diff options
Diffstat (limited to '2144/CH8')
-rwxr-xr-x | 2144/CH8/EX8.1/ex8_1.sce | 16 | ||||
-rwxr-xr-x | 2144/CH8/EX8.10/ex8_10.sce | 37 | ||||
-rwxr-xr-x | 2144/CH8/EX8.11/ex8_11.sce | 45 | ||||
-rwxr-xr-x | 2144/CH8/EX8.12/ex8_12.sce | 28 | ||||
-rwxr-xr-x | 2144/CH8/EX8.13/ex8_13.sce | 14 | ||||
-rwxr-xr-x | 2144/CH8/EX8.14/ex8_14.sce | 17 | ||||
-rwxr-xr-x | 2144/CH8/EX8.15/ex8_15.sce | 11 | ||||
-rwxr-xr-x | 2144/CH8/EX8.16/ex8_16.sce | 15 | ||||
-rwxr-xr-x | 2144/CH8/EX8.17/ex8_17.sce | 30 | ||||
-rwxr-xr-x | 2144/CH8/EX8.18/ex8_18.sce | 36 | ||||
-rwxr-xr-x | 2144/CH8/EX8.19/ex8_19.sce | 31 | ||||
-rwxr-xr-x | 2144/CH8/EX8.2/ex8_2.sce | 20 | ||||
-rwxr-xr-x | 2144/CH8/EX8.20/ex8_20.sce | 45 | ||||
-rwxr-xr-x | 2144/CH8/EX8.3/ex8_3.sce | 16 | ||||
-rwxr-xr-x | 2144/CH8/EX8.4/ex8_4.sce | 24 | ||||
-rwxr-xr-x | 2144/CH8/EX8.5/ex8_5.sce | 20 | ||||
-rwxr-xr-x | 2144/CH8/EX8.6/ex8_6.sce | 11 | ||||
-rwxr-xr-x | 2144/CH8/EX8.7/ex8_7.sce | 15 | ||||
-rwxr-xr-x | 2144/CH8/EX8.8/ex8_8.sce | 20 | ||||
-rwxr-xr-x | 2144/CH8/EX8.9/ex8_9.sce | 12 |
20 files changed, 463 insertions, 0 deletions
diff --git a/2144/CH8/EX8.1/ex8_1.sce b/2144/CH8/EX8.1/ex8_1.sce new file mode 100755 index 000000000..995376682 --- /dev/null +++ b/2144/CH8/EX8.1/ex8_1.sce @@ -0,0 +1,16 @@ +// Exa 8.1
+clc;
+clear;
+close;
+// Given data
+C= 85;// in %
+H= 12.5;// in %
+H1 = 35000;// heat liberated by carbon in kJ
+H2 = 143000;// heat liberated by hydrogen in kJ
+HCV = (C*H1+H*H2)/100;// Higher calorific value in kJ/kg
+disp(HCV,"Higher calorific value in kJ/kg is");
+ms = 9;
+LCV= HCV -(ms*H*2442)/100 ;// Lower calorific value in kJ/kg
+disp(LCV,"Lower calorific value in kJ/kg is");
+
+// Note: The calculated value in the book is not accurate
diff --git a/2144/CH8/EX8.10/ex8_10.sce b/2144/CH8/EX8.10/ex8_10.sce new file mode 100755 index 000000000..d4f8bfb5c --- /dev/null +++ b/2144/CH8/EX8.10/ex8_10.sce @@ -0,0 +1,37 @@ +// Exa 8.10
+clc;
+clear;
+close;
+// Given data
+mC= 0.88;//mass of carbon in kg
+mH2= 0.03;//mass of H2 in kg
+mS= 0.005;//mass of S in kg
+O2_mass= 2.66*mC + 8*mH2 + 2*mS;// in kg
+Air_mass= O2_mass/0.23;// in kg
+Air_mass= 1.5*Air_mass;// in kg (as 50% excess air is supplied)
+disp(Air_mass,"Actula mass of air required per kg of fuel for complete combustion in kg is : ")
+// The flue gases per kg of fuel will be:
+CO2= 3.226;// in kg
+N2= 13.04;// in kg
+O2= 1.298;// in kg
+total_mass= CO2+N2+O2;// in kg
+CO2_per_by_mass= CO2/total_mass*100;// in %
+O2_per_by_mass= O2/total_mass*100;// in %
+N2_per_by_mass= N2/total_mass*100;// in %
+disp(CO2_per_by_mass,"Percentage of CO2 by mass is : ")
