summaryrefslogtreecommitdiff
path: root/2219/CH5
diff options
context:
space:
mode:
Diffstat (limited to '2219/CH5')
-rwxr-xr-x2219/CH5/EX5.1/Ex5_1.sce16
-rwxr-xr-x2219/CH5/EX5.2/Ex5_2.sce25
-rwxr-xr-x2219/CH5/EX5.3/Ex5_3.sce26
-rwxr-xr-x2219/CH5/EX5.4/Ex5_4.sce20
-rwxr-xr-x2219/CH5/EX5.5/Ex5_5.sce20
-rwxr-xr-x2219/CH5/EX5.6/Ex5_6.sce22
-rwxr-xr-x2219/CH5/EX5.7/Ex5_7.sce24
-rwxr-xr-x2219/CH5/EX5.8/Ex5_8.sce18
8 files changed, 171 insertions, 0 deletions
diff --git a/2219/CH5/EX5.1/Ex5_1.sce b/2219/CH5/EX5.1/Ex5_1.sce
new file mode 100755
index 000000000..e55735bba
--- /dev/null
+++ b/2219/CH5/EX5.1/Ex5_1.sce
@@ -0,0 +1,16 @@
+//chapter 5 example 1 pg no-226
+//=============================================================================
+clc;
+clear;
+//Given Data
+F = 100*10^9;//reflex klystron operating frequency
+n = 3;//integer corresponding to mode
+
+//Calculations
+T_c = (n+(3/4))//transit time in cycles
+T = T_c/F//transit time in seconds
+
+//Output
+mprintf('Transit Time of the electron in the repeller space is %3.1f ps',T/10^-12);
+
+//=============================================================================
diff --git a/2219/CH5/EX5.2/Ex5_2.sce b/2219/CH5/EX5.2/Ex5_2.sce
new file mode 100755
index 000000000..f9ce4d5d8
--- /dev/null
+++ b/2219/CH5/EX5.2/Ex5_2.sce
@@ -0,0 +1,25 @@
+//chapter 5 example 1 pg no-227
+//=============================================================================
+clc;
+clear;
+//Given Data
+F = 2*10^9;//reflex klystron operating frequency
+Vr = 2000;//Repeller voltage
+Va = 500;//Accelarating voltage
+n = 1;//integer corresponding to mode
+e = 1.6*10^-19;//charge of electron
+m = 9.1*10^-31;//mass of electron in kg
+s = 2*10^-2;//space b/w exit of gap and repeller electrode
+dVr1 = 2;//(change in Vr in percentage
+//Calculations
+dVr = dVr1*Vr/100;//conversion from percentage to decimal
+//dVr/df = ((2*pi*s)/((2*pi*n)-pi/2))*sqrt(8*m*Va/e));
+//let df = dVr/((2*pi*s)/((2*pi*n)-pi/2))*sqrt(8*m*Va/e));
+
+df = (dVr)/((2*%pi*s)/((2*%pi*n)-(%pi/2))*sqrt(8*m*Va/e));//change in freq as a fun of repeller voltage
+
+
+//Output
+mprintf('Change in frequency is %3.0f MHz',df/10^6);
+
+//=============================================================================
diff --git a/2219/CH5/EX5.3/Ex5_3.sce b/2219/CH5/EX5.3/Ex5_3.sce
new file mode 100755
index 000000000..258b03cd2
--- /dev/null
+++ b/2219/CH5/EX5.3/Ex5_3.sce
@@ -0,0 +1,26 @@
+//chapter 5 example 3
+//=============================================================================
+clc;
+clear;
+//Given Data
+//let l = dVr/Vr ; f = df/f ; Vr/f = R
+l = 5;//percentage change in repeller voltage
+f = 1;//percentage change in operating frequency
+R = 1;//ratio of repeller voltage to operating frequency
+NR = 1.5;//new ratio of repeller voltage to operating frequency in volts/MHz
+e = 1.6*10^-19;//charge of electron
+m = 9.1*10^-31;//mass of electron in kg
+
+//Calculations
+
+//dVr/df = ((2*pi*s)/((2*pi*n)-pi/2))*sqrt(8*m*Va/e));
+//((df/f)/(dVr/Vr)) = (Vr/f)*((2*pi*n)-pi/2)/(2*pi*s)*sqrt(e/(8*m*Va));
+//((df/f)/(dVr/Vr)) = K*(Vr/f);
+//where K = (((2*pi*n)-pi/2)/(2*pi*s))*sqrt(e/(8*m*Va))
+K = (f/l)*(1/R)
+PCF = NR*K*l//percentage change in frequency when new ratio (Vr/f)=1.5
+
+//Output
+mprintf('Percentage Change in frequency is %3.2f percent',PCF);
+
+//=============================================================================
diff --git a/2219/CH5/EX5.4/Ex5_4.sce b/2219/CH5/EX5.4/Ex5_4.sce
new file mode 100755
index 000000000..0b9476752
--- /dev/null
+++ b/2219/CH5/EX5.4/Ex5_4.sce
@@ -0,0 +1,20 @@
+//chapter 5 example 4
+//=============================================================================
+clc;
+clear;
+//Given Data
+Va = 40*10^3;//Anode voltage of cross field amplifier
+Ia = 15;//Anode current in Amp
+Pin = 40*10^3;//input power in watts
+G = 10;//gain in dB
+n = 40/100;//overall efficiency converted from percentage to decimal
+//Calculations
+//Gain = (1+(Pgen/Pin))
