summaryrefslogtreecommitdiff
path: root/2144
diff options
context:
space:
mode:
Diffstat (limited to '2144')
-rwxr-xr-x2144/CH1/EX1.1/ex1_1.sce11
-rwxr-xr-x2144/CH1/EX1.10/ex1_10.sce12
-rwxr-xr-x2144/CH1/EX1.2/ex1_2.sce14
-rwxr-xr-x2144/CH1/EX1.3/ex1_3.sce15
-rwxr-xr-x2144/CH1/EX1.4/ex1_4.sce11
-rwxr-xr-x2144/CH1/EX1.5/ex1_5.sce12
-rwxr-xr-x2144/CH1/EX1.6/ex1_6.sce8
-rwxr-xr-x2144/CH1/EX1.7/ex1_7.sce11
-rwxr-xr-x2144/CH1/EX1.8/ex1_8.sce12
-rwxr-xr-x2144/CH1/EX1.9/ex1_9.sce17
-rwxr-xr-x2144/CH2/EX2.1/exa_2_1.sce11
-rwxr-xr-x2144/CH2/EX2.10/exa_2_10.sce22
-rwxr-xr-x2144/CH2/EX2.11/exa_2_11.sce18
-rwxr-xr-x2144/CH2/EX2.12/exa_2_12.sce14
-rwxr-xr-x2144/CH2/EX2.13/exa_2_13.sce9
-rwxr-xr-x2144/CH2/EX2.14/exa_2_14.sce10
-rwxr-xr-x2144/CH2/EX2.15/exa_2_15.sce11
-rwxr-xr-x2144/CH2/EX2.16/exa_2_16.sce11
-rwxr-xr-x2144/CH2/EX2.17/exa_2_17.sce16
-rwxr-xr-x2144/CH2/EX2.18/exa_2_18.sce18
-rwxr-xr-x2144/CH2/EX2.19/exa_2_19.sce15
-rwxr-xr-x2144/CH2/EX2.2/exa_2_2.sce14
-rwxr-xr-x2144/CH2/EX2.20/exa_2_20.sce14
-rwxr-xr-x2144/CH2/EX2.21/exa_2_21.sce24
-rwxr-xr-x2144/CH2/EX2.22/exa_2_22.sce38
-rwxr-xr-x2144/CH2/EX2.23/exa_2_23.sce17
-rwxr-xr-x2144/CH2/EX2.24/exa_2_24.sce47
-rwxr-xr-x2144/CH2/EX2.3/exa_2_3.sce12
-rwxr-xr-x2144/CH2/EX2.4/exa_2_4.sce9
-rwxr-xr-x2144/CH2/EX2.5/exa_2_5.sce11
-rwxr-xr-x2144/CH2/EX2.6/exa_2_6.sce13
-rwxr-xr-x2144/CH2/EX2.7/exa_2_7.sce12
-rwxr-xr-x2144/CH2/EX2.8/exa_2_8.sce11
-rwxr-xr-x2144/CH2/EX2.9/exa_2_9.sce14
-rwxr-xr-x2144/CH3/EX3.1/ex3_1.sce23
-rwxr-xr-x2144/CH3/EX3.10/ex3_10.sce29
-rwxr-xr-x2144/CH3/EX3.11/ex3_11.sce18
-rwxr-xr-x2144/CH3/EX3.12/ex3_12.sce18
-rwxr-xr-x2144/CH3/EX3.13/ex3_13.sce21
-rwxr-xr-x2144/CH3/EX3.14/ex3_14.sce14
-rwxr-xr-x2144/CH3/EX3.15/ex3_15.sce37
-rwxr-xr-x2144/CH3/EX3.16/ex3_16.sce16
-rwxr-xr-x2144/CH3/EX3.17/ex3_17.sce17
-rwxr-xr-x2144/CH3/EX3.18/ex3_18.sce21
-rwxr-xr-x2144/CH3/EX3.19/ex3_19.sce19
-rwxr-xr-x2144/CH3/EX3.2/ex3_2.sce31
-rwxr-xr-x2144/CH3/EX3.20/ex3_20.sce34
-rwxr-xr-x2144/CH3/EX3.21/ex3_21.sce16
-rwxr-xr-x2144/CH3/EX3.22/ex3_22.sce32
-rwxr-xr-x2144/CH3/EX3.23/ex3_23.sce28
-rwxr-xr-x2144/CH3/EX3.24/ex3_24.sce29
-rwxr-xr-x2144/CH3/EX3.25/ex3_25.sce19
-rwxr-xr-x2144/CH3/EX3.26/ex3_26.sce26
-rwxr-xr-x2144/CH3/EX3.27/ex3_27.sce33
-rwxr-xr-x2144/CH3/EX3.28/ex3_28.sce20
-rwxr-xr-x2144/CH3/EX3.29/ex3_29.sce13
-rwxr-xr-x2144/CH3/EX3.3/ex3_3.sce23
-rwxr-xr-x2144/CH3/EX3.30/ex3_30.sce17
-rwxr-xr-x2144/CH3/EX3.4/ex3_4.sce28
-rwxr-xr-x2144/CH3/EX3.5/ex3_5.sce18
-rwxr-xr-x2144/CH3/EX3.6/ex3_6.sce21
-rwxr-xr-x2144/CH3/EX3.7/ex3_7.sce19
-rwxr-xr-x2144/CH3/EX3.8/ex3_8.sce30
-rwxr-xr-x2144/CH3/EX3.9/ex3_9.sce23
-rwxr-xr-x2144/CH4/EX4.1/exa_4_1.sce17
-rwxr-xr-x2144/CH4/EX4.2/exa_4_2.sce22
-rwxr-xr-x2144/CH5/EX5.1/ex5_1.sce23
-rwxr-xr-x2144/CH5/EX5.11/ex5_11.sce28
-rwxr-xr-x2144/CH5/EX5.12/ex5_12.sce26
-rwxr-xr-x2144/CH5/EX5.13/ex5_13.sce19
-rwxr-xr-x2144/CH5/EX5.14/ex5_14.sce24
-rwxr-xr-x2144/CH5/EX5.15/ex5_15.sce17
-rwxr-xr-x2144/CH5/EX5.2/ex5_2.sce14
-rwxr-xr-x2144/CH5/EX5.3/ex5_3.sce29
-rwxr-xr-x2144/CH5/EX5.4/ex5_4.sce22
-rwxr-xr-x2144/CH5/EX5.7/ex5_7.sce23
-rwxr-xr-x2144/CH5/EX5.8/ex5_8.sce18
-rwxr-xr-x2144/CH5/EX5.9/ex5_9.sce26
-rwxr-xr-x2144/CH6/EX6.1/ex6_1.sce11
-rwxr-xr-x2144/CH6/EX6.10/ex6_10.sce20
-rwxr-xr-x2144/CH6/EX6.11/ex6_11.sce15
-rwxr-xr-x2144/CH6/EX6.12/ex6_12.sce10
-rwxr-xr-x2144/CH6/EX6.13/ex6_13.sce15
-rwxr-xr-x2144/CH6/EX6.14/ex6_14.sce12
-rwxr-xr-x2144/CH6/EX6.15/ex6_15.sce17
-rwxr-xr-x2144/CH6/EX6.16/ex6_16.sce17
-rwxr-xr-x2144/CH6/EX6.17/ex6_17.sce28
-rwxr-xr-x2144/CH6/EX6.18/ex6_18.sce17
-rwxr-xr-x2144/CH6/EX6.19/ex6_19.sce11
-rwxr-xr-x2144/CH6/EX6.2/ex6_2.sce25
-rwxr-xr-x2144/CH6/EX6.20/ex6_20.sce15
-rwxr-xr-x2144/CH6/EX6.21/ex6_21.sce15
-rwxr-xr-x2144/CH6/EX6.22/ex6_22.sce12
-rwxr-xr-x2144/CH6/EX6.23/ex6_23.sce12
-rwxr-xr-x2144/CH6/EX6.24/ex6_24.sce16
-rwxr-xr-x2144/CH6/EX6.25/ex6_25.sce20
-rwxr-xr-x2144/CH6/EX6.26/ex6_26.sce28
-rwxr-xr-x2144/CH6/EX6.27/ex6_27.sce33
-rwxr-xr-x2144/CH6/EX6.28/ex6_28.sce24
-rwxr-xr-x2144/CH6/EX6.29/ex6_29.sce15
-rwxr-xr-x2144/CH6/EX6.3/ex6_3.sce11
-rwxr-xr-x2144/CH6/EX6.30/ex6_30.sce17
-rwxr-xr-x2144/CH6/EX6.31/ex6_31.sce18
-rwxr-xr-x2144/CH6/EX6.32/ex6_32.sce50
-rwxr-xr-x2144/CH6/EX6.33/ex6_33.sce18
-rwxr-xr-x2144/CH6/EX6.34/ex6_34.sce27
-rwxr-xr-x2144/CH6/EX6.4/ex6_4.sce11
-rwxr-xr-x2144/CH6/EX6.5/ex6_5.sce22
-rwxr-xr-x2144/CH6/EX6.6/ex6_6.sce19
-rwxr-xr-x2144/CH6/EX6.7/ex6_7.sce22
-rwxr-xr-x2144/CH6/EX6.8/ex6_8.sce14
-rwxr-xr-x2144/CH6/EX6.9/ex6_9.sce22
-rwxr-xr-x2144/CH7/EX7.1/ex7_1.sce15
-rwxr-xr-x2144/CH7/EX7.2/ex7_2.sce18
-rwxr-xr-x2144/CH7/EX7.3/ex7_3.sce9
-rwxr-xr-x2144/CH7/EX7.4/ex7_4.sce13
-rwxr-xr-x2144/CH7/EX7.5/ex7_5.sce14
-rwxr-xr-x2144/CH7/EX7.6/ex7_6.sce21
-rwxr-xr-x2144/CH8/EX8.1/ex8_1.sce16
-rwxr-xr-x2144/CH8/EX8.10/ex8_10.sce37
-rwxr-xr-x2144/CH8/EX8.11/ex8_11.sce45
-rwxr-xr-x2144/CH8/EX8.12/ex8_12.sce28
-rwxr-xr-x2144/CH8/EX8.13/ex8_13.sce14
-rwxr-xr-x2144/CH8/EX8.14/ex8_14.sce17
-rwxr-xr-x2144/CH8/EX8.15/ex8_15.sce11
-rwxr-xr-x2144/CH8/EX8.16/ex8_16.sce15
-rwxr-xr-x2144/CH8/EX8.17/ex8_17.sce30
-rwxr-xr-x2144/CH8/EX8.18/ex8_18.sce36
-rwxr-xr-x2144/CH8/EX8.19/ex8_19.sce31
-rwxr-xr-x2144/CH8/EX8.2/ex8_2.sce20
-rwxr-xr-x2144/CH8/EX8.20/ex8_20.sce45
-rwxr-xr-x2144/CH8/EX8.3/ex8_3.sce16
-rwxr-xr-x2144/CH8/EX8.4/ex8_4.sce24
-rwxr-xr-x2144/CH8/EX8.5/ex8_5.sce20
-rwxr-xr-x2144/CH8/EX8.6/ex8_6.sce11
-rwxr-xr-x2144/CH8/EX8.7/ex8_7.sce15
-rwxr-xr-x2144/CH8/EX8.8/ex8_8.sce20
-rwxr-xr-x2144/CH8/EX8.9/ex8_9.sce12
138 files changed, 2707 insertions, 0 deletions
diff --git a/2144/CH1/EX1.1/ex1_1.sce b/2144/CH1/EX1.1/ex1_1.sce
new file mode 100755
index 000000000..001a140f8
--- /dev/null
+++ b/2144/CH1/EX1.1/ex1_1.sce
@@ -0,0 +1,11 @@
+// Exa 1.1
+clc;
+clear;
+close;
+// Given data
+P_m = 760;// pressure of mercury in mm
+P_m_bar = P_m/750;// in bar
+P_W = 0.006867;// pressure of water in bar
+P = P_m_bar+P_W;// in bar
+disp(P,"The absolute pressure of gas in bar is");
+
diff --git a/2144/CH1/EX1.10/ex1_10.sce b/2144/CH1/EX1.10/ex1_10.sce
new file mode 100755
index 000000000..9c9b8a46d
--- /dev/null
+++ b/2144/CH1/EX1.10/ex1_10.sce
@@ -0,0 +1,12 @@
+// Exa 1.10
+clc;
+clear;
+close;
+// Given data
+m = 18.2;//quantity of air supplied of coal in kg
+T1 = 200;// in degree C
+T2 = 18;// in degree C
+del_T = T1-T2;// in degree C
+Spe_heat = 1;// in kJ/kg-K
+Q_C = m*Spe_heat*del_T;// in kJ
+disp(Q_C,"The Quantity of heat supplied per kg of coal in kJ is");
diff --git a/2144/CH1/EX1.2/ex1_2.sce b/2144/CH1/EX1.2/ex1_2.sce
new file mode 100755
index 000000000..fd78daad8
--- /dev/null
+++ b/2144/CH1/EX1.2/ex1_2.sce
@@ -0,0 +1,14 @@
+// Exa 1.2
+clc;
+clear;
+close;
+// Given data
+Rho = 13.6;
+g = 9.81;
+a = 760;// in mm
+b = 480;// in mm
+h = a-b;// in mm
+P = (1000*Rho*g*h)/(1000);// in N/m^2
+disp(P,"The absolute pressure in N/m^2 is");
+P = P /100;// in mbar
+disp(P,"The absolute pressure in mbar is");
diff --git a/2144/CH1/EX1.3/ex1_3.sce b/2144/CH1/EX1.3/ex1_3.sce
new file mode 100755
index 000000000..a0f1233c3
--- /dev/null
+++ b/2144/CH1/EX1.3/ex1_3.sce
@@ -0,0 +1,15 @@
+// Exa 1.3
+clc;
+clear;
+close;
+// Given data
+G_P = 30;// guage pressure of steam in bar
+P1 = 745;// in mm
+P1= P1/750;// in bar
+PressureInBoiler = G_P+P1;// in bar