+disp(O2_per_by_mass,"Percentage of O2 by mass is : ")
+disp(N2_per_by_mass,"Percentage of N2 by mass is : ")
+M_wt_CO2= 44;
+CO2_Per_M_com_M_wt= CO2_per_by_mass/M_wt_CO2;// % Mass composition molecular weight
+M_wt_O2= 32;
+O2_Per_M_com_M_wt= O2_per_by_mass/M_wt_O2;// % Mass composition molecular weight
+M_wt_N2= 28;
+N2_Per_M_com_M_wt= N2_per_by_mass/M_wt_N2;// % Mass composition molecular weight
+total= CO2_Per_M_com_M_wt + O2_Per_M_com_M_wt + N2_Per_M_com_M_wt;
+CO2_per_by_vol= CO2_Per_M_com_M_wt/total*100;// in %
+O2_per_by_vol= O2_Per_M_com_M_wt/total*100;// in %
+N2_per_by_vol= N2_Per_M_com_M_wt/total*100;// in %
+disp(CO2_per_by_vol,"Percentage of CO2 by volume is : ")
+disp(O2_per_by_vol,"Percentage of O2 by volume is : ")
+disp(N2_per_by_vol,"Percentage of N2 by volume is : ")
+
diff --git a/2144/CH8/EX8.11/ex8_11.sce b/2144/CH8/EX8.11/ex8_11.sce new file mode 100755 index 000000000..64488761e --- /dev/null +++ b/2144/CH8/EX8.11/ex8_11.sce @@ -0,0 +1,45 @@ +// Exa 8.11
+clc;
+clear;
+close;
+// Given data
+Cp= 1;// in kJ/kg
+H= 2.7*10^3;// total heat of vaport in flue gas in kJ/kg
+CoalCalorific= 32.82*10^3;// in kJ/kg
+T1= 310;// final gas flue temp. in °C
+T2= 25;// boiler house temp. in °C
+mC= 0.84;//mass of carbon in kg
+mH2= 0.05;//mass of H2 in kg
+O2_mass= 2.66*mC + 9*mH2;// in kg
+Air_mass= O2_mass/0.23;// in kg
+Air_mass= 1.5*Air_mass;// in kg (as 50% excess air is supplied)
+disp(Air_mass,"Actual mass of air required per kg of fuel for complete combustion in kg is : ")
+// Analysis of dry flue gas by weight
+CO2= 3.08;// in kg
+N2= 13.24;// in kg
+O2= 1.32;// in kg
+total_mass= CO2+N2+O2;// in kg
+CO2_per_by_mass= CO2/total_mass*100;// in %
+O2_per_by_mass= O2/total_mass*100;// in %
+N2_per_by_mass= N2/total_mass*100;// in %
+disp(CO2_per_by_mass,"Percentage of CO2 by mass is : ")
+disp(O2_per_by_mass,"Percentage of O2 by mass is : ")
+disp(N2_per_by_mass,"Percentage of N2 by mass is : ")
+M_wt_CO2= 44;
+CO2_Per_M_com_M_wt= CO2_per_by_mass/M_wt_CO2;// % Mass composition molecular weight
+M_wt_O2= 32;
+O2_Per_M_com_M_wt= O2_per_by_mass/M_wt_O2;// % Mass composition molecular weight
+M_wt_N2= 28;
+N2_Per_M_com_M_wt= N2_per_by_mass/M_wt_N2;// % Mass composition molecular weight
+total= CO2_Per_M_com_M_wt + O2_Per_M_com_M_wt + N2_Per_M_com_M_wt;
+CO2_per_by_vol= CO2_Per_M_com_M_wt/total*100;// in %
+O2_per_by_vol= O2_Per_M_com_M_wt/total*100;// in %
+N2_per_by_vol= N2_Per_M_com_M_wt/total*100;// in %
+disp(CO2_per_by_vol,"Percentage of CO2 by volume is : ")
+disp(O2_per_by_vol,"Percentage of O2 by volume is : ")
+disp(N2_per_by_vol,"Percentage of N2 by volume is : ")
