diff options
Diffstat (limited to '2183/CH4')
26 files changed, 320 insertions, 0 deletions
diff --git a/2183/CH4/EX4.1.a/Ex_4_1_a.sce b/2183/CH4/EX4.1.a/Ex_4_1_a.sce new file mode 100755 index 000000000..b3bfe3ad4 --- /dev/null +++ b/2183/CH4/EX4.1.a/Ex_4_1_a.sce @@ -0,0 +1,9 @@ +// Example 4.1.a:signal attenuation
+clc;
+clear;
+close;
+L=8;// Length of fiber in km
+Pi=120*10^-6;// input power in Watt
+Po=4*10^-6;//Output power in Watt
+alpha=(10*(log10(Pi/Po)));//Loss in dB
+disp(alpha,"signal attenuation in dB")
diff --git a/2183/CH4/EX4.1.b/Ex_4_1_b.sce b/2183/CH4/EX4.1.b/Ex_4_1_b.sce new file mode 100755 index 000000000..674377df3 --- /dev/null +++ b/2183/CH4/EX4.1.b/Ex_4_1_b.sce @@ -0,0 +1,10 @@ +// Example 4.1.b:signal attenuation per km +clc; +clear; +close; +L=8;// Length of fiber in km +Pi=120*10^-6;// input power in Watt +Po=4*10^-6;//Output power in Watt +alpha=(10*(log10(Pi/Po)));//Loss in dB +alphal=alpha/L +disp(alphal,"signal attenuation per km in dB/km is") diff --git a/2183/CH4/EX4.1.c/Ex_4_1_c.sce b/2183/CH4/EX4.1.c/Ex_4_1_c.sce new file mode 100755 index 000000000..deec11704 --- /dev/null +++ b/2183/CH4/EX4.1.c/Ex_4_1_c.sce @@ -0,0 +1,13 @@ +// Example 4.2.c:Loss for 10Km
+clc;
+clear;
+close;
+L=8;// Length of fiber in km
+Pi=120*10^-6;// input power in Watt
+Po=4*10^-6;//Output power in Watt
+alpha= round(10*(log10(Pi/Po)));//Loss in dB
+alphadb= alpha/L;//Loss in dB/Km
+alphadb2=alphadb*10;// Loss along 10Km fiber length in dB
+Ds=alphadb2+9;// Due to splices at 1km Interval
+disp(Ds,"Atenuation Due to splices at 1km Interval in dB")
+
diff --git a/2183/CH4/EX4.1.d/Ex_4_1_d.sce b/2183/CH4/EX4.1.d/Ex_4_1_d.sce new file mode 100755 index 000000000..4414a5ef3 --- /dev/null +++ b/2183/CH4/EX4.1.d/Ex_4_1_d.sce @@ -0,0 +1,15 @@ +// Example 4.1.d:Ratio of powers
+clc;
+clear;
+close;
+L=8;// Length of fiber in km
+Pi=120*10^-6;// input power in Watt
+Po=4*10^-6;//Output power in Watt
+alpha= round(10*(log10(Pi/Po)));//Loss in dB
+alphadb= alpha/L;//Loss in dB/Km
+alphadb2=alphadb*10;// Loss along 10Km fiber length in dB
+Ds=alphadb2+9;// Due to splices at 1km Interval
+rt= 10^(Ds/10);// Ratio of input to output power
+disp(rt,"Ratio of input to output power")
+//answer is wrong in the textbook
+
diff --git a/2183/CH4/EX4.10.a/Ex_4_10_a.sce b/2183/CH4/EX4.10.a/Ex_4_10_a.sce new file mode 100755 index 000000000..e8ae9e812 --- /dev/null +++ b/2183/CH4/EX4.10.a/Ex_4_10_a.sce @@ -0,0 +1,14 @@ +// Example 4.10.a;//TOTAL RMS Pulse broadning
+clc;
+clear;
+close;
+M=250;//dispersion parametr picosecond per nano meter per kilometer
+Sa=50;//spectral width in nm