+disp("The absolute pressure in the bioler in bar is "+string(PressureInBoiler)+" bar or "+string(PressureInBoiler*10^5)+" N/m^2");
+P2 = 708.2;// in mm
+P2= P2/750;// in
+PressureInCond = P1-P2;// in bar
+disp(PressureInCond,"The absolute pressure in the Condenser in bar is");
+disp(PressureInCond*10^5,"The absolute pressure in the Condenser in N/m^2 is");
diff --git a/2144/CH1/EX1.4/ex1_4.sce b/2144/CH1/EX1.4/ex1_4.sce
new file mode 100755
index 000000000..edad49e73
--- /dev/null
+++ b/2144/CH1/EX1.4/ex1_4.sce
@@ -0,0 +1,11 @@
+// Exa 1.4
+clc;
+clear;
+close;
+// Given data
+Rho = 0.78;// in kg/m^3
+g = 9.81;
+h = 3;// in m
+b = g*Rho*h*1000;// in N/m^2
+b = b * 10^-3;// in kN/m^2
+disp(b,"The gauge pressure in kN/m^2 is");
diff --git a/2144/CH1/EX1.5/ex1_5.sce b/2144/CH1/EX1.5/ex1_5.sce
new file mode 100755
index 000000000..830b104fc
--- /dev/null
+++ b/2144/CH1/EX1.5/ex1_5.sce
@@ -0,0 +1,12 @@
+// Exa 1.5
+clc;
+clear;
+close;
+// Given data
+B_h = 755;// Barometric height in mm
+M_h= 240;// Manometer height in mm
+P = B_h+M_h;// in mm
+P = P/750;// absolute pressure in bar
+P= P*10^5;// in N/m^2
+disp(P*10^-6,"The absolute pressure in the vessel in MN/m^2 is");
+disp(P*10^-5,"The absolute pressure in the vessel in bar is");
diff --git a/2144/CH1/EX1.6/ex1_6.sce b/2144/CH1/EX1.6/ex1_6.sce
new file mode 100755
index 000000000..42c55e097
--- /dev/null
+++ b/2144/CH1/EX1.6/ex1_6.sce
@@ -0,0 +1,8 @@
+// Exa 1.6
+clc;
+clear;
+close;
+// Given data
+T = 287;// in degree C
+T = T + 273;// in K
+disp(T,"The temperature on absolute scale in K is");
diff --git a/2144/CH1/EX1.7/ex1_7.sce b/2144/CH1/EX1.7/ex1_7.sce
new file mode 100755
index 000000000..a7f7bfee7
--- /dev/null
+++ b/2144/CH1/EX1.7/ex1_7.sce
@@ -0,0 +1,11 @@
+// Exa 1.7
+clc;
+clear;
+close;
+// Given data
+a = 0.26;
+b = 5*10^-4;
+E = 10;// in mV
+T = (a/(2*b))*( sqrt(1+(4*E*b/a^2)) - 1 );// in degree C
+disp("The unit of a will be mV/°C and the unit of b will be mV/°C^2")
+disp(T,"The Temperature in degree C is");
diff --git a/2144/CH1/EX1.8/ex1_8.sce b/2144/CH1/EX1.8/ex1_8.sce
new file mode 100755
index 000000000..0cbbb48ce
--- /dev/null
+++ b/2144/CH1/EX1.8/ex1_8.sce
@@ -0,0 +1,12 @@
+// Exa 1.8
+clc;
+clear;
+close;
+// Given data
+Q_w = 500;// quantity of water flowing in kg/minute
+T1 = 80;// in ° C
+T2 = 20;// in °C
+del_T = T1-T2;// in °C
+Spe_heat = 4.182;// in kJ/kg
+Q_h = Q_w*del_T*Spe_heat;// in kJ/minute
+disp("Quantity of heat supplied to water in the economizer is "+string(Q_h)+" kJ/minute or "+string(Q_h*10^-3)+" MJ/minute");
diff --git a/2144/CH1/EX1.9/ex1_9.sce b/2144/CH1/EX1.9/ex1_9.sce
new file mode 100755
index 000000000..936748dd0
--- /dev/null
+++ b/2144/CH1/EX1.9/ex1_9.sce
@@ -0,0 +1,17 @@
+// Exa 1.9
+clc;
+clear;
+close;
+// Given data
+CopperMass = 3;// in kg
+WaterMass= 6;// in kg
+Spe_heat_copper= 0.394;// in kJ/kg-K
+T1 = 90;// in degree C
+T2 = 20;// in degree C
+del_T = T1-T2;// in degree C
+H_C = CopperMass*Spe_heat_copper*del_T;// heat required by copper in kJ
+Spe_heat_water= 4.193;// in kJ/kg-K
+H_W = WaterMass*Spe_heat_water*del_T;// heat required by water in kJ
+H = H_C+H_W;//heat required by vessel and water in kJ
+H = H * 10^-3;// in MJ
+disp(H,"Heat required by vessel and water in MJ is");
diff --git a/2144/CH2/EX2.1/exa_2_1.sce b/2144/CH2/EX2.1/exa_2_1.sce
new file mode 100755
index 000000000..19f021566
--- /dev/null
+++ b/2144/CH2/EX2.1/exa_2_1.sce
@@ -0,0 +1,11 @@
+// Example 2.1
+clc;
+clear;
+close;
+// Given data
+P1= 250;// in kN/m^2
+V1= 6.2;// in m^3
+V2= 1.82;// in m^3
+// Formula P1*V1 = P2*V2
+P2= P1*V1/V2;// in kN/m^2
+disp(P2,"Pressure of air after compression in kN/m^2 is : ")
diff --git a/2144/CH2/EX2.10/exa_2_10.sce b/2144/CH2/EX2.10/exa_2_10.sce
new file mode 100755
index 000000000..e40e44475
--- /dev/null
+++ b/2144/CH2/EX2.10/exa_2_10.sce
@@ -0,0 +1,22 @@
+// Example 2.10
+clc;
+clear;
+close;
+// Given data
+MR= 8314.2;// in J/kg-mole-K
+mass= 44;// Molecular mass of carbon dioxide in kg
+R= MR/mass;// in J/kg-K
+P= 11;// in MPa
+P=P*10^6;// in Pa
+V= 50*10^-3;// in m^3
+T= 18+273;// in K
+// Formula P*V= m*R*T
+m= P*V/(R*T);// in kg
+m=round(m);// in kg
+MolecularVolume= MR*T/P;// in m^3
+D= m/V;// density of the gas in kg/m^3
+SpecificVolume= 1/D;// in m^3/kg
+disp(m,"The mass of the gas in kg is : ")
+disp(MolecularVolume,"The Molecular volume in m^3 is : ")
+disp(D,"The density of the gas in kg/m^3 is : ")
+disp(SpecificVolume,"The specific volume of the gas in m^3/kg is : ")
diff --git a/2144/CH2/EX2.11/exa_2_11.sce b/2144/CH2/EX2.11/exa_2_11.sce
new file mode 100755
index 000000000..cc0271bb8
--- /dev/null
+++ b/2144/CH2/EX2.11/exa_2_11.sce
@@ -0,0 +1,18 @@
+// Example 2.11
+clc;
+clear;
+close;
+// Given data
+P1= 350;// in kN/m^2
+P1=P1*10^3;// in N/m^2
+P2= 1.05;// in kN/m^2
+P2=P2*10^6;// in N/m^2
+V= 0.3;// in m^3
+R= 0.29;// in kJ/kg-K
+R= R*10^3;// in j/kgK
+T1= 35+273;// in K
+// Formula P*V= m*R*T
+m= P1*V/(R*T1);// in kg
+// Formula P1*V1/T1 = P2*V2/T2 and since V1= V2
+T2= P2*T1/P1;// in K
+disp(T2-273,"Temperature at constant volume compression in °C is : ")
diff --git a/2144/CH2/EX2.12/exa_2_12.sce b/2144/CH2/EX2.12/exa_2_12.sce
new file mode 100755
index 000000000..b58b888c8
--- /dev/null
+++ b/2144/CH2/EX2.12/exa_2_12.sce
@@ -0,0 +1,14 @@
+// Example 2.12
+clc;
+clear;
+close;
+// Given data
+g1= 1.75;// gauge reading in bar
+atm= 1.013;// in atmospheric pressure in bar
+P1= g1+atm;// in bar
+T1= 12+273;// in K
+T2= 45+273;// in K
+// Formula P1*V1/T1 = P2*V2/T2 and since V1= V2
+P2= P1*T2/T1;// in bar
+g2=P2-atm;// tyre gauge reading in bar
+disp(g2,"Tyre guage reading at 45°C in bar is : ")
diff --git a/2144/CH2/EX2.13/exa_2_13.sce b/2144/CH2/EX2.13/exa_2_13.sce
new file mode 100755
index 000000000..af3b0c32f
--- /dev/null
+++ b/2144/CH2/EX2.13/exa_2_13.sce
@@ -0,0 +1,9 @@
+// Example 2.13
+clc;
+clear;
+close;
+// Given data
+Q= 120;// in kJ
+W= 150;// in kJ
+E= Q-W;// change in internal energy in kJ
+disp(abs(E),"The internal energy of the system decreases by (in kJ)")
diff --git a/2144/CH2/EX2.14/exa_2_14.sce b/2144/CH2/EX2.14/exa_2_14.sce
new file mode 100755
index 000000000..5e21ab988
--- /dev/null
+++ b/2144/CH2/EX2.14/exa_2_14.sce
@@ -0,0 +1,10 @@
+// Example 2.14
+clc;
+clear;
+close;
+// Given data
+Q= -40;// in kJ/kg
+W= -80;// in kJ/kg
+E= Q-W;// change in internal energy in kJ/kg
+disp(E,"Change in internal energy in kJ/kg is : ")
+disp("Thus internal energy of the working substance increases ")
diff --git a/2144/CH2/EX2.15/exa_2_15.sce b/2144/CH2/EX2.15/exa_2_15.sce
new file mode 100755
index 000000000..c52a042f8
--- /dev/null
+++ b/2144/CH2/EX2.15/exa_2_15.sce
@@ -0,0 +1,11 @@
+// Example 2.15
+clc;
+clear;
+close;
+// Given data
+Int_energy_changes= 20;// in kJ/kg
+Q= 0;// in kJ
+W= -90;// in kJ
+E= Q-W;// change in internal energy in kJ/kg
+m= E/Int_energy_changes;// in kg
+disp(m,"The mass of the fluid in the system in kg is : ")
diff --git a/2144/CH2/EX2.16/exa_2_16.sce b/2144/CH2/EX2.16/exa_2_16.sce
new file mode 100755
index 000000000..70c497d74
--- /dev/null
+++ b/2144/CH2/EX2.16/exa_2_16.sce
@@ -0,0 +1,11 @@
+// Example 2.16
+clc;
+clear;
+close;
+// Given data
+U= 2800;// in kJ/kg
+P= 20;// in bar
+P= P*10^5;// in N/m^2
+V= 0.23/1000;// in m^3
+SP= U+P*V;// specific enthalpy in kJ/kg