+H_w_v= 9*mH2*H;//heat carried away by water vapour in kJ
+H_dry_flue= total_mass*Cp*(T1-T2);// in kJ
+H_total= H_w_v+H_dry_flue;// in kJ
+H_available= CoalCalorific-H_total;// in kJ
+disp(H_available,"Heat available for steam generation in kJ is : ")
diff --git a/2144/CH8/EX8.12/ex8_12.sce b/2144/CH8/EX8.12/ex8_12.sce new file mode 100755 index 000000000..3e76b2f95 --- /dev/null +++ b/2144/CH8/EX8.12/ex8_12.sce @@ -0,0 +1,28 @@ +// Exa 8.12
+clc;
+clear;
+close;
+// Given data
+mC= 0.86;//mass of carbon in kg
+mH2= 0.14;//mass of H2 in kg
+maBYmf= (2.66*mC + 8*mH2)/0.23;// in kg/kg of fuel
+Air_supp_deficiency= maBYmf/10;// in kg/kg of fuel
+Air_saved= 16/(12*0.23);// in kg/kg of carbon
+m1= Air_supp_deficiency/Air_saved;// mass of coal burns to carbon monoxide
+m2= mC-m1;// mass of coal burns to carbon diooxide
+CO2_formed= m2*3.66;// in kg
+CO_formed= m1*28/12;// in kg
+N2_formed= Air_supp_deficiency*0.77*9;// in kg
+M_wt_CO2= 44;// molecular weight
+M_wt_CO= 28;
+M_wt_N2= 28;
+CO2_rel_vol= CO2_formed/M_wt_CO2;
+CO_rel_vol= CO_formed/M_wt_CO;
+N2_rel_vol= N2_formed/M_wt_N2;
+total_rel_vol=CO2_rel_vol+CO_rel_vol+N2_rel_vol;
+CO2_vol= CO2_rel_vol/total_rel_vol*100;// in %
+CO_vol= CO_rel_vol/total_rel_vol*100;// in %
+N2_vol= N2_rel_vol/total_rel_vol*100;// in %
+disp(CO2_vol,"Volumetric analysis of CO2 in % is : ")
+disp(CO_vol,"Volumetric analysis of CO in % is : ")
+disp(N2_vol,"Volumetric analysis of N2 in % is : ")
diff --git a/2144/CH8/EX8.13/ex8_13.sce b/2144/CH8/EX8.13/ex8_13.sce new file mode 100755 index 000000000..9d7e6188c --- /dev/null +++ b/2144/CH8/EX8.13/ex8_13.sce @@ -0,0 +1,14 @@ +// Exa 8.13
+clc;
+clear;
+close;
+// Given data
+N = 83;//compositon of nitrogen in %
+C = 81;//carbon mass in the fuel in %
+C1 = 11;//compositon of CO2 in %
+C2 = 2;// compositon of CO in %
+O = 4;// composition of O2 in %
+AirSupplied =N*C/(33*(C1+C2));// in kg/kg
+disp(AirSupplied,"The amount of air supplied in kg per kg of fuel is : ")
+ExcessAir =79*O*C/(21*33*(C1+C2));// in kg/kg
+disp(ExcessAir,"Weight of excess air in kg per kg of fuel is : ")
diff --git a/2144/CH8/EX8.14/ex8_14.sce b/2144/CH8/EX8.14/ex8_14.sce new file mode 100755 index 000000000..c9bd0dbb4 --- /dev/null +++ b/2144/CH8/EX8.14/ex8_14.sce @@ -0,0 +1,17 @@ +// Exa 8.14
+clc;
+clear;
+close;
+// Given data
+CO2= 10;// in %
+O2= 6;// in %
+N2= 84;// in %
+// a= x/12 and b= (1-x)/2
+// 0.23*y/32= a+b/2+c
+abyc= CO2/O2;
+// a/(0.77*y/28)= CO2/N2
+x=0.835;
+carbon_per= x*100;// in %
+hydrogen_per= 100-carbon_per;// in %
+disp("The fuel consists of "+string(carbon_per)+" % carbon and "+string(hydrogen_per)+" % hydrogen.")