+NA=0.3;//numerical aperture
+n1=1.45;// Core refractibve index
+C=2.998*10^8;//Speed of light in m/s
+L=1;//length in Km
+Sm=M*L*Sa*10^-3;//rms pulse broadning due to material dispersion
+Ss=(L*10^3*NA^2)/(4*sqrt(3)*C*n1)*10^9;//Pulse broadning due to intermodal dispersion in ns/km
+St=sqrt(Sm^2+Ss^2);// Total broadning
+disp(St,"Total broadning ns per km is")
diff --git a/2183/CH4/EX4.10.b/Ex_4_10_b.sce b/2183/CH4/EX4.10.b/Ex_4_10_b.sce new file mode 100755 index 000000000..80c694f88 --- /dev/null +++ b/2183/CH4/EX4.10.b/Ex_4_10_b.sce @@ -0,0 +1,15 @@ +// Example 4.10.b;//bandwidth length product
+clc;
+clear;
+close;
+M=250;//dispersion parameter picosecond per nano meter per kilometer
+Sa=50;//spectral width in nm
+NA=0.3;//numerical aperture
+n1=1.45;// Core refractibve index
+C=2.998*10^8;//Speed of light in m/s
+L=1;//length in km
+Sm=M*L*Sa*10^-3;//rms pulse broadning due to material dispersion
+Ss=(L*10^3*NA^2)/(4*sqrt(3)*C*n1)*10^9;//Pulse broadning due to intermodal dispersion in ns/km
+St=sqrt(Sm^2+Ss^2);// Total broadning
+BL= (0.2/(St*10^-9))*10^-6;// Bandwidth length product in Mega hertz km
+disp(BL,"Bandwidth length product is,(MHz-km)")
diff --git a/2183/CH4/EX4.11/Ex_4_11.sce b/2183/CH4/EX4.11/Ex_4_11.sce new file mode 100755 index 000000000..3f08720e8 --- /dev/null +++ b/2183/CH4/EX4.11/Ex_4_11.sce @@ -0,0 +1,14 @@ +// Example 4.11 //compare the total first order dispersion +clc; +clear; +close; +so=0.095;//ps nm^-2 km^-1 +h=1270;//in nm +ho=1320;//in nm +dt1=((h*so)/4)*((1-(ho/h)^4));// in ps nm^-1 km^-1 +h1=1520;//in nm +dt21=((h1*so)/4)*((1-(ho/h1)^4));// in ps nm^-1 km^-1 +dt2=dt21-(13.5+4.1);// in ps nm^-1 km^-1 +disp(dt1,"first order dispersion at wavelength 1270nm in ps nm^-1 km^-1") +disp(dt2,"first order dispersion at wavelength 1320nm in ps nm^-1 km^-1") +//answer is wrong in the textbook diff --git a/2183/CH4/EX4.12/Ex_4_12.sce b/2183/CH4/EX4.12/Ex_4_12.sce new file mode 100755 index 000000000..5fba454e2 --- /dev/null +++ b/2183/CH4/EX4.12/Ex_4_12.sce @@ -0,0 +1,12 @@ +// Example 4.12;//bit rate +clc; +clear; +close; +dx=2;//in ps/nm-km +L=100;//in km +h1=1310;// in nm +h2=1300;//in nm +dh=h1-h2;//in nm +brl=(1/(4*dx*(dh/10)));//in Gbps-km +br=brl/L;//in Gbps +disp(br*10^3,"bit rate in Gbps") diff --git a/2183/CH4/EX4.13/Ex_4_13.sce b/2183/CH4/EX4.13/Ex_4_13.sce new file mode 100755 index 000000000..de58ecb36 --- /dev/null +++ b/2183/CH4/EX4.13/Ex_4_13.sce @@ -0,0 +1,9 @@ +// Example 4.13;//Maximum bit rate
+clc;
+clear;
+close;
+L=20;//Length in km
+Dt2=300*10^-12;//Birefringent in second per kilometer
+B=(0.9)/(Dt2*L*10^3);//