+disp(SP,"The specific enthalpy in kJ/kg is : ")
diff --git a/2144/CH2/EX2.17/exa_2_17.sce b/2144/CH2/EX2.17/exa_2_17.sce
new file mode 100755
index 000000000..7008798fb
--- /dev/null
+++ b/2144/CH2/EX2.17/exa_2_17.sce
@@ -0,0 +1,16 @@
+// Example 2.17
+clc;
+clear;
+close;
+// Given data
+h1= 210;//first heat transfer in kJ
+h2= -20;// second heat transfer in kJ
+h3= -190;// third heat transfer in kJ
+h4= 60;// fourth heat transfer in kJ
+W1= -180;// first work transfer in kJ
+W2= 200;// second work transfer in kJ
+W3= -300;// third work transfer in kJ
+// Total Heat transfer = Total work transfer
+W4= h1+h2+h3+h4-W1-W2-W3;// forth work transfer in kJ
+disp(W4,"Fourth work transfer in kJ is :")
+disp("Thus the system delivers "+string(W4)+" kJ of work")
diff --git a/2144/CH2/EX2.18/exa_2_18.sce b/2144/CH2/EX2.18/exa_2_18.sce
new file mode 100755
index 000000000..a29c0684e
--- /dev/null
+++ b/2144/CH2/EX2.18/exa_2_18.sce
@@ -0,0 +1,18 @@
+// Example 2.18
+clc;
+clear;
+close;
+// Given data
+Cv= 0.718;// in kJ/kgK
+R= 0.278;// in kJ/kgK
+T1= 15+273;// in K
+T2= 135+273;// in K
+m= 2;// mass in kg
+V1= 0.7;// in m^3
+Q= m*Cv*(T2-T1);// in kJ
+disp(Q,"Heat supplied to gas in kJ is : ")
+// Formula P1*V1= m*R*T1
+P1= m*R*T1/V1;// in kN/m^2 absolute
+// From P1/T1= P2/T2
+P2= P1*T2/T1;// in kN/m^2
+disp(P2,"The final pressure in kN/m^2 is : ")
diff --git a/2144/CH2/EX2.19/exa_2_19.sce b/2144/CH2/EX2.19/exa_2_19.sce
new file mode 100755
index 000000000..59c74c1e9
--- /dev/null
+++ b/2144/CH2/EX2.19/exa_2_19.sce
@@ -0,0 +1,15 @@
+// Example 2.19
+clc;
+clear;
+close;
+// Given data
+Cv= 1.005;// in kJ/kgK
+T1= 200+273;// in K
+T2= 15+273;// in K
+V1= 0.12;// in m^3
+m= 0.25;// mass in kg
+Q= m*Cv*(T1-T2);// in kJ
+disp(Q,"Heat extracted from the gas in kJ is : ")
+// From V1/T1= V2/T2
+V2= V1*T2/T1;// in m^3
+disp(V2,"The final volume of the gas in m^3 is : ")
diff --git a/2144/CH2/EX2.2/exa_2_2.sce b/2144/CH2/EX2.2/exa_2_2.sce
new file mode 100755
index 000000000..089ad76fa
--- /dev/null
+++ b/2144/CH2/EX2.2/exa_2_2.sce
@@ -0,0 +1,14 @@
+// Example 2.2
+clc;
+clear;
+close;
+// Given data
+guagePressure= 1500;// in kN/m^2
+atmPressure= 100;// in kN/m^2
+P1= guagePressure+atmPressure;// in kN/m^2
+V1= 0.1;// in m^3
+V2= 0.4;// in m^3
+// Formula P1*V1 = P2*V2
+P2= P1*V1/V2;// in kN/m^2
+NewGuagePressure= P2-atmPressure;// in kN/m^2
+disp(NewGuagePressure,"New guage pressure in kN/m^2 is : ")
diff --git a/2144/CH2/EX2.20/exa_2_20.sce b/2144/CH2/EX2.20/exa_2_20.sce
new file mode 100755
index 000000000..bf6c5e3d7
--- /dev/null
+++ b/2144/CH2/EX2.20/exa_2_20.sce
@@ -0,0 +1,14 @@
+// Example 2.20
+clc;
+clear;
+close;
+// Given data
+m=2;// molecular mass
+UGC= 8.3143;// universal gas constant in kJ/kg-mole-K
+Cp= 14.41;// in kJ/kg-K
+R= UGC/m;// in kJ/kgK
+Cv= Cp-R;// in kJ/kgK
+gama= Cp/Cv;
+disp(R,"The value of R in kJ/kgK is :")
+disp(Cv,"The value of Cv in kJ/kgK is : ")
+disp(gama,"The value of gama is : ")
diff --git a/2144/CH2/EX2.21/exa_2_21.sce b/2144/CH2/EX2.21/exa_2_21.sce
new file mode 100755
index 000000000..c0111bdbb
--- /dev/null
+++ b/2144/CH2/EX2.21/exa_2_21.sce
@@ -0,0 +1,24 @@
+// Example 2.21
+clc;
+clear;
+close;
+// Given data
+Cp = 0.796;// in kJ/kg-K
+Cv = 0.67;// in kJ/kg-K
+P1=1;// in bar
+P1= P1*10^5;// in N/m^2
+P2=3.5;// in bar
+P2= P2*10^5;// in N/m^2
+V1= 0.12;// in m^3
+V2= 0.05;// in m^3
+m=1;// in kg
+R= Cp-Cv;// in kJ/kg-K
+R= R*10^3;// in J/kg-K
+// Formula P*V= m*R*T
+T1= P1*V1/(m*R);// in K
+// Formula P1*V1/T1 = P2*V2/T2
+T2= P2*V2*T1/(P1*V1);// in K
+T= T2-T1;// Temperature rise in K
+disp(T,"Temperature rise in K is : ")
+E= m*Cv*(T2-T1);// change in internal energy kJ
+disp(E,"Change in internal energy in kJ is : ");
diff --git a/2144/CH2/EX2.22/exa_2_22.sce b/2144/CH2/EX2.22/exa_2_22.sce
new file mode 100755
index 000000000..2a7847aef
--- /dev/null
+++ b/2144/CH2/EX2.22/exa_2_22.sce
@@ -0,0 +1,38 @@
+// Example 2.22
+clc;
+clear;
+close;
+// Given data
+CO2= 0.12;//volume of CO2 in m^3
+CO= 0.25;// in m^3
+H2= 0.06;// in m^3
+CH4= 0.02;// in m^3
+N2= 0.55;// in m^3
+R= 8.3143;// Universal gas constant in kJ/kg-mol-K
+mm_CO2= 44;// molecular mass of CO2
+mm_CO= 28;
+mm_H2= 2;
+mm_CH4= 16;
+mm_N2= 28;
+Gm_CO2= 5.28;// gravimetric mass of CO2
+Gm_CO= 7.00;
+Gm_H2= 0.12;
+Gm_CH4= 0.32;
+Gm_N2= 15.40;
+total_Gm= Gm_CO2+Gm_CO+Gm_H2+Gm_CH4+Gm_N2;
+Per_relative_CO2= Gm_CO2/total_Gm*100;// in %
+Per_relative_CO= Gm_CO/total_Gm*100;// in %
+Per_relative_H2= Gm_H2/total_Gm*100;// in %
+Per_relative_CH4= Gm_CH4/total_Gm*100;// in %
+Per_relative_N2= Gm_N2/total_Gm*100;// in %
+disp("Analysis % Relative : ")
+disp("CO2 : "+string(Per_relative_CO2))
+disp("CO : "+string(Per_relative_CO))
+disp("H2 : "+string(Per_relative_H2))
+disp("CH4 : "+string(Per_relative_CH4))
+disp("N2 : "+string(Per_relative_N2))
+App_Gas_Constant= R/total_Gm;// in kJ/kg-K
+mol_Vol= 22.4;//mole volume at NTP in m^3
+Average_Density= total_Gm/mol_Vol;// in kg/m^3 at NTP
+disp(App_Gas_Constant,"The Apparent gas constant in kJ/kg-K is : ")
+disp(Average_Density,"The average density in kg/m^3 at NTP. is : ")
diff --git a/2144/CH2/EX2.23/exa_2_23.sce b/2144/CH2/EX2.23/exa_2_23.sce
new file mode 100755
index 000000000..713a5198f
--- /dev/null
+++ b/2144/CH2/EX2.23/exa_2_23.sce
@@ -0,0 +1,17 @@
+// Example 2.23
+clc;
+clear;
+close;
+// Given data
+Cv = 652;// in J/kg-K
+R= 287;// in J/kg-K
+Cp= Cv+R;// in J/kg-K
+m=0.3;// in kg
+P= 1.5*10^5;// in N/m^2
+V= 0.283;// in m^3
+// Formula P*V= m*R*T
+T= P*V/(m*R);// in K
+T= T-273;// in °C
+T1= -40;// in °C
+delta_U= m*Cv*(T-T1);// in J
+disp(delta_U*10^-3,"Internal energy in kJ is : ")
diff --git a/2144/CH2/EX2.24/exa_2_24.sce b/2144/CH2/EX2.24/exa_2_24.sce
new file mode 100755
index 000000000..9bb49ce1d
--- /dev/null
+++ b/2144/CH2/EX2.24/exa_2_24.sce
@@ -0,0 +1,47 @@
+// Example 2.24
+clc;
+clear;
+close;
+// Given data
+H2= 0.50;//volume of H2 in m^3
+CH4= 0.19;// in m^3
+CO= 0.18;// in m^3
+C2H4= 0.02;// in m^3
+CO2= 0.05;// in m^3
+N2= 0.06;// in m^3
+P= 100;// pressure of mixture in kN/m^2
+mm_CO2= 44;// molecular mass of CO2
+mm_CO= 28;
+mm_H2= 2;
+mm_CH4= 16;
+mm_C2H4= 28;
+mm_N2= 28;
+R= 8.3143;// Universal gas constant in kJ/kg-mol-K
+R_H2= R/mm_H2;// gas constant for H2
+R_CO2= R/mm_CO2;
+R_CO= R/mm_CO;
+R_C2H4= R/mm_C2H4;
+R_CH4= R/mm_CH4;
+R_N2= R/mm_N2;
+M= mm_CO2*CO2+mm_H2*H2+mm_CH4*CH4+mm_CO*CO+mm_C2H4*C2H4+mm_N2*N2;// in kg
+disp(M,"Apparent molecular mass of the gas in kg is : ")
+mol_Vol= 22.4;//mole volume at NTP in m^3
+density= M/mol_Vol;// in kg/m^3
+disp(density,"Density of the mixture in kg/m^3 is : ")
+mixture_G_constant= R/M;// in kJ/kg-K
+disp(mixture_G_constant,"The mixture gas constant in kJ/kg-K is : ")
+P_H2= P*H2;//partial pressure of H2 in kN/m^2
+P_CH4= P*CH4;// in kN/m^2
+P_CO= P*CO;// in kN/m^2
+P_C2H4= P*C2H4;// in kN/m^2
+P_CO2= P*CO2;// in kN/m^2
+P_N2= P*N2;// in kN/m^2
+disp(P_H2,"The partial pressure of H2 in kN/m^2")
+disp(P_CH4,"The partial pressure of CH4 in kN/m^2")
+disp(P_CO,"The partial pressure of CO in kN/m^2")
+disp(P_C2H4,"The partial pressure of C2H4 in kN/m^2")
+disp(P_CO2,"The partial pressure of CO2 in kN/m^2")
+disp(P_N2,"The partial pressure of N2 in kN/m^2")
+
+
+
diff --git a/2144/CH2/EX2.3/exa_2_3.sce b/2144/CH2/EX2.3/exa_2_3.sce