+
diff --git a/2144/CH8/EX8.15/ex8_15.sce b/2144/CH8/EX8.15/ex8_15.sce new file mode 100755 index 000000000..8368612a1 --- /dev/null +++ b/2144/CH8/EX8.15/ex8_15.sce @@ -0,0 +1,11 @@ +// Exa 8.15
+clc;
+clear;
+close;
+// Given data
+H2 = 50;// in %
+CO = 5;// in %
+CH4 = 35;// in %
+disp("Quantity of air required for complete combustion of 1m^3 of gas in m^3 is:")
+V = ((0.5*(H2+CO))+(2*CH4))/21;// in m^3
+disp(V)
diff --git a/2144/CH8/EX8.16/ex8_16.sce b/2144/CH8/EX8.16/ex8_16.sce new file mode 100755 index 000000000..61ecc535a --- /dev/null +++ b/2144/CH8/EX8.16/ex8_16.sce @@ -0,0 +1,15 @@ +// Exa 8.16
+clc;
+clear;
+close;
+// Given data
+H2= 0.4;// in m^3
+CH= 0.425;// in m^3
+C2H4= 0.0253;// in m^3
+C4H8= 0.0127;// in m^3
+CO= 0.075;// in m^3
+O2_vol= 0.5*H2 + 2*CH + 3*C2H4 + 6*C4H8 + 0.5*CO;// in m^3
+Air_vol= O2_vol/0.21;// in m^3
+disp(Air_vol,"The volume of air required for complete combustion in m^3 is");
+actualAirSupplied= 1.3*Air_vol;// in m^3
+disp(actualAirSupplied,"The actual quantity of air supplied in m^3 is : ")
diff --git a/2144/CH8/EX8.17/ex8_17.sce b/2144/CH8/EX8.17/ex8_17.sce new file mode 100755 index 000000000..d598cfcca --- /dev/null +++ b/2144/CH8/EX8.17/ex8_17.sce @@ -0,0 +1,30 @@ +// Exa 8.17
+clc;
+clear;
+close;
+// Given data
+V_H2= 0.15;// in m^3
+V_CH4= 0.02;// in m^3
+V_CO= 0.20;// in m^3
+V_CO2= 0.06;// in m^3
+V_O2= 0.03;// in m^3
+V_N2= 0.54;// in m^3
+V1= 0.5*V_H2;// quantity of O2 required for complete combustion of H2
+V2= 2*V_CH4;// in m^3
+V3= 0.5*V_CO;// in m^3
+V= V1+V2+V3;// total oxygen required in m^3
+O2_supp= V-V_O2;// O2 to be supplied by air in m^3
+Air_req_min= O2_supp/0.21;// minimum quantity of air required in m^3
+Actual_Air_Supp= 1.5*Air_req_min;// m^3 of air
+disp(Actual_Air_Supp,"The volume of air supplied in m^3")
+Vol_Carbondioxide_inFlue= V_CO2+V_CH4+V_CO;//total volume of carbon dioxide
+Vol_O2_inFlue= (Actual_Air_Supp-Air_req_min)*0.21;// in m^3
+N2_from_air_Supp= 0.79*Actual_Air_Supp;// in m^3
+Vol_N2_inFlue= N2_from_air_Supp+V_N2;// in m^3
+total= Vol_Carbondioxide_inFlue+Vol_O2_inFlue+Vol_N2_inFlue;// in m^3
+Per_CarbonDioxide= Vol_Carbondioxide_inFlue/total*100;// in %
+Per_Oxygen= Vol_O2_inFlue/total*100;// in %
+Per_Nitrogen= Vol_N2_inFlue/total*100;// in %
+disp(Per_CarbonDioxide,"% Carbon dioxide is : ")
+disp(Per_Oxygen,"% Carbon dioxide is : ")
+disp(Per_Nitrogen,"% Carbon dioxide is : ")