+Btm= round((B/0.55)*10^-3);// maximum bit rate in kilo bit per second
+disp(Btm,"maximum bit rate in kilo bit per second")
diff --git a/2183/CH4/EX4.14/Ex_4_14.sce b/2183/CH4/EX4.14/Ex_4_14.sce new file mode 100755 index 000000000..4064d4389 --- /dev/null +++ b/2183/CH4/EX4.14/Ex_4_14.sce @@ -0,0 +1,11 @@ +// Example 4.14 //birefringence
+clc;
+clear;
+close;
+Lbc1=0.7;//beat length micro meter
+h=1.3;//wavelength in micro meter
+Bf1=((h*10^-6)/(Lbc1*10^-3));// birefringence when beat length = 0.5mm
+Lbc2=80;//beat length meter
+Bf2=((h*10^-6)/(Lbc2));// birefringence when beat length = 60 meter
+disp(Bf1,"birefringence (high birefringent fiber) when beat length = 0.7micro meter")
+disp(Bf2,"birefringence (lower birefringent fiber) when beat length = 80 meter")
diff --git a/2183/CH4/EX4.15/Ex_4_15.sce b/2183/CH4/EX4.15/Ex_4_15.sce new file mode 100755 index 000000000..91fe943d4 --- /dev/null +++ b/2183/CH4/EX4.15/Ex_4_15.sce @@ -0,0 +1,12 @@ +// Example 4.15//Bifringence and differnce between the propogation constt.
+clc;
+clear;
+close;
+Lb=0.09;//Birefringent Coherence over length in meter
+h=0.9;//wavelength in micro meter
+df=1;//spectral width in nano meter
+Bf=((h*10^-6)/(Lb));//modal bifringence
+Lbc= (((h*10^-6)^2)/(Bf*df*10^-9));//Coherance length in meter
+Bxy=(2*%pi)/(Lb);//Diff in the propogation constant
+disp(Bf,"modal bifringence is")
+disp(Bxy,"Difference in the propgation constants. is")
diff --git a/2183/CH4/EX4.16/Ex_4_16.sce b/2183/CH4/EX4.16/Ex_4_16.sce new file mode 100755 index 000000000..b502e4376 --- /dev/null +++ b/2183/CH4/EX4.16/Ex_4_16.sce @@ -0,0 +1,8 @@ +// Example 4.16//bit rate +clc; +clear; +close; +pmc=0.5;//ps/sqrt(km) +l=100;//km +br=(1/(4*pmc*sqrt(l)));// +disp(br*10^3,"bit rate is ,(Gbps)=") diff --git a/2183/CH4/EX4.2/Ex_4_2.sce b/2183/CH4/EX4.2/Ex_4_2.sce new file mode 100755 index 000000000..78e1f0b9a --- /dev/null +++ b/2183/CH4/EX4.2/Ex_4_2.sce @@ -0,0 +1,30 @@ +// Example 4.2:Attenuation
+clc;
+clear;
+close;
+L=1;//in km
+h1=0.63;//in micro meter
+h2=1;//in micro meter
+h3=1.3;//in micro meter
+Tf=1400;//Temperature in Kelvin
+p=0.286;//photoelastic coefficient of silica
+n=1.46;//Refractive index of silica
+Bc=7*10^-11;//isothermal compersebility in in Metere square per N
+K=1.38*10^-23;// boltzman constt. in julian per Kelvin
+x1= (h1*10^-6);
+x2= (h2*10^-6);
+x3= (h3*10^-6);
+Yr1=(8*%pi^3*n^8*p^2*Bc*K*Tf)/(3*(x1)^4);//ray leigh scattering coefficient
+Ekm1= exp(-Yr1*L*10^3)
+alpha1=10*(log10(1/Ekm1));//Attenuation in dB/km
+Yr2=(8*%pi^3*n^8*p^2*Bc*K*Tf)/(3*(x2)^4);//ray leigh scattering coefficient