new file mode 100755
index 000000000..7b4aa1de6
--- /dev/null
+++ b/2144/CH2/EX2.3/exa_2_3.sce
@@ -0,0 +1,12 @@
+// Example 2.3
+clc;
+clear;
+close;
+// Given data
+P1= -4+101.3;// in kN/m^2
+V1= 96+475;// in cm^3
+V2= 96;// in cm^3
+// Formula P1*V1 = P2*V2
+P2= P1*V1/V2;// in kN/m^2
+disp(P2,"Pressure at the end of the compression stroke in kN/m^2 is : ")
+disp(P2*10^-2,"and in bar : ")
diff --git a/2144/CH2/EX2.4/exa_2_4.sce b/2144/CH2/EX2.4/exa_2_4.sce
new file mode 100755
index 000000000..3e09c1396
--- /dev/null
+++ b/2144/CH2/EX2.4/exa_2_4.sce
@@ -0,0 +1,9 @@
+// Example 2.4
+clc;
+clear;
+close;
+// Given data
+V0= 1;// in m^3
+t= 300;// in °C
+V= V0*(1+t/273);// in m^3
+disp(V,"The volume occupied in m^3 is : ")
diff --git a/2144/CH2/EX2.5/exa_2_5.sce b/2144/CH2/EX2.5/exa_2_5.sce
new file mode 100755
index 000000000..cf8ba6013
--- /dev/null
+++ b/2144/CH2/EX2.5/exa_2_5.sce
@@ -0,0 +1,11 @@
+// Example 2.5
+clc;
+clear;
+close;
+// Given data
+V1= 2;// in m^3
+T1= 30+273;// in K
+T2= 230+273;// in K
+// V1/T1 = V0/T0 = V2/T2
+V2= V1*T2/T1;// in m^3
+disp(V2,"The final volume in m^3 is : ")
diff --git a/2144/CH2/EX2.6/exa_2_6.sce b/2144/CH2/EX2.6/exa_2_6.sce
new file mode 100755
index 000000000..2603a39dd
--- /dev/null
+++ b/2144/CH2/EX2.6/exa_2_6.sce
@@ -0,0 +1,13 @@
+// Example 2.6
+clc;
+clear;
+close;
+// Given data
+P1= 7*10^5;// in N/m^2
+V1= 3;// in m^3
+V2= 9;// in m^3
+T1= 150+273;// in K
+T2= 10+273;// in K
+// Formula P1*V1/T1 = P2*V2/T2
+P2= P1*V1*T2/(T1*V2);// in N/m^2
+disp(P2*10^-5,"Pressure of the gas in bar is : ")
diff --git a/2144/CH2/EX2.7/exa_2_7.sce b/2144/CH2/EX2.7/exa_2_7.sce
new file mode 100755
index 000000000..a9fbdac36
--- /dev/null
+++ b/2144/CH2/EX2.7/exa_2_7.sce
@@ -0,0 +1,12 @@
+// Example 2.7
+clc;
+clear;
+close;
+// Given data
+P1= 100;// in kN/m^2
+V1byV2= 12;// in
+T1= 115+273;// in K
+T2= 180+273;// in K
+// Formula P1*V1/T1 = P2*V2/T2
+P2= P1*V1byV2*T2/T1;// in N/m^2
+disp(P2*10^-2,"Absolute pressure at the end of compression stroke in bar is : ")
diff --git a/2144/CH2/EX2.8/exa_2_8.sce b/2144/CH2/EX2.8/exa_2_8.sce
new file mode 100755
index 000000000..ce64dbb39
--- /dev/null
+++ b/2144/CH2/EX2.8/exa_2_8.sce
@@ -0,0 +1,11 @@
+// Example 2.8
+clc;
+clear;
+close;
+// Given data
+mR= 8314.3;// in J/kg-mole-K
+P= 200*10^3;// in N/m^2
+T= 30+273;// in K
+// Formula P*V = mR*T
+V= mR*T/P;// in m^3
+disp(V,"The molecular volume of all the gases in m^3 is : ")
diff --git a/2144/CH2/EX2.9/exa_2_9.sce b/2144/CH2/EX2.9/exa_2_9.sce
new file mode 100755
index 000000000..fc7f51de5
--- /dev/null
+++ b/2144/CH2/EX2.9/exa_2_9.sce
@@ -0,0 +1,14 @@
+// Example 2.9
+clc;
+clear;
+close;
+// Given data
+P1= 96;// in kN/m^2
+P2= 725;// in kN/m^2
+V1= 600;// in cm^3
+V2= 100;// in cm^3
+T1= 100+273;// in K
+// Formula P1*V1/T1 = P2*V2/T2
+T2= P2*V2*T1/(P1*V1);// in K
+disp(T2-273,"Temperature at the end of compression in °C is : ");
+// Note:- In the book, There is an error to calculate the value of T2.
diff --git a/2144/CH3/EX3.1/ex3_1.sce b/2144/CH3/EX3.1/ex3_1.sce
new file mode 100755
index 000000000..5c6db5d52
--- /dev/null
+++ b/2144/CH3/EX3.1/ex3_1.sce
@@ -0,0 +1,23 @@
+// Exa 3.1
+clc;
+clear;
+close;
+// Given data
+P = 2.15 * 10^5;// in N/m^2
+T = 20;// in degree C
+T = T + 273;// in K
+V = 0.20;// in m^3
+R = 0.2927;// in kJ/kg-K
+R = R * 10^3;// in J/kg-K
+m = (P*V)/(T*R);//in kg
+Q = 20*10^3;// in J
+C_v = 0.706*10^3;// in J/kg-K
+theta = Q/(m*C_v);// in degree C
+T = T - 273;// in degree C
+T1 = theta + T;// new temp. in degree C
+disp(T1,"New temperature in degree C is");
+T1 = T1 + 273;// in K
+T = T + 273;// in K
+P2 = P * (T1/T);// in N/m^2
+P2 = P2 * 10^-3;// in kN/m^2
+disp(P2,"New pressure in kN/m^2 is");
diff --git a/2144/CH3/EX3.10/ex3_10.sce b/2144/CH3/EX3.10/ex3_10.sce
new file mode 100755
index 000000000..d7d5e6211
--- /dev/null
+++ b/2144/CH3/EX3.10/ex3_10.sce
@@ -0,0 +1,29 @@
+// Exa 3.10
+clc;
+clear;
+close;
+// Given data
+P1= 100;// in N/m^2
+T1 = 30;// in degree C
+T1 = T1 + 273;// in K
+C_v = 0.718;// in kJ/kg-K
+//C_v= C_v*10^3;// in J/kg-K
+R = 287.1;// in J/kg-K
+d = 15;// in cm
+l = 20;// in cm
+V = (%pi/4)*(d)^2*l;// in cm^3
+V = V * 10^-3;// in litre
+Clear_V = 1.147;// clearance volume
+Vol = V+Clear_V;//volume of air at beginning of compression in litre
+ROC = Vol/Clear_V;// Ratio of compression
+P2 = P1*(Vol/Clear_V)^1.2;// in kN/m^2
+disp(P2,"The pressure at the end of compression in kN/m^2 is");
+T2 = (P2*Clear_V*T1)/(P1*Vol);// in K
+T2 = T2 - 273;// in degree C
+T1 = T1 - 273;// in degree C
+T = T2-T1;// in degree C
+disp(T,"The temperature at the end of compression in degree C is");
+T1 = T1 + 273;// in K
+m = (P1*Vol)/(R*T1);// in kg
+I_E = m*C_v*T;// in kJ
+disp(I_E,"The change in internal energy in kJ is");
diff --git a/2144/CH3/EX3.11/ex3_11.sce b/2144/CH3/EX3.11/ex3_11.sce
new file mode 100755
index 000000000..c29b6fc1e
--- /dev/null
+++ b/2144/CH3/EX3.11/ex3_11.sce
@@ -0,0 +1,18 @@
+// Exa 3.11
+clc;
+clear;
+close;
+// Given data
+V1 = 2.5;// in litre
+P1 = 1400;// kN/m^2
+P2 = 280;//in kN/m^2
+T1 = 1100;// in °C
+T1 = T1 + 273;// in K
+n = 1.28;
+V2 = V1 * (P1/P2)^(1/1.28);// in litres
+disp(V2,"Final volume in litres is");
+T2 = T1 * ((P2*V2)/(P1*V1));// in K
+T2 = T2 - 273;// in degree C
+disp(T2,"Final temperature in degree C is");
+W = (P1* V1 - P2*V2)/(n-1);// in Joules
+disp(W*10^-3,"Work done in kJ is");
diff --git a/2144/CH3/EX3.12/ex3_12.sce b/2144/CH3/EX3.12/ex3_12.sce
new file mode 100755
index 000000000..40e7b1e67
--- /dev/null
+++ b/2144/CH3/EX3.12/ex3_12.sce
@@ -0,0 +1,18 @@
+// Exa 3.12
+clc;
+clear;
+close;
+// Given data
+Gamma = 1.4;
+P1 = 780;// in kN/m^2
+P2 = 100;// in kN/m^2
+V1 = 750;// in cm^3
+V1= V1*10^-6;// in m^3
+V2 = (1/5)*V1;// in m^3
+n = (log(P1/P2))/(log(V1/V2));
+disp(n,"The value of index is");
+W = (P1*V2-P2*V1)/(1-n);// in kJ
+disp(W,"Work done in kJ is");
+Q = ((Gamma - n)/(Gamma-1)) * (-W);// in kJ
+disp("Heat rejected during Compression in kJ is "+string(Q)+" kJ or "+string(Q*10^3)+" joules");
+
diff --git a/2144/CH3/EX3.13/ex3_13.sce b/2144/CH3/EX3.13/ex3_13.sce
new file mode 100755
index 000000000..16c53f7b1
--- /dev/null
+++ b/2144/CH3/EX3.13/ex3_13.sce
@@ -0,0 +1,21 @@
+// Exa 3.13
+clc;
+clear;
+close;
+// Given data
+T1 = 40;// in degree C
+T1 = T1 +273;// in K
+P2 = 50;// in bar
+P1 = 1;// in bar
+Gamma = 1.4;
+C_v = 0.718;// in kJ/kg-K
+SpeHeat = 1.005;// in kJ/kg-K
+HeatSupply= 125.6;// in kJ/kg
+T2 = T1 * (P2/P1)^((Gamma-1)/Gamma);// in K
+C_p = C_v * (T2-T1);// in kJ/kg
+del_T = HeatSupply/SpeHeat;// in degree C
+del_U = C_v * del_T;// in kJ/kg
+disp(del_U,"Change in internal energy in kJ/kg is");
+T3 = T2 + del_T;// in K
+del_Phi = SpeHeat * log(T3/T2);// in kJ/kg-K
+disp(del_Phi,"Change in entropy during constant pressure in kJ/kg-K is");
diff --git a/2144/CH3/EX3.14/ex3_14.sce b/2144/CH3/EX3.14/ex3_14.sce
new file mode 100755
index 000000000..de88bed13
--- /dev/null
+++ b/2144/CH3/EX3.14/ex3_14.sce
@@ -0,0 +1,14 @@
+// Exa 3.14
+clc;
+clear;
+close;
+// Given data
+P1 = 30;// in bar
+P1= P1*10^5;// in N/m^2
+V1 = 0.85;// in m^3
+V2 = 4.25;// in m^3
+W = P1 *V1 * log(V2/V1);// in Joules
+W = W * 10^-3;// in kJ
+T = 400;// in K