diff --git a/2144/CH8/EX8.18/ex8_18.sce b/2144/CH8/EX8.18/ex8_18.sce new file mode 100755 index 000000000..2c4363f34 --- /dev/null +++ b/2144/CH8/EX8.18/ex8_18.sce @@ -0,0 +1,36 @@ +// Exa 8.18
+clc;
+clear;
+close;
+// Given data
+V_CH4= 0.14;// in m^3
+V_CO= 0.35;// in m^3
+V_CO2= 0.06;// in m^3
+V_N2= 0.03;// in m^3
+V_H2= 0.42;// in m^3
+a= V_CH4+V_CO2+V_CO;
+b= 2*V_CH4+V_H2;
+// a+0.5*b+c= V_CO2+V_CO/2+0.21*5
+c= V_CO2+V_CO/2+0.21*5-a-0.5*b;
+d=V_N2+5*0.79;
+total= a+c+d;
+Vol_per_CO2= a/total*100;// in %
+Vol_per_O2= c/total*100;// in %
+Vol_per_N2= d/total*100;// in %
+disp(Vol_per_CO2,"Volume percentage of CO2 is : ")
+disp(Vol_per_O2,"Volume percentage of O2 is : ")
+disp(Vol_per_N2,"Volume percentage of N2 is : ")
+m_CO2= 44;// molecular mass
+m_O2= 32;// molecular mass
+m_N2=28;// molecular mass
+mass_ratio_CO2= Vol_per_CO2/m_CO2;
+mass_ratio_O2= Vol_per_O2/m_O2;
+mass_ratio_N2= Vol_per_N2/m_N2;
+total_mass_ratio= mass_ratio_CO2+mass_ratio_O2+mass_ratio_N2;
+mass_per_CO2= mass_ratio_CO2/total_mass_ratio*100;
+mass_per_O2= mass_ratio_O2/total_mass_ratio*100;
+mass_per_N2= mass_ratio_N2/total_mass_ratio*100;
+disp(mass_per_CO2,"Mass percentage of CO2 is : ")
+disp(mass_per_O2,"Mass percentage of O2 is : ")
+disp(mass_per_N2,"Mass percentage of N2 is : ")
+
diff --git a/2144/CH8/EX8.19/ex8_19.sce b/2144/CH8/EX8.19/ex8_19.sce new file mode 100755 index 000000000..2ef49e77c --- /dev/null +++ b/2144/CH8/EX8.19/ex8_19.sce @@ -0,0 +1,31 @@ +// Exa 8.19
+clc;
+clear;
+close;
+// Given data
+GCR= 110;// gas consumption rate in m^3/hour
+rpm= 300;// round per minute
+Vs= 0.1;// swept volume of engine in m^3
+V_H2=0.50;// in m^3
+V_CO= 0.05;// in m^3
+V_CH4=0.25;// in m^3
+V_CO2= 0.10;// in m^3
+V_N2= 0.10;// in m^3
+V_O2= 5.8;// in m^3
+AirRequired= (0.5*(V_H2+V_CO)+2*V_CH4)/0.21;// in m^3
+CO2_formed= V_CO+V_CH4;// in m^3
+total_CO2= CO2_formed+V_CO2;// in m^3
+N2_of_air= 0.79*AirRequired;// in m^3
+total_N2= N2_of_air+V_N2;// in m^3
+TotalVolume= total_N2+total_CO2;// in m^3
+V= TotalVolume;// in m^3
+ExcessAirSupplied= (V_O2*V)/(21-V_O2);// in m^3
+TotalAirSupplied= ExcessAirSupplied+AirRequired;// in m^3
+AirFuel_ratio= round(TotalAirSupplied)/1;
+disp(AirFuel_ratio,"Air fuel ratio by volume is : ")
+// Let V1= Volume of air + gas aspirated per hour
+V1= GCR*6;// in m^3
+Vs_out= Vs*rpm/2*60;// in m^3
+Ratio= V1/Vs_out;
+disp("The value of Ratio i.e.")