+Ekm2= exp(-Yr2*L*10^3)
+alpha2=10*(log10(1/Ekm2));//Attenuation in dB/km
+Yr3=(8*%pi^3*n^8*p^2*Bc*K*Tf)/(3*(x3)^4);//ray leigh scattering coefficient
+Ekm3= exp(-Yr3*L*10^3)
+alpha3=10*(log10(1/Ekm3));//Attenuation in dB/km
+disp(alpha1,"Attenuation in dB/km for (h=0.63 micro meter)")
+disp(alpha2,"Attenuation in dB/km for (h=1 micro meter)")
+disp(alpha3,"Attenuation in dB/km for (h=1.30 micro meter)")
+
+
diff --git a/2183/CH4/EX4.3/Ex_4_3.sce b/2183/CH4/EX4.3/Ex_4_3.sce new file mode 100755 index 000000000..c486aec2e --- /dev/null +++ b/2183/CH4/EX4.3/Ex_4_3.sce @@ -0,0 +1,13 @@ +// Example 4.3:Optical Powers
+clc;
+clear;
+close;
+h=1.5;//Wavelength in micro meter
+d=6;//Core diameter in micro meter
+v=600;//frequency in Mega Hertz
+alpha=0.4;//Attenuation in dB/km
+Pb=(4.4*10^-3*d^2*h^2*alpha*v*10^-3)*10^3;//Threshold optical power for brillouin scattering in milli Watt
+Pr=(5.9*10^-2*d^2*alpha*h);//Threshold optical power for Raman scattering in Watt
+disp(Pb,"Threshold optical power for Brillouin scattering in milli Watt")
+disp(Pr,"Threshold optical power for Raman scattering in Watt")
+//Pb is calculated wrong in the text book
diff --git a/2183/CH4/EX4.4.a/Ex_4_4_a.sce b/2183/CH4/EX4.4.a/Ex_4_4_a.sce new file mode 100755 index 000000000..d8a19bb19 --- /dev/null +++ b/2183/CH4/EX4.4.a/Ex_4_4_a.sce @@ -0,0 +1,11 @@ +// Example 4.4.a:Critical Radius
+clc;
+clear;
+close;
+d=0.03;//Refractive index difference
+n1=1.5;//Core refractive index
+h= 0.85*10^-6;//Wavelength in meters
+x=2*n1^2*d;//
+Rc=(3*n1^2*h)/(4*%pi*sqrt(x))*10^6;// Critical Radius in micro meters
+disp(Rc,"Critical Radius in micro meters")
+//answer is calculated wrong in the textbook
diff --git a/2183/CH4/EX4.4.b/Ex_4_4_b.sce b/2183/CH4/EX4.4.b/Ex_4_4_b.sce new file mode 100755 index 000000000..415d679c2 --- /dev/null +++ b/2183/CH4/EX4.4.b/Ex_4_4_b.sce @@ -0,0 +1,15 @@ +// Example 4.4.b:Critical Radius of curvature +clc; +clear; +close; +a=4;// core radius in micro meters +d=0.003;//Refractive index difference +n1=1.5;//Core refractive index +h= 1.55*10^-6;//Wavelength in meters +x=2*n1^2*d;// +hc= ((2*%pi*a*10^-6*sqrt(2*d)*n1)/2.405)*10^6;//cut off wavelength in micro meters; +x1=(20*h)/(sqrt(x)); +y=((2.748-0.996*((h*10^6)/hc)))^-3; +Rcs=x1*y*10^6; +disp(Rcs,"Critical Radius of curvature in micro meters") +//answer is calculated wrong in the textbook diff --git a/2183/CH4/EX4.5.a/Ex_4_5_a.sce b/2183/CH4/EX4.5.a/Ex_4_5_a.sce new file mode 100755 index 000000000..d3d2cc468 --- /dev/null +++ b/2183/CH4/EX4.5.a/Ex_4_5_a.sce @@ -0,0 +1,8 @@ +// Example 4.5.a:Maximum possible optical bandwidth