+del_U = W/T;// in kJ/K
+disp(del_U,"Change in entropy in kJ/K is");
diff --git a/2144/CH3/EX3.15/ex3_15.sce b/2144/CH3/EX3.15/ex3_15.sce
new file mode 100755
index 000000000..9443dc947
--- /dev/null
+++ b/2144/CH3/EX3.15/ex3_15.sce
@@ -0,0 +1,37 @@
+// Exa 3.15
+clc;
+clear;
+close;
+// Given data
+C_P = 1.041;// in kJ/kg-K
+C_V = 0.743;// in kJ/kg-K
+R = C_P - C_V;// in kJ/kg-K
+P1 = 140;// in kN/m^2
+P2 = 1400;// in kN/m^2
+V1 = 0.14;// in m^3
+T1 = 25;// in degree C
+T1 = T1 + 273;// in K
+Gamma = 1.4;
+n = 1.25;
+m = (P1 * 10^3 *V1)/(R * 10^3 * T1);// in kg
+V2 = V1 * (P1/P2)^(1/n);// in m^3
+del_U = C_P * (log(V2/V1)) + C_V * (log(P2/P1));// in kJ/kg-K
+del_U = m * del_U;// in kJ/K
+disp("Part (i)")
+disp(del_U,"Change in entropy in kJ/K is");
+T2 = T1 * (V1/V2)^(n-1);// in K
+del_U1 = C_P * (log(T2/T1)) - R*(log(P2/P1));// in kJ/kg-K
+disp("Part (ii)")
+disp(del_U1,"Change in entropy in kJ/kg-K is");
+del_U2 = C_V * (log(T2/T1)) + R*(log(V2/V1));// in kJ/kg-K
+disp("Part (iii)")
+disp(del_U2,"Change in entropy in kJ/kg-K is");
+del_U3 = C_V * (Gamma-n) * (log(V2/V1));// in kJ/kg-K
+disp("Part (iv)")
+disp(del_U3,"Change in entropy in kJ/kg-K is");
+del_U4 = C_V * ((Gamma-n)/(n-1)) * (log(T1/T2));// in kJ/kg-K
+disp("Part (v)")
+disp(del_U4,"change in entropy in kJ/kg is");
+del_U5 = C_V * ((Gamma-n)/n) * (log(P1/P2));// in kJ/kg-K
+disp("Part (vi)")
+disp(del_U5,"Change in entropy in kJ/kg-k is");
diff --git a/2144/CH3/EX3.16/ex3_16.sce b/2144/CH3/EX3.16/ex3_16.sce
new file mode 100755
index 000000000..685de907c
--- /dev/null
+++ b/2144/CH3/EX3.16/ex3_16.sce
@@ -0,0 +1,16 @@
+// Exa 3.16
+clc;
+clear;
+close;
+// Given data
+P1 = 1;// in bar
+P2 = 15;// in bar
+T1 = 0;// in degree C
+T1 = T1 + 273;// in K
+T2 = 200;// in degree C
+T2 = T2 + 273;// in K
+C_P = 1.005;// in kJ/kg-K
+C_V = 0.718;// in kJ/kg-K
+R = C_P-C_V;// in kJ/kg-K
+del_U = C_P * (log(T2/T1)) - R*(log(P2/P1));// in kJ/kg-K
+disp(del_U,"Change in entropy in kJ/kg-K is");
diff --git a/2144/CH3/EX3.17/ex3_17.sce b/2144/CH3/EX3.17/ex3_17.sce
new file mode 100755
index 000000000..217ad8acd
--- /dev/null
+++ b/2144/CH3/EX3.17/ex3_17.sce
@@ -0,0 +1,17 @@
+// Exa 3.17
+clc;
+clear;
+close;
+// Given data
+C_V = 2.174;// in kJ/kg-K
+R = 0.5196;// in kJ/kg-K
+C_P = C_V+R;// in kJ/kg-K
+V2 = 1;// in m^3
+V1 = 8;// in m^3
+P1 = 0.7;// in bar
+P2 = 7;// in bar
+del_U = C_P * (log(V2/V1)) + C_V * (log(P2/P1));// in kJ/kg-K
+m = 0.9;// in kg
+del_U = m * del_U;// in kJ/K
+disp(del_U,"Change in entropy in kJ/K is");
+disp("It is a loss of entropy")
diff --git a/2144/CH3/EX3.18/ex3_18.sce b/2144/CH3/EX3.18/ex3_18.sce
new file mode 100755
index 000000000..c2d6c72d0
--- /dev/null
+++ b/2144/CH3/EX3.18/ex3_18.sce
@@ -0,0 +1,21 @@
+// Exa 3.18
+clc;
+clear;
+close;
+// Given data
+C_P = 1.005;// in kJ/kg-K
+C_V = 0.718;// in kJ/kg-K
+R = C_P - C_V;// in kJ/kg-K
+R= R*10^3;//in J/kg-K
+P1 = 3*10^5;//in N/m^2
+V1 = 1.5;// m^3
+T1 = 15;// in degree C
+T1 = T1 +273;// in K
+m1 = (P1*V1)/(R* T1);// in kg
+m2 = m1+2;//final mass of air in kg
+P2 = P1 * (m2/m1);// in kN/m^2
+T1 = T1 - 273;// in degree C
+T2 = 0;// in degree C
+m = 1;// in kg
+del_U = m * C_P * (T1-T2);// kJ
+disp(del_U,"Total enthapy of air in kJ is");
diff --git a/2144/CH3/EX3.19/ex3_19.sce b/2144/CH3/EX3.19/ex3_19.sce
new file mode 100755
index 000000000..7413b3ac4
--- /dev/null
+++ b/2144/CH3/EX3.19/ex3_19.sce
@@ -0,0 +1,19 @@
+// Exa 3.19
+clc;
+clear;
+close;
+// Given data
+R = 0.287;// in kJ/kg-K
+P1 = 30;// in bar
+V1 = 0.12;// in m^3
+m = 1.8;// in kg
+U= 8.3143;// in kJ/kg-mol-K
+T1 = (P1 * 10^5 * V1)/(m*R*10^3);// in K
+T1 = T1 - 273;// in degree C
+disp(T1,"The temperature in degree C is");
+m_m = U/R;// in kg
+disp(m_m,"The molecular mass in kg is");
+V_s = V1/m;// in m^3
+disp(V_s,"The Specific volume in m^3 is');
+V_m = V_s * m_m;// in m^3
+disp(V_m,"Molecular volume in m^3 is");
diff --git a/2144/CH3/EX3.2/ex3_2.sce b/2144/CH3/EX3.2/ex3_2.sce
new file mode 100755
index 000000000..e1d02d78e
--- /dev/null
+++ b/2144/CH3/EX3.2/ex3_2.sce
@@ -0,0 +1,31 @@
+// Exa 3.2
+clc;
+clear;
+close;
+// Given data
+P = 350;// in kN/m^2
+P = P * 10^3;// in N/m^2
+m = 1;// in kg
+m = m * 10^3;// in gram
+V = 0.35;// in m^3
+C_p = 1.005;// in kJ/kg-K
+C_v = 0.710;// in kJ/kg-K
+R = C_p - C_v;// in kJ/kg-K
+T = (P*V)/(m*R);// in K
+T = T - 273;// in degree C
+disp(T,"The intial temperature in degree C is");
+T = T + 273;// in K
+T1 = 316;// in degree C
+T1 = T1 + 273;// in K
+P2 = P * (T1/T);// in N/m^2
+P2 = P2 * 10^-3;// in kN/m^2
+disp(P2,"The final pressure of air in kN/m^2 is");
+T = T - 273;// in degree C
+T1 = T1 - 273;// in degree C
+m = m * 10^-3;// in kg
+Q = m * C_v * (T1-T);// in kJ
+disp(Q,"Heat added in kJ is");
+G = m*C_v * (T1-T);// Gain of internal energy in kJ
+disp(G,"Gain of internal energy in kJ is");
+G_enthalpy = m*C_p*(T1-T);// Gain of enthalpy in kJ
+disp(G_enthalpy,"Gain of enthalpy in kJ is");
diff --git a/2144/CH3/EX3.20/ex3_20.sce b/2144/CH3/EX3.20/ex3_20.sce
new file mode 100755
index 000000000..fec2defc2
--- /dev/null
+++ b/2144/CH3/EX3.20/ex3_20.sce
@@ -0,0 +1,34 @@
+// Exa 3.20
+clc;
+clear;
+close;
+// Given data
+T=15+273;//in K
+U= 8.3143;// in kJ/kg-mol-K
+GasConstant = 0.618;// in kJ/kg-K
+GasVolume= 1;// in m^3 (assume)
+AirVolume= 1.5*GasVolume;// in m^3
+P=760;// in mm
+P= P/750;// in bar
+P= P*10^5;//in N/m^2
+MixtureVolume= GasVolume+AirVolume;//in m^3
+disp("Percentage of gas by volume in the mixture in % is : ")
+PGM= GasVolume/MixtureVolume*100;// in %
+disp(PGM);
+disp("Percentage of air by volume in the mixture in % is : ")
+PAM= AirVolume/MixtureVolume*100;// in %
+disp(PAM);
+M1= U/0.287;// in mol
+M2= U/0.618;// in mol
+M= PAM/100*M1+PGM/100*M2;// mass of mixture in mol
+R= U/M;// gas constant in kJ/kg-K
+R= R*10^3;//in J/kg-K
+disp(R*10^-3,"The gas constant in kJ/kg-K is : ");
+disp("Percentage of air by mass in the mixture in % is ")
+PAM1= PAM*M1/M;// in %
+disp(PAM1);
+disp("Percentage of gas by mass in the mixture in % is ")
+PGM1= PGM*M2/M;// in %
+disp(PGM1);
+Rho= P/(R*T);// kg/m^3
+disp(Rho,"The density of the gas in kg/m^3 is : ")
diff --git a/2144/CH3/EX3.21/ex3_21.sce b/2144/CH3/EX3.21/ex3_21.sce
new file mode 100755
index 000000000..c4b27d925
--- /dev/null
+++ b/2144/CH3/EX3.21/ex3_21.sce
@@ -0,0 +1,16 @@
+// Exa 3.21
+clc;
+clear;
+close;
+// Given data
+Gamma = 1.4;
+P1 = 7;// in bar
+P1= P1*10^5;// in N/m^2
+V1 = 1.6;// in m^3
+V2 = 8;// in m^3
+P2 = (P1 * (V1)^(Gamma))/((V2)^(Gamma));// in bar
+W1 = (P1*V1-P2*V2)/(Gamma-1);//work done by the gas during isentropic expansion in J
+Rho = V2/V1;
+W2 = P1*V1*(log(Rho));//work done by the gas during isothermal expansion in J
+del_W = W2-W1;// in J
+disp(del_W*10^-3,"Difference between the work done during isentropic and isothemal expansion in kJ is");
diff --git a/2144/CH3/EX3.22/ex3_22.sce b/2144/CH3/EX3.22/ex3_22.sce
new file mode 100755
index 000000000..7c7489bf5
--- /dev/null
+++ b/2144/CH3/EX3.22/ex3_22.sce
@@ -0,0 +1,32 @@
+// Exa 3.22
+clc;
+clear;
+close;
+// Given data
+P1 = 1;// in bar
+V1 = 400;// in cm^3
+V2 = 80;// in Cm^3
+T1 = 110;// in degree C
+T1 = T1 + 273;// in K
+Gamma = 1.3;
+P2 = P1*((V1/V2)^(Gamma));// in bar
+disp(P2,"The pressure in bar is");