+Pgen = (G-1)*Pin//Generated power
+ne = (Pgen/(Va*Ia))//electronic efficiency
+nc = n/(ne)//circuit efficiency
+Pout = Pin+(Pgen*nc)//output power
+//Output
+mprintf('Electronic Efficiency is %3.2f\n Output power is %g KW',ne,Pout/1000);
+
+//=============================================================================
diff --git a/2219/CH5/EX5.5/Ex5_5.sce b/2219/CH5/EX5.5/Ex5_5.sce
new file mode 100755
index 000000000..cf36099aa
--- /dev/null
+++ b/2219/CH5/EX5.5/Ex5_5.sce
@@ -0,0 +1,20 @@
+//chapter 5 example 5
+//=============================================================================
+clc;
+clear;
+//Given Data
+F = 1*10^9;//two cavity klystron operating frequency
+Va = 2500;//Accelarating voltage in volts
+e = 1.6*10^-19;//charge of electron
+m = 9.1*10^-31;//mass of electron in kg
+s = 0.1*10^-2;//input cavity space
+//Calculations
+
+u = sqrt((2*e*Va)/m);//velocity at which electron beam enters the gap
+T = s/u ;//Time spent in the gap
+f = T*F;//number of cycles
+
+//Output
+mprintf('Number of cycles that elase during transit of beam through input gap is %3.3f cycle',f);
+
+//=============================================================================
diff --git a/2219/CH5/EX5.6/Ex5_6.sce b/2219/CH5/EX5.6/Ex5_6.sce
new file mode 100755
index 000000000..ac9a0e5db
--- /dev/null
+++ b/2219/CH5/EX5.6/Ex5_6.sce
@@ -0,0 +1,22 @@
+//chapter 5 example 6
+//=============================================================================
+clc;
+clear;
+//Given Data
+N = 8;//no. of resonators
+
+//Calculations
+mprintf('ϕ = (2*π*n)/N \n');//phase difference
+mprintf(' ϕ = (n*π)/4\n');//phase difference
+K = N/2;//useful no. of nodes
+//Most dominant mode is the one for which phase differnce b/w adjacent resonators is π radians
+//Therefore (n*π)/4 = π
+n = 4
+
+
+//Output
+mprintf('Number of possible modes of Resonance is %d\n',N);
+mprintf('Number of useful modes of Resonance is %d\n',K);
+mprintf('value of integer n for the most dominant mode is %d',n);
+
+//=============================================================================
diff --git a/2219/CH5/EX5.7/Ex5_7.sce b/2219/CH5/EX5.7/Ex5_7.sce
new file mode 100755
index 000000000..5269ad41e
--- /dev/null
+++ b/2219/CH5/EX5.7/Ex5_7.sce
@@ -0,0 +1,24 @@
+//chapter 5 example 7
+//=============================================================================
+clc;
+clear;
+//Given Data
+Va = 1200;//Anode potential
+F = 10*10^9;//Operating frequency in Hz
+S = 5*10^-2;//spacing b/w 2 cavities
+GS = 1*10^-3;//gap spacing in either cavity
+e = 1.6*10^-19;//charge of electron
+m = 9.1*10^-31;//mass of electron in kg
+//Calculations
+//Condition of maximum output is (V1/Vo)max = (3.68)/((2*pi*n)-(pi/2);
+//(2*pi*n)-(pi/2) = Transit angle b/w two cavities
+//V1 = Peak amplitude of RF i/p
+//Vo = accelarating potential
+
+Vo = sqrt(2*e*Va/m);//velocity of the electrons
+T = S/Vo;//Transit time b/w the cavities
+TA = 2*%pi*F*T;//transit angle in radians
+V1 = (3.68*Va)/TA;
+//Output
+mprintf('Required Peak Amplitude of i/p RF signal is %3.2f volts',V1);
+//=============================================================================
diff --git a/2219/CH5/EX5.8/Ex5_8.sce b/2219/CH5/EX5.8/Ex5_8.sce
new file mode 100755
index 000000000..1bcc67c67
--- /dev/null
+++ b/2219/CH5/EX5.8/Ex5_8.sce
@@ -0,0 +1,18 @@
+//chapter 5 example 8
+//=============================================================================
+clc;
+clear;
+// Given Data
+R = 10; // circumference to pitch ratio
+e = 1.6*10^-19; // charge of electron
+m = 9.1*10^-31; // mass of electron in Kg
+c = 3*10^8; // vel. of EM waves in m/s
+
+// Calculations
+Vp = c/R; // axial phase velocity = free space vel*(pitch/circumference)
+Va = (Vp^2 * m)/(2*e);
+
+// Output
+mprintf('Anode Voltage = %3.2f kV',Va/1000);
+disp('In practice,the electron beam velocity is kept slightly greater than the axial phase velocity of RF signal')
+//------------------------------------------------------------------------------