ +// Exa 7.23.2
+clc;
+clear;
+close;
+// Given data
+Phi_o = 1*10^21;// in m^-2s^-1
+Alpha = 1*10^5;// in m^-1
+W = 25;// in µm
+W =W * 10^-6;// in m
+e = 1.6*10^-19;// in C
+G_L1 = Alpha*Phi_o;// in m^-3s^-1
+G_L2 = Alpha*Phi_o*%e^( (-Alpha*W) );// in m^-3s^-1
+J_L = e*Phi_o*(1-%e^(-Alpha*W));// in A/m^2
+J_L = J_L * 10^-1;// in mA/cm^2
+disp(J_L,"Photo current density in mA/cm^2 is");
diff --git a/2288/CH7/EX7.6.1/ex7_6_1.sce b/2288/CH7/EX7.6.1/ex7_6_1.sce new file mode 100755 index 000000000..bd50dafe5 --- /dev/null +++ b/2288/CH7/EX7.6.1/ex7_6_1.sce @@ -0,0 +1,11 @@ +// Exa 7.6.1
+clc;
+clear;
+close;
+// Given data
+O_V = 5;// output voltage in V
+V_D = 1.5;//voltage drop in V
+R = (O_V - V_D)/O_V;
+R = R * 10^3;// in ohm
+disp(R,"The resistance value in Ω is");
+disp("As this is not standard value, use R=680 Ω which is a standard value")
diff --git a/2288/CH8/EX8.13.1/ex8_13_1.sce b/2288/CH8/EX8.13.1/ex8_13_1.sce new file mode 100755 index 000000000..96b9e8b81 --- /dev/null +++ b/2288/CH8/EX8.13.1/ex8_13_1.sce @@ -0,0 +1,17 @@ +// Exa 8.13.1
+clc;
+clear;
+close;
+// Given data
+R= 10;// in kΩ
+R= R*10^3;// in Ω
+// Part (i)
+V=300;// in V
+I_A= V/R;// in A
+disp("Part (i) : For 300 V voltage : ")
+disp(I_A*10^3,"The anode current in mA is : ");
+// Part (ii)
+V=100;// in V
+I_A= V/R;// in A
+disp("Part (ii) : For 100 V voltage : ")
+disp(I_A*10^3,"The anode current in mA is : ");
diff --git a/2288/CH8/EX8.14.1/ex8_14_1.sce b/2288/CH8/EX8.14.1/ex8_14_1.sce new file mode 100755 index 000000000..54d6047d1 --- /dev/null +++ b/2288/CH8/EX8.14.1/ex8_14_1.sce @@ -0,0 +1,9 @@ +// Exa 8.14.1
+clc;
+clear;
+close;
+// Given data
+t_rr = 10;// in µs
+Q_rr = 150;// in µc
+I_rr = (2*Q_rr)/t_rr;// in A
+disp(I_rr,"The peak reverse recovery current in A is");
|