+T2 = T1 * ((P2*V2)/(P1*V1));// in K
+T2 = T2-273;//in degree C
+disp(T2,"The temperature in degree C is");
+T2 = T2 + 273;// in K
+m = 1;
+C_V = 0.75;
+del_U = m*C_V*(T2-T1);// in kJ
+disp(del_U,"Change in internal energy in kJ is");
+P1= P1*10^5;// in N/m^2
+P2= P2*10^5;// in N/m^2
+V1= V1*10^-3;// in litre
+V2= V2*10^-3;// in litre
+W = (P1*V1-P2*V2)/(Gamma-1);// in J
+W = abs(W * 10^-3);// in kJ
+disp(W,"Work done in kJ is");
+P3 = 40*10^5;// in N/m^2
+T3 = (P3/P2) * T2;// in K
+T3 = T3 - 273;// in degree C
+disp(T3,"Temperature of gas in degree C is");
diff --git a/2144/CH3/EX3.23/ex3_23.sce b/2144/CH3/EX3.23/ex3_23.sce
new file mode 100755
index 000000000..05ab1231f
--- /dev/null
+++ b/2144/CH3/EX3.23/ex3_23.sce
@@ -0,0 +1,28 @@
+// Exa 3.23
+clc;
+clear;
+close;
+// Given data
+C_P = 1.068;// in kJ/kg-K
+C_V = 0.775;//in kJ/kg-K
+R = C_P-C_V;// in kJ/kg-K
+R= R*10^3;// in J/kg-K
+P1 = 12;// in bar
+P1= P1*10^5;// in N/m^2
+V1 = 0.15;//in m^3
+V2= 0.28;// in m^3
+m = 1;// in kg
+T1 = (P1*V1)/(R* m);// in K
+T2 = T1 * (V2/V1);// in K
+disp(T2-273,"Temperature at the end of Constant pressure in °C is");
+W = P1* (V2-V1);// in J
+W = W * 10^-3;// in kJ
+Gamma = 1.38;
+V3 = 1.5;// in m^3
+T3 = T2/((V3/V2)^(Gamma-1));// in K
+T3 = T3 - 273;// in degree C
+disp(T3,"Temperature at the end of Isentropic in °C is");
+T3 = T3 + 273;// in K
+W1 = m *C_V*(T2-T3);//work done during isentropic expansion in kJ
+W2 = W+W1;// in kJ
+disp(W2,"Total Work done on in kJ is");
diff --git a/2144/CH3/EX3.24/ex3_24.sce b/2144/CH3/EX3.24/ex3_24.sce
new file mode 100755
index 000000000..2c1a4a178
--- /dev/null
+++ b/2144/CH3/EX3.24/ex3_24.sce
@@ -0,0 +1,29 @@
+// Exa 3.24
+clc;
+clear;
+close;
+// Given data
+C_P = 1.005;// in kJ/kg-K
+C_V = 0.718;// in kJ/kg-K
+R = C_P-C_V;// in kJ/kg-K
+P1 = 20;//in bar
+P2 = 12;// in bar
+T1 = 200;//in degree C
+T1 = T1 + 273;// in K
+T2 = 125;//in degree c
+T2 = T2 + 273;// in K
+V1 = (R*10^3*T1)/(P1*10^5);// in m^3
+V2 = (R*10^3*T2)/(P2*10^5);// in m^3
+W = 10^5 * integrate('-293*V + 40','V',0.0679,0.0952);//in Joules
+W = round(W * 10^-3);// in kJ
+disp(W,"Work done in kJ is");
+m = 1;// in kg
+del_U = m*C_V*(T2-T1);//change in internal energy in kJ
+disp(del_U,"Change in internal energy in kJ is");
+disp("Negative sign indicates that there is decrease in internal energy of the gas. ")
+C_Enthalpy = m*C_P*(T2-T1);//change in enthalpy in kJ
+disp(C_Enthalpy,"The change in enthalpy in kJ is :")
+disp("Negative sign indicates that there is decrease in enthalpy of the gas")
+Q = W+ del_U;// in kJ
+disp(Q,"Heat transfer in kJ is");
+disp("Negative sign indicates that the heat is rejected by the air")
diff --git a/2144/CH3/EX3.25/ex3_25.sce b/2144/CH3/EX3.25/ex3_25.sce
new file mode 100755
index 000000000..b7bcea9ae
--- /dev/null
+++ b/2144/CH3/EX3.25/ex3_25.sce
@@ -0,0 +1,19 @@
+// Exa 3.25
+clc;
+clear;
+close;
+// Given data
+P1 = 14;// in bar
+P3 = 2.222;// in bar
+V3byV1 = P1/P3;
+P2 = 1.05;// in bar
+Gamma = log(P1/P2)/log(V3byV1);
+C_P = 1.005;// in kJ/kg-K
+C_V = C_P/Gamma;// in kJ/kg-K
+T3 = 343;// in degree C
+T3 = T3 + 273;// in K
+T2 = ceil(T3*P2)/P3;// in K
+m = 0.5;// in kg
+del_U = m*C_V*(T2-T3);// in kJ
+disp(del_U,"Change in internal energy in kJ is");
+disp("i.e. there is a loss of "+string(abs(del_U))+" kJ of internal energy")
diff --git a/2144/CH3/EX3.26/ex3_26.sce b/2144/CH3/EX3.26/ex3_26.sce
new file mode 100755
index 000000000..ceeab5d09
--- /dev/null
+++ b/2144/CH3/EX3.26/ex3_26.sce
@@ -0,0 +1,26 @@
+// Exa 3.26
+clc;
+clear;
+close;
+// Given data
+R = 0.26;// in kJ/kg-K
+R = R * 10^3;// in J/kg-K
+Gamma = 1.4;
+P1 = 3.1;// MN/m^2
+P1 = P1 * 10^6;// N/m^2
+P2 = 1.7;// in MN/m^2
+P2 = P2 * 10^6;// in N/m^2
+V1 = 500;// in cm^3
+
+T = 18;// in degree C
+T = T + 273;// in K
+T2 = 15;// in degree C
+T2 = T2 + 273;// in K
+m = (P1*V1)/(R*T)*10^-3;// in kg
+m_desh = (P2*V1)/(R*T2)*10^-3;//in kg
+M = m-m_desh;// in kg
+disp(M,"The mass of oxygen in kg is");
+R = R * 10^-3;// in kJ/kg-K
+C_v = R/(Gamma-1);// in kJ/kg-K
+Q = m_desh*C_v * (T-T2);// kJ
+disp(Q,"Heat transfered in kJ is");
diff --git a/2144/CH3/EX3.27/ex3_27.sce b/2144/CH3/EX3.27/ex3_27.sce
new file mode 100755
index 000000000..4111273d6
--- /dev/null
+++ b/2144/CH3/EX3.27/ex3_27.sce
@@ -0,0 +1,33 @@
+// Exa 3.27
+clc;
+clear;
+close;
+// Given data
+P1 = 1 * 10^5;// in N/m^2
+V1 = 0.1;// in m^3
+V2 = 0.01;// in m^3
+T1 = 90;// in degree C
+T1 = T1 +273;// in K
+R = 0.287;// in kJ/kg-K
+R = R *10^3;
+C_v = 0.717;// in kJ/kg-K
+C_P = 1.005;// in kJ/kg-K
+m = (P1 * V1)/(R*T1);// in kg
+Gamma = 1.4;
+T2 = T1 * ((V1/V2)^(Gamma - 1));// in K
+del_U = m*C_v*(T1-T2);// in kJ
+disp(del_U,"The change in internal energy in kJ is : ")
+del_E = m * C_P*(T2-T1);// in kJ
+disp(del_E,"The change in enthalpy in kJ is : ")
+U2 = m*C_v*T2;//Internal energy at 2 in kJ
+T= 473;// temp. of entering air
+E = V1*C_P*T;//Enthalpy of entering air in kJ
+// U3= (m+V1)*C_v*T3 ; (internal energy at 3)
+// U3= U2+E
+T3 = (E+U2)/( (m+V1)*C_v );// in K
+disp(T3,"Temperature in K is");
+m=m+.1;
+P3 =m* R*T3/V2;// in N/m^2
+disp(P3*10^-6,"The pressure in MN/m^2 is");
+
+// Note: There is a calculation error to evaluating the value of P3. So the answer in the book of P3 is wrong.
diff --git a/2144/CH3/EX3.28/ex3_28.sce b/2144/CH3/EX3.28/ex3_28.sce
new file mode 100755
index 000000000..523d1cbd9
--- /dev/null
+++ b/2144/CH3/EX3.28/ex3_28.sce
@@ -0,0 +1,20 @@
+// Exa 3.28
+clc;
+clear;
+close;
+// Given data
+T= 60+273;// in K
+T2= 25+273;// in K
+P1=3.5*10^6;// in Pa
+P2=1.7*10^6;// in Pa
+Gamma=0.4;// value of Cp-Cv
+m1=1;// (assumed value)
+// R= P1*V/(m*T) (i)
+// R= P2*V/((m-m1)*T2) (ii)
+// From eq(i) and (ii)
+m= m1*P1*T2/(P1*T2-P2*T);
+// U= m*Cv*T and U1= (m-m1)*Cv*T2+m1*Cv*T1
+// U-U1= P1*V1= m1*R*T1 or
+// m1*R*T1= m*Cv*T-[(m-m1)*Cv*T2+m1*Cv*T1]
+T1= (m*T-(m-m1)*T2)/(m1*Gamma+m1);// in K
+disp(T1-273,"The temperature of gas in the cylinder in °C is : ")
diff --git a/2144/CH3/EX3.29/ex3_29.sce b/2144/CH3/EX3.29/ex3_29.sce
new file mode 100755
index 000000000..aa7759357
--- /dev/null
+++ b/2144/CH3/EX3.29/ex3_29.sce
@@ -0,0 +1,13 @@
+// Exa 3.29
+clc;
+clear;
+close;
+/// Given data
+U=180;// energy received by system in kJ
+RH= 200;// rejected heat by system in kJ
+RcHeat= 50;// received heat by system in kJ
+W= U-RH+RcHeat;// in kJ
+U1 = 0;// in kJ
+U2= U+U1;// in kJ
+U3 = RcHeat-RH+U2;// in kJ
+disp(U3,"Internal energy in kJ is");
diff --git a/2144/CH3/EX3.3/ex3_3.sce b/2144/CH3/EX3.3/ex3_3.sce
new file mode 100755
index 000000000..2407d4910
--- /dev/null
+++ b/2144/CH3/EX3.3/ex3_3.sce
@@ -0,0 +1,23 @@
+// Exa 3.3
+clc;
+clear;
+close;
+// Given data
+P = 3.2;// in bar
+P = P * 10^5;// in N/m^2
+R = 292.7;// in kJ/kg-K
+C_p = 1.003;// in kJ/kg-K
+m = 1;
+V1 = 0.3;// in m^3
+V2 = 2*V1;// in m^3
+W = P*(V2-V1);// in J
+W = W * 10^-3;// in kJ
+disp(W,"The work done in kJ is");
+T1 = (P*V1)/(m*R);// in K
+disp(T1-273,"The intail Temperature in °C is");
+T2 = T1*(V2/V1);// in K
+disp(T2-273,"The final temperature in °C is");
+Q = m*C_p*(T2-T1);// in kJ
+disp(Q,"The Heat added in kJ is");
+
+// Note: To evaluate the value of Heat added, wrong value of T1 is putted (i.e 273 k at place of 328 K), so the answer of Heat added is wrong in the book.