+disp(Ratio,"(Volume of air + gas aspirted per hour)/Volume swept out by piston per hour")
diff --git a/2144/CH8/EX8.2/ex8_2.sce b/2144/CH8/EX8.2/ex8_2.sce new file mode 100755 index 000000000..82a3829ad --- /dev/null +++ b/2144/CH8/EX8.2/ex8_2.sce @@ -0,0 +1,20 @@ +// Exa 8.2
+clc;
+clear;
+close;
+// Given data
+CH4 = 77;// in %
+C2H6 = 22.5;//in %
+H1 = 40.08;// heat liberated by CH4 in MJ/nm^3
+H2 = 69.52;// heat liberated by C2H6 in MJ/nm^3
+HCV = (CH4*H1+C2H6*H2)/100;// Higher calorific value in kJ/kg
+disp(HCV,"The higher calorific value in MJ/nm^3")
+V1= CH4*2/100;// volume of water due to combustion of CH4 in m^3
+V2= C2H6*3/100;// volume of water due to combustion of C2H6 in m^3
+V= V1+V2;// total volume in m^3
+ms= 18/22.41;// in kg
+LCV= HCV-ms*V*2.242;// in MJ/nm^3
+disp(LCV,"The lower calorific value in MJ/nm^3")
+disp("The word nm^3 means that cubic metre at normal temperature and pressure")
+
+// Note: The calculated value in the book is not accurate
diff --git a/2144/CH8/EX8.20/ex8_20.sce b/2144/CH8/EX8.20/ex8_20.sce new file mode 100755 index 000000000..54e5333c2 --- /dev/null +++ b/2144/CH8/EX8.20/ex8_20.sce @@ -0,0 +1,45 @@ +// Exa 8.20
+clc;
+clear;
+close;
+// Given data
+CO2= 9.9;// in %
+CO= 7.2;// in %
+H2= 3.3;// in %
+CH4= 0.3;// in %
+N2= 79.3;// in %
+O2= N2*21/79;// in %
+disp("Method 1 : By Carbon balance : ")
+Z= (CO2+CO+CH4)/8;
+x= 8*Z;
+measured_air_fuel_ratio= 11.3;
+mm1= 29;// molecular mass of air
+mm2= 12*8+17;// molecular mass of C8H17
+massOf_air= (O2+N2)*mm1;
+massOf_fuel= Z*mm2;
+air_fuel_ratio= massOf_air/massOf_fuel;
+disp(air_fuel_ratio,"The air fuel ratio by mass is : ")
+Per_error= (air_fuel_ratio - measured_air_fuel_ratio)/measured_air_fuel_ratio*100;
+disp(Per_error,"Percentage error is : ")
+disp("Method 2 : By Hydrogen balance : ")
+X= (O2-CO2-CO/2)*2;
+Z= (4*CH4+2*H2+X*2)/17;
+massOf_air= (O2+N2)*mm1;
+massOf_fuel= Z*mm2;
+air_fuel_ratio= massOf_air/massOf_fuel;
+disp(air_fuel_ratio,"The air fuel ratio by mass is : ")
+Per_error= (air_fuel_ratio - measured_air_fuel_ratio)/measured_air_fuel_ratio*100;
+disp(Per_error,"Percentage error is : ")
+disp("Method 3 : By Carbon-Hydrogen balance : ")
+y= (4*CH4+2*H2+X*2);
+massOf_air= (O2+N2)*mm1;
+massOf_fuel= x*12+y;