+clc;
+clear;
+close;
+t=0.1*10^-6;//Time in second
+L=15;//Distance in km
+Bt=(1/(2*t))*10^-6;//Maximum possible optical bandwidth in Mega Hertz
+disp(Bt,"Maximum possible optical bandwidth in Mega Hertz")
diff --git a/2183/CH4/EX4.5.b/Ex_4_5_b.sce b/2183/CH4/EX4.5.b/Ex_4_5_b.sce new file mode 100755 index 000000000..6dfa6af03 --- /dev/null +++ b/2183/CH4/EX4.5.b/Ex_4_5_b.sce @@ -0,0 +1,8 @@ +// Example 4.5.b:Despersion per unit length
+clc;
+clear;
+close;
+t=0.1*10^-6;//Time in second
+L=15;//Distance in km
+dp=(t/L)*10^6;//Despersion per unit length in micro second per Km
+disp(dp*10^3,"Despersion per unit length in nano second per km")
diff --git a/2183/CH4/EX4.5.c/Ex_4_5_c.sce b/2183/CH4/EX4.5.c/Ex_4_5_c.sce new file mode 100755 index 000000000..f2920624c --- /dev/null +++ b/2183/CH4/EX4.5.c/Ex_4_5_c.sce @@ -0,0 +1,9 @@ +// Example 4.5.c:Bandwidth legth product
+clc;
+clear;
+close;
+t=0.1*10^-6;//Time in second
+L=15;//Distance in km
+Bt=(1/(2*t))*10^-6;//Maximum possible optical bandwidth in Mega Hertz
+BL=Bt*L;// bandwidth length product in km
+disp(BL,"bandwidth length product in MHz km")
diff --git a/2183/CH4/EX4.6/Ex_4_6.sce b/2183/CH4/EX4.6/Ex_4_6.sce new file mode 100755 index 000000000..b15959e6b --- /dev/null +++ b/2183/CH4/EX4.6/Ex_4_6.sce @@ -0,0 +1,12 @@ +// Example 4.6;/Pulse broadning due to material dispersion
+clc;
+clear;
+close;
+c=3*10^5;// speed of light in km/s
+Dh=0.025;//Material dispersion
+L=1;//distance in km
+h=0.85;//Wavelength micro meters
+Sh=20;// Spectral width in nano meter
+M=Dh/(c*h*10^3);//
+Sm=M*L*Sh//Pulse broadning due to material dispersion in nano second per kilometer
+disp(Sm*10^9,"Pulse broadning due to material dispersion in nano second per kilometer")
diff --git a/2183/CH4/EX4.7/Ex_4_7.sce b/2183/CH4/EX4.7/Ex_4_7.sce new file mode 100755 index 000000000..a230a4340 --- /dev/null +++ b/2183/CH4/EX4.7/Ex_4_7.sce @@ -0,0 +1,12 @@ +// Example 4.7//Pulse broadning due to material dispersion +clc; +clear; +close; +c=3*10^5;// speed of light in km/s +Dh=0.03;//Material dispersion +L=1;//distance in km +h=0.85;//Wavelength in micro meters +Sh=0.0012*h;// Spectral width in nano meter +M=Dh/(c*h*10^3);// +Sm=M*L*Sh//Pulse broadning due to material dispersion in nano second per kilometer +disp(Sm*10^12,"Pulse broadning due to material dispersion in nano second per kilometer") diff --git a/2183/CH4/EX4.8/Ex_4_8.sce b/2183/CH4/EX4.8/Ex_4_8.sce new file mode 100755 index 000000000..a242ae2d2 --- /dev/null +++ b/2183/CH4/EX4.8/Ex_4_8.sce @@ -0,0 +1,12 @@ +// Example 4.8//Pulse broadning due to material dispersion +clc; +clear; +close; +ho=1343;//nm +h=850;//in nm +so=0.097;//in ps/nm^2 +m(h)=((so*(h/4))*(1-(h/ho))^4);// in ps/nm-km +tgmat=m(h)*70;//in ns/km +dt=tgmat*100;//in ns +disp(dt,"total pulse spread in ns is") +//answer is wrong in the textbook diff --git a/2183/CH4/EX4.9.a/Ex_4_9_a.sce b/2183/CH4/EX4.9.a/Ex_4_9_a.sce new file mode 100755 index 000000000..8398bfb19 --- /dev/null +++ b/2183/CH4/EX4.9.a/Ex_4_9_a.sce @@ -0,0 +1,10 @@ +// Example 4.9.a //delay
+clc;
+clear;
+close;
+d=0.01;// Change in refractive index
+n1=1.5;//Core refrctive index
+L=6*10^3;//Length in meter
+C=2.998*10^8;//Speed of light in m/s
+dts=round(((L*n1*d)/C)*10^9);//delay in ns
+disp(dts,"delay in ns")
diff --git a/2183/CH4/EX4.9.b/Ex_4_9_b.sce b/2183/CH4/EX4.9.b/Ex_4_9_b.sce new file mode 100755 index 000000000..85fd6a15e --- /dev/null +++ b/2183/CH4/EX4.9.b/Ex_4_9_b.sce @@ -0,0 +1,10 @@ +// Example 4.9.b;//Pulse broadning due to intermodal dispersion
+clc;
+clear;
+close;
+d=0.01;// Change in refractive index
+n1=1.5;//Core refrctive index
+L=6*10^3;//Length in meter
+C=2.998*10^8;//Speed of light in m/s
+Ss=(L*n1*d)/(2*sqrt(3)*C)*10^9;//Pulse broadning due to intermodal dispersion in ns
+disp(Ss,"Pulse broadning due to intermodal dispersion in ns")
diff --git a/2183/CH4/EX4.9.c/Ex_4_9_c.sce b/2183/CH4/EX4.9.c/Ex_4_9_c.sce new file mode 100755 index 000000000..e1a0b0dc8 --- /dev/null +++ b/2183/CH4/EX4.9.c/Ex_4_9_c.sce @@ -0,0 +1,14 @@ +// Example 4.9.c//Bit Rate
+clc;
+clear;
+close;
+d=0.01;// Change in refractive index
+n1=1.5;//Core refrctive index
+L=6*10^3;//Length in meter
+C=2.998*10^8;//Speed of light in m/s
+dts=round(((L*n1*d)/C)*10^9);//Delay in ns
+Bt=(1/(2*dts*10^9))*10^12;//Bit rate in Mbits/sec
+Ss=(L*n1*d)/(2*sqrt(3)*C);//Pulse broadning due to intermodal dispersion in ns
+Btimp=0.2/Ss;//
+disp(Bt,"Bit rate in M bit per seconds")
+disp(Btimp*10^-6,"improved estimate of bit rate in M bit per seconds")
diff --git a/2183/CH4/EX4.9.d/Ex_4_9_d.sce b/2183/CH4/EX4.9.d/Ex_4_9_d.sce new file mode 100755 index 000000000..69e0e522f --- /dev/null +++ b/2183/CH4/EX4.9.d/Ex_4_9_d.sce @@ -0,0 +1,14 @@ +// Example 4.9.d//BANDWIDTH LENGTH PRODUCT +clc; +clear; +close; +d=0.01;// Change in refractive index +n1=1.5;//Core refrctive index +L=6*10^3;//Length in meter +C=2.998*10^8;//Speed of light in m/s +dts=round(((L*n1*d)/C)*10^9);//Delay in ns +Bt=(1/(2*dts*10^9))*10^12;//Bit rate in Mbits/sec +Ss=(L*n1*d)/(2*sqrt(3)*C);//Pulse broadning due to intermodal dispersion in ns +Btimp=0.2/Ss;// +BL=Btimp*L*10^-9;// bandwidth length product in km +disp(BL,"bandwidth length product MHz km") |