diff --git a/2144/CH3/EX3.30/ex3_30.sce b/2144/CH3/EX3.30/ex3_30.sce
new file mode 100755
index 000000000..7b393da68
--- /dev/null
+++ b/2144/CH3/EX3.30/ex3_30.sce
@@ -0,0 +1,17 @@
+// Exa 3.30
+clc;
+clear;
+close;
+// Given data
+C_P = 1.045;// in kJ/kg-K
+Q = 100;// in kJ
+del_T = Q/C_P;// in degree C
+T1 = 25;// in degree C
+T1 = T1 + 273;// in K
+T = 0;// in degree C
+T = T + 273;// in K
+T2 = T1 + del_T;// in K
+del_Phi = C_P * (log(T2/T1));// in kJ/kg-K
+disp(del_Phi,"The change in entropy in the process in kJ/kg-K is");
+ini_entropy = C_P * (log(T1/T));// initial entropy in in kJ/kg-K
+disp(ini_entropy,"The initial entropyin kJ/kg-K is");
diff --git a/2144/CH3/EX3.4/ex3_4.sce b/2144/CH3/EX3.4/ex3_4.sce
new file mode 100755
index 000000000..bfee41437
--- /dev/null
+++ b/2144/CH3/EX3.4/ex3_4.sce
@@ -0,0 +1,28 @@
+// Exa 3.4
+clc;
+clear;
+close;
+// Given data
+R = 0.29;// in kJ/kg-K
+R = R * 10^3;// in J/kg-K
+C_p = 1.005;// in kJ/kg-K
+T = 185;// in degree C
+T = T + 273;// in K
+T2 = 70+273;// in K
+V1 = 0.23;// in m^3
+P = 500;// in kN/m^2
+P = P * 10^3;// in N/m^2
+m = (P*V1)/(R*T);// in kg
+Q = m*C_p*(T2-T);// in kJ
+disp(Q,"Heat transferred in kJ is");
+disp("i.e. "+string(abs(Q))+" kJ heat has been abstracted from the gas")
+V2 = V1*(T2/T);// in m^3
+W = P * (V2-V1);// in J
+W= W*10^-3;//in kJ
+disp(W,"The work done in kJ is");
+disp("i.e. "+string(abs(W))+" kJ work has been done on the gas ")
+R= R*10^-3;// in kJ/kg-K
+C_v = C_p - R;// in kJ/kg-K
+I_E = m*C_v*(T2-T);// Change in internal energy in kJ
+disp(I_E,"Change in internal energy in kJ is");
+disp("i.e. "+string(abs(I_E))+" kJ energy is decrease in internal energy")
diff --git a/2144/CH3/EX3.5/ex3_5.sce b/2144/CH3/EX3.5/ex3_5.sce
new file mode 100755
index 000000000..1b05ded2f
--- /dev/null
+++ b/2144/CH3/EX3.5/ex3_5.sce
@@ -0,0 +1,18 @@
+// Exa 3.5
+clc;
+clear;
+close;
+// Given data
+P1 = 1.1;// in MN/m^2
+P1 = P1 * 10^6;// in N/m^2
+V1 = 1.5;// in m^3
+V2 = 7.5;// in m^3
+P2 = (P1*V1)/V2;// in kN/m^2
+P2 = P2 * 10^-6;// in MN/m^2
+P2 = P2 * 10^3;// in kN/m^2
+disp(P2,"The final pressure in kN/m^2 is");
+W = P1*V1*log(V2/V1);// in J
+W = W * 10^-3;// in kJ
+disp(W,"The work done in kJ is");
+
+// Note : There is an error in calculation to find the value of Work Done. So the answer in the book is wrong
diff --git a/2144/CH3/EX3.6/ex3_6.sce b/2144/CH3/EX3.6/ex3_6.sce
new file mode 100755
index 000000000..3379dcc2a
--- /dev/null
+++ b/2144/CH3/EX3.6/ex3_6.sce
@@ -0,0 +1,21 @@
+// Exa 3.6
+clc;
+clear;
+close;
+// Given data
+P1 = 2800000;// in N/m^2
+P1 = P1 * 10^-6;// in MN/m^2
+C_p = 1.024;// in kJ/kg-K
+C_v = 0.7135;// in kJ/kg-K
+V1 = 1;// in m^3. (asuumed )
+V2 = 5*V1;// in m^3
+T1 = 220;// in degree C
+T1 = T1 + 273;// in K
+Gamma = C_p/C_v;
+P2 = (P1*(V1)^Gamma)/((V2)^Gamma);// in MN/m^2
+disp(P2,"The final pressure in MN/m^2 is");
+T2 = (P2/P1)*V2*T1;// in K
+disp(T2-273,"The final temperature in degree C is");
+R = C_p-C_v;// in kJ/kg-K
+W = (R*(T1-T2))/(Gamma - 1);// in kJ
+disp(W,"Work done in kJ is");
diff --git a/2144/CH3/EX3.7/ex3_7.sce b/2144/CH3/EX3.7/ex3_7.sce
new file mode 100755
index 000000000..714a0776e
--- /dev/null
+++ b/2144/CH3/EX3.7/ex3_7.sce
@@ -0,0 +1,19 @@
+// Exa 3.7
+clc;
+clear;
+close;
+// Given data
+W = 89.947;// in kJ
+T1 = 240;// in degree C
+T1=T1+273;// in K
+T2 = 115;// in degree C
+T2=T2+273;// in K
+C_v = W/(T1-T2);// in kJ/kg-K
+disp(C_v,"The value of Cv in kJ/kg-K is");
+V1 = 1;// in m^3 (assumed)
+V2 = 2*V1;// in m^3
+// (T1/T2) = (V2/V1)^(Gamma - 1)
+Gamma=log10(T1/T2)/log10(V2/V1)+1;
+Gamma = 1.4;
+C_p = Gamma * C_v;// in kJ/kg-K
+disp(C_p,"The value Cp in kJ/kg-K is");
diff --git a/2144/CH3/EX3.8/ex3_8.sce b/2144/CH3/EX3.8/ex3_8.sce
new file mode 100755
index 000000000..cd51fee03
--- /dev/null
+++ b/2144/CH3/EX3.8/ex3_8.sce
@@ -0,0 +1,30 @@
+// Exa 3.8
+clc;
+clear;
+close;
+// Given data
+P = 7;// in bar
+P = P *10^5;// in N/m^2
+R = 0.287;// in kJ/kg-K
+R=R*10^3;// in J/kg-K
+Gamma = 1.4;
+T = 100;// in degree C
+T = T + 273;// in K
+V = (R*T)/P;// in m^3
+disp(V,"The volume of one kg of air in m^3 is : ")
+C_v = 0.718;// in kJ/kg
+T=T-273;// in degree C
+InternalEnergy= C_v*T;// in kJ/kg
+disp(InternalEnergy,"Internal energy of 1 kg air in kJ/kg is : ")
+P1= P;// in bar
+V1 = 1;// in m^3 (assumed)
+V2 = 4 * V1;// in m^3
+T1= T;// in degree C
+T1=T1+273;// in K
+P2 = (P * (V1)^Gamma)/((V2)^Gamma);// in N/m^2
+disp(P2*10^-5,"The final pressure in bar is");
+T2 = (P2*V2)/(P1*V1)*T1// in K
+T2 = T2 - 273;// in degree
+disp(T2,"The final temperature in degree C is");
+I_E = C_v * T2;// in kJ/kg
+disp(I_E,"Internal energy in kJ/kg is");
diff --git a/2144/CH3/EX3.9/ex3_9.sce b/2144/CH3/EX3.9/ex3_9.sce
new file mode 100755
index 000000000..f73f02ff7
--- /dev/null
+++ b/2144/CH3/EX3.9/ex3_9.sce
@@ -0,0 +1,23 @@
+// Exa 3.9
+clc;
+clear;
+close;
+// Given data
+Gamma = 1.41;
+C_v = 0.703;// in kJ/kg-K
+P1 = 105;// in kN/m^2
+P2 = 2835;// in kN/m^2
+T1 = 15;// in degree C
+T1 = T1 + 273;// in K
+m = 0.2;// in kg
+// Formula T2/T1 = (P2/P1)^((Gamma-1)/Gamma)
+T2 = T1*(P2/P1)^((Gamma-1)/Gamma);// in K
+T2 = T2 - 273;// in degree C
+disp(T2,"The final temperature in degree C is");
+T2 = T2+273;// in K
+I_E = m*C_v*(T2-T1);// in kJ
+disp(I_E,"Change in internal energy in kJ is");
+W = I_E;// in kJ
+disp(W,"Work done in kJ is");
+
+// Note: There is an error to calculate the value of T2, and this wrong value is putted to evaluate the value of Change in internal energy but the value of Change in internal energy is calculated correc.
diff --git a/2144/CH4/EX4.1/exa_4_1.sce b/2144/CH4/EX4.1/exa_4_1.sce
new file mode 100755
index 000000000..2748c44c7
--- /dev/null
+++ b/2144/CH4/EX4.1/exa_4_1.sce
@@ -0,0 +1,17 @@
+// Example 4.1
+clc;
+clear;
+close;
+// Given data
+Q= 1000;// in kJ
+T1= 1000;// in K
+T2= 400;// in K
+delta_Qsource= -Q/T1;// in kJ/K
+delta_Qsystem= Q/T2;// in kJ/K
+delta_Qnet=delta_Qsystem+delta_Qsource;// in kJ/K
+disp(delta_Qnet,"The entropy production accompanying the heat transfer in kJ/K is : ")
+T0= 300;// in K
+Q1= Q-T0*abs(delta_Qsource);// in kJ
+Q2= Q-T0*abs(delta_Qsystem);// in kJ
+LossOfEnergy= Q1-Q2;// in kJ
+disp(LossOfEnergy,"The decrease in available energy after heat transfer in kJ is : ")
diff --git a/2144/CH4/EX4.2/exa_4_2.sce b/2144/CH4/EX4.2/exa_4_2.sce
new file mode 100755
index 000000000..171553cdc
--- /dev/null
+++ b/2144/CH4/EX4.2/exa_4_2.sce
@@ -0,0 +1,22 @@
+// Example 4.2
+clc;
+clear;
+close;
+// Given data
+T1= 800+273;// in K
+T2= 400+273;// in K
+T3= 179+273;// in K
+T0= 25+273;// in K
+Q= 2018.4;// heat taken by water in kJ/kg
+// Formula mCp*(T1-T2)= Q
+mCp= Q/(T1-T2);
+delta_Qgas= mCp*integrate('1/T','T',T1,T2);// in kJ/K
+delta_Qwater= Q/T3;// in kJ/K
+delta_Qnet= delta_Qwater+delta_Qgas;// in kJ/K
+disp(delta_Qnet,"Net entropy changes in kJ/K is : ")
+E1= T0*abs(delta_Qgas);// Original unavailable energy in kJ
+E2= T0*delta_Qwater;//unavailable energy after heat transfer in kJ
+E= E2-E1;// in increase in unavailable energy in kJ
+disp(E,"The increase in unavailable energy in kJ is : ")
+
+// Note: There is some difference in the value of increase in unavailable energy because in the book the value of change of entropy of the gas is not correct.