+air_fuel_ratio= massOf_air/massOf_fuel;
+disp(air_fuel_ratio,"The air fuel ratio by mass is : ")
+Per_error= (air_fuel_ratio - measured_air_fuel_ratio)/measured_air_fuel_ratio*100;
+disp(Per_error,"Percentage error is : ")
+
+
+
+
+
diff --git a/2144/CH8/EX8.3/ex8_3.sce b/2144/CH8/EX8.3/ex8_3.sce new file mode 100755 index 000000000..e2f91a8be --- /dev/null +++ b/2144/CH8/EX8.3/ex8_3.sce @@ -0,0 +1,16 @@ +// Exa 8.3
+clc;
+clear;
+close;
+// Given data
+mw = 2.5;//mass of water in kg
+mc= 0.744;//water equivalen of apparatus in kg
+CoalMass = 1.01*10^-3;// in kg
+T_r = 2.59;//temp. rise in degree C
+C_c = 0.016;// Cooling correction in degree C
+theta = T_r +C_c;//corrected temp. rise in degree C
+Cp = 4.1868;// in kJ/kg-K
+m = mw+mc;// in kg
+Qw = m * Cp*theta;//heat received by water in kJ
+C = (Qw/CoalMass);// in kJ/kg
+disp(C,"Calorific value of the fuel in kJ/kg is");
diff --git a/2144/CH8/EX8.4/ex8_4.sce b/2144/CH8/EX8.4/ex8_4.sce new file mode 100755 index 000000000..2e3c66681 --- /dev/null +++ b/2144/CH8/EX8.4/ex8_4.sce @@ -0,0 +1,24 @@ +// Exa 8.4
+clc;
+clear;
+close;
+// Given data
+T_r = 2.912;// temp. rise in degree C
+C_c = 0.058;//cooling correction in degree C
+theta = T_r + C_c;// in degree C
+HyCon= 14/100;// Hydrogen content
+C_P = 4.1868;// in J/gm-K
+Cc = 16750;//calorific value of cotton in J/gm
+m_w = 1400;// in gm
+m_c = 500;// in gm
+m = m_w+m_c;// in gm
+m1 = 0.005;//mass of cotton in gm
+m2 = 0.579;//mass of oil in gm
+Qw = m*C_P*theta ;// in J
+H1= m1*Cc;// heat given out by combustion of cotton in J
+Qin= Qw-H1;// in J
+C= Qin/m2;// J/gm or kJ/kg
+LCV= C-2442*9*HyCon;// in J/gm or kJ/kg
+disp(C,"Higher Calorific value of the fuel in J/gm or kJ/kg is :")
+disp(LCV,"Lower Calorific value of the fuel in J/gm or kJ/kg is :")
+
diff --git a/2144/CH8/EX8.5/ex8_5.sce b/2144/CH8/EX8.5/ex8_5.sce new file mode 100755 index 000000000..37454afda --- /dev/null +++ b/2144/CH8/EX8.5/ex8_5.sce @@ -0,0 +1,20 @@ +// Exa 8.5
+clc;
+clear;
+close;
+// Given data
+W_c = 500*10^-3;//water collected in kg
+C_P = 4.1868;// in kJ/kg-K
+T_o = 28.3;//outlet temp. in °C
+T_i = 14;//inlet temp. in °C
+P_bero= 785;// barometric pressure in mm
+P_gas= P_bero+90/13.6;// in mm
+T1=17+273;// gas temp. in K
+T2= 15+273;// in K
+theta = T_o-T_i;//temp. rise in °C
+Qw = W_c * C_P*theta;// in kJ
+Vgs= 2.8*10^-3;//volume of gas consumed in m^3
+E = Qw/Vgs;// in kJ
+V1= P_gas/760*(T2/T1);// in m^3
+CalorificValue= E/V1;// in kJ/standard m^3
+disp(CalorificValue,"Calorific value in kJ/m^3 is : ")
diff --git a/2144/CH8/EX8.6/ex8_6.sce b/2144/CH8/EX8.6/ex8_6.sce new file mode 100755 index 000000000..a54fa8bc8 --- /dev/null +++ b/2144/CH8/EX8.6/ex8_6.sce @@ -0,0 +1,11 @@ +// Exa 8.6
+clc;
+clear;
+close;
+// Given data
+C = 0.83;// in kg
+H = 0.05;// in kg
+O = 0.02;// in kg
+S = 0.002;// in kg
+AbyF_min = (11.6 * C) + +(34.8*(H-(O/8))) + (4.35 * S);// in kg
+disp(AbyF_min,"The therotical mass of air in kg is");
diff --git a/2144/CH8/EX8.7/ex8_7.sce b/2144/CH8/EX8.7/ex8_7.sce new file mode 100755 index 000000000..0c0390080 --- /dev/null +++ b/2144/CH8/EX8.7/ex8_7.sce @@ -0,0 +1,15 @@ +// Exa 8.7
+clc;
+clear;
+close;
+// Given data
+C = 0.86;// in kg
+H = 0.14;// in kg
+S = 0;// in kg
+O = 0;// in kg
+Vair = 0.77;//volume of 1kg of air in m^3
+Spe_Gravity = 0.8;// specific gravity of petrol
+maBYmf = (11.6*C)+(34.8*(H-O/8)) + (4.35*S);// in kg
+disp(maBYmf,"The therotical mass of air in kg is");
+V = maBYmf *Spe_Gravity*Vair ;// in m^3/litre
+disp(V,"Volume of air required in m^3/litre is");
diff --git a/2144/CH8/EX8.8/ex8_8.sce b/2144/CH8/EX8.8/ex8_8.sce new file mode 100755 index 000000000..c066e7e4f --- /dev/null +++ b/2144/CH8/EX8.8/ex8_8.sce @@ -0,0 +1,20 @@ +// Exa 8.8
+clc;
+clear;
+close;
+// Given data
+C = 0.75;// in kg
+H = 0.08;// in kg
+O = 0.03;// in kg
+S = 0;// in kg
+P = 1.1;// in bar
+P = P*10^5;// in N/m^2
+maBYmf = (11.6*C) + (34.8 * (H-(O/8))) + (4.35 *S);// in kg
+disp(maBYmf ,"The mass of air in kg is");
+m = 1.5*(maBYmf );// in kg
+T = 20+273;// in K
+R = 29.27;
+V = (m*R*T)/P;// in m^3
+disp(V,"Volume in m^3 is");
+
+// Note: The calculated value of V in the book is wrong.
diff --git a/2144/CH8/EX8.9/ex8_9.sce b/2144/CH8/EX8.9/ex8_9.sce new file mode 100755 index 000000000..979f6f48f --- /dev/null +++ b/2144/CH8/EX8.9/ex8_9.sce @@ -0,0 +1,12 @@ +// Exa 8.9
+clc;
+clear;
+close;
+// Given data
+C = 0.82;// in kg
+H2 = .12;// in kg
+O2 = 0.02;// in kg
+a = C/12;
+b = H2/2;
+y = (32*(a+(0.5*b))-O2)/0.23;
+disp(y,"Minimum quantity of air in kg is");
|