diff --git a/2144/CH5/EX5.1/ex5_1.sce b/2144/CH5/EX5.1/ex5_1.sce
new file mode 100755
index 000000000..a4387dac1
--- /dev/null
+++ b/2144/CH5/EX5.1/ex5_1.sce
@@ -0,0 +1,23 @@
+// Exa 5.1
+clc;
+clear;
+close;
+// Given data
+T1 = 550;// in degree C
+T1 = T1 + 273;// in K
+T2 = 27;// in degree C
+T2 = T2 + 273;// in K
+Eta = ((T1-T2)/T1)*100;// in %
+disp(Eta,"Maximum possible efficiency for staem turbine plant in % is");
+T1 = 2500;// in degree C
+T1 = T1 + 273;// in K
+T2 = 400;// in degree C
+T2 = T2 + 273;// in K
+Eta = ((T1-T2)/T1)*100;// in %
+disp(Eta,"Maximum possible efficiency for internal combustion engine in % is");
+T1 = 450;// in degree C
+T1 = T1 + 273;// in K
+T2 = 15;// in degree C
+T2 = T2 + 273;// in K
+Eta = ((T1-T2)/T1)*100;// in %
+disp(Eta,"Maximum possible efficiency for nuclear power plant in % is");
diff --git a/2144/CH5/EX5.11/ex5_11.sce b/2144/CH5/EX5.11/ex5_11.sce
new file mode 100755
index 000000000..de477d2a3
--- /dev/null
+++ b/2144/CH5/EX5.11/ex5_11.sce
@@ -0,0 +1,28 @@
+// Exa 5.11
+clc;
+clear;
+close;
+// Given data
+r = 10;
+Gamma = 1.4;
+P1 = 1;// in bar
+P2 = 1 * ((r)^(Gamma));// in bar
+P3 = 40;// in bar
+P4 = P3;// in bar
+T1 = 80;// in degree C
+T1 = T1+273;// in K
+T2 = T1 * ((r)^(Gamma-1));// in K
+T3 = (P3/P2)*T2;// in K
+T4 = 1700;// in degree C
+T4 = T4 + 273;// in K
+Vc= 1;// in m^3(assumed)
+V4= Vc*T4/T3;
+V1= 10*Vc;// volume at beginning of compression in m^3
+Vs= V1-Vc;// in m^3
+PercentageStroke= (V4-Vc)/Vs*100;// in %
+disp(PercentageStroke,"Percentage of stroke at which heat reception must stop is : ")
+r= V1/V4;
+P5= P4/r^Gamma;// in bar
+disp("Ratio of work done during expansion to that done during compression is ")
+ratio= (P4*V4-P5*V1)/(P2*Vc-P1*V1);
+disp(ratio)
diff --git a/2144/CH5/EX5.12/ex5_12.sce b/2144/CH5/EX5.12/ex5_12.sce
new file mode 100755
index 000000000..b7366050d
--- /dev/null
+++ b/2144/CH5/EX5.12/ex5_12.sce
@@ -0,0 +1,26 @@
+// Exa 5.12
+clc;
+clear;
+close;
+// Given data
+P1 = 1;// in bar
+T1 = 320;// in K
+r= 11.6;
+Vc= 1;// in m^3 (assumed)
+Vs= 10.6*Vc;//in m^3
+V1= r*Vc;// in m^3
+Gamma= 1.4;
+P2= P1*r^Gamma;// in bar
+V2= Vc;// in m^3
+V3= Vc;// in m^3
+V4=1.38*Vc;// in m^3
+P3= 1.53*P2;// in bar
+P4= P3;// in bar
+expansionRatio= V1/V4;
+P5= P4/expansionRatio^Gamma;// in bar
+V5= r*Vc;// in m^3
+W= [P3*(V4-Vc)+(P4*V4-P5*V5)/(Gamma-1)-(P2*V2-P1*V1)/(Gamma-1)]*10^5;// in joule
+Pm= W/(Vs*10^4);// in N/cm^2
+disp(Pm,"The mean effective pressure of the cycle in N/cm^2")
+
+// Note: The calculation in the book is wrong
diff --git a/2144/CH5/EX5.13/ex5_13.sce b/2144/CH5/EX5.13/ex5_13.sce
new file mode 100755
index 000000000..2cff90b69
--- /dev/null
+++ b/2144/CH5/EX5.13/ex5_13.sce
@@ -0,0 +1,19 @@
+// Exa 5.13
+clc;
+clear;
+close;
+// Given data
+C_P = 0.998;// in kJ/kg-K
+C_v = 0.707;//in kJ/kg-K
+T1 = 15;// in degree C
+T1 = T1 +273;// in K
+T2 = 400;// in degree C
+T2 = T2 + 273;// in K
+Eta = (1 - (T1/T2))*100;// in %
+disp(Eta,"The ideal efficiency when engine is fitted with a perfect regenerator in % is");
+R = C_P-C_v;// in kJ/kg-K
+r = 3;
+Eta_r = 0.8;
+Eta = ((R*(log(r)))*(T2-T1))/( (R*(log(r))*T2) + (1-Eta_r) * C_v * (T2-T1) )*100;// in %
+disp(Eta,"The ideal efficicency when efficiency of the regenrator is 0.8 in % is");
+
diff --git a/2144/CH5/EX5.14/ex5_14.sce b/2144/CH5/EX5.14/ex5_14.sce
new file mode 100755
index 000000000..287cf26dd
--- /dev/null
+++ b/2144/CH5/EX5.14/ex5_14.sce
@@ -0,0 +1,24 @@
+// Exa 5.14
+clc;
+clear;
+close;
+// Given data
+T1 = 15;// in degree C
+T1 = T1 + 273;// in K
+P1 = 1;// in bar
+P2 = 5;// in bar
+Gamma = 1.4;
+T2 = T1 * ((P2/P1)^((Gamma-1)/Gamma));// in K
+C_P = 1.003;// in kJ/kg-K
+CompWork = C_P*(T2 - T1);// Compressure work in kJ/kg
+T3 = 800;// in degree C
+T3 = T3 + 273;// in K
+T4 = T3/((P2/P1)^((Gamma-1)/Gamma));// in K
+T4= round(T4);// in K
+turbineWork = C_P * (T3-T4);// Turbine work in kJ/kg
+Q = C_P * (T3-T2);// Heat input in kJ/kg
+W = turbineWork-CompWork;// in kJ/kg
+W= round(W);//in kJ/kg
+Eta = (W/Q)* 100;// in %
+disp(round(Eta),"the thermal efficiency of plant in % is");
+disp("Output of gas turbine installation is "+string(W)+" kW per kg of flow per second")
diff --git a/2144/CH5/EX5.15/ex5_15.sce b/2144/CH5/EX5.15/ex5_15.sce
new file mode 100755
index 000000000..85b426fc8
--- /dev/null
+++ b/2144/CH5/EX5.15/ex5_15.sce
@@ -0,0 +1,17 @@
+// Exa 5.15
+clc;
+clear;
+close;
+// Given data
+C_v = 0.711;// in kJ/kg-K
+T3 = 850;// in degree C
+T3 = T3 + 273;// in K
+T2 = 90;// in degree C
+T2 = T2 + 273;// in K
+E = C_v * (log(T3/T2));// Entropy change in kJ/kg-K
+disp(E,"Entrophy change in kJ/kg-K is");
+W = (E * (T3-T2))/2;//output work in kJ/kg
+Q = T2+E;//rejected heat in kJ/kg
+Q1 = W + Q;//heat supplied in kJ/kg
+Eta = (W/Q1);// in %
+disp(Eta,"The efficiency of cycle in % is");
diff --git a/2144/CH5/EX5.2/ex5_2.sce b/2144/CH5/EX5.2/ex5_2.sce
new file mode 100755
index 000000000..0bdd560db
--- /dev/null
+++ b/2144/CH5/EX5.2/ex5_2.sce
@@ -0,0 +1,14 @@
+// Exa 5.2
+clc;
+clear;
+close;
+// Given data
+D = 0.3;// in m
+L = 0.45;// in m
+V_s = (%pi/4)*(D)^2*L;// in m^3
+V_c = 0.0114;// in m^3
+V = V_c+V_s;// in m^3
+r = V/V_c;
+Gamma = 1.4;
+Eta = (1-((1/r)^(Gamma-1)))*100;// in %
+disp(Eta,"Efficiency of engine in % is");
diff --git a/2144/CH5/EX5.3/ex5_3.sce b/2144/CH5/EX5.3/ex5_3.sce
new file mode 100755
index 000000000..df9243fc6
--- /dev/null
+++ b/2144/CH5/EX5.3/ex5_3.sce
@@ -0,0 +1,29 @@
+// Exa 5.3
+clc;
+clear;
+close;
+// Given data
+P1 = 0.93;// in bar
+T1 = 93;// in degree C
+T1 = T1 + 273;// in K
+V2 = 1;// assumed
+V1 = 8.5*V2;
+r = V1/V2;
+Gamma = 1.4;
+P2 = P1 * ((V1/V2)^(Gamma));// in bar
+disp(P2,"Pressure at the beginning of compression stroke in bar is");
+T2 = (P2*V2*T1)/(P1*V1);// in K
+disp(T2-273,"Temperature at the beginning of compression stroke in °C")
+P3 = 38;// in bar
+T3 = T2 * (P3/P2);// in K
+disp(P3,"Pressure at the beginning of expansion stroke in bar is : ")
+disp(T3-273,"Temperature at the beginning of expansion stroke in °C is :")
+V3 = V2;
+V4 = V1;
+P4 = P3 * ((V3/V4)^(Gamma));// in bar
+T4 = T1 * (P4/P1);// in K
+disp(P4,"Pressure at the end of expansion stroke in bar is :")
+disp(T4-273,"Temperature at the end of expansion stroke in °C is :")
+Eta = 1 - (1/((r)^(Gamma-1)));
+Eta = Eta * 100;// in %
+disp(Eta,"Standard air efficiency in % is");
diff --git a/2144/CH5/EX5.4/ex5_4.sce b/2144/CH5/EX5.4/ex5_4.sce
new file mode 100755
index 000000000..d316bf611
--- /dev/null
+++ b/2144/CH5/EX5.4/ex5_4.sce
@@ -0,0 +1,22 @@
+// Exa 5.4
+clc;
+clear;
+close;
+// Given data
+CalorificValue= 14.887*10^3;// in kJ/m^3
+Vs= 1;// in m^3 (assumed)
+Vc= 0.25*Vs;// clearance volume in m^3
+V= Vs+Vc;// in m^3
+Ratio= V/Vc;// ratio of compression
+Gamma= 1.4;
+r= 5;
+Eta=1-1/(r^(Gamma-1)) ;
+Eta= Eta*100;// in %
+disp(Eta,"Air standard efficiency in % is :")
+Eta_Th= Eta*60/100;// thermal efficiency
+disp(Eta_Th,"Thermal efficiency in % is : ")
+Eta_br_th= Eta_Th*75/100;// break thermal efficiency
+disp(Eta_br_th,"Brake thermal efficiency in % is :")
+E= 3600;// energy equivalent of brake in kJ
+GasConsumption= E/CalorificValue;// in m^3
+disp(GasConsumption,"The consumption of gas in m^3 is :")
diff --git a/2144/CH5/EX5.7/ex5_7.sce b/2144/CH5/EX5.7/ex5_7.sce
new file mode 100755
index 000000000..64c31b5ff
--- /dev/null
+++ b/2144/CH5/EX5.7/ex5_7.sce
@@ -0,0 +1,23 @@
+// Exa 5.7
+clc;
+clear;
+close;
+// Given data
+Gamma = 1.4;
+r = 8;
+Eta = 1 - (1/((r)^(Gamma-1)));
+Eta = Eta * 100;// in %
+disp(Eta,"Otto engine efficiency in % is");
+r = 13;
+x = 1;
+Rho = 2.5;
+Eta = 1-(1/r)^(Gamma-1)*[(Rho^Gamma-1)/(Gamma*(Rho-1))];
+Eta = Eta * 100;// in %
+disp(Eta,"Diesel engine efficiency in % is");
+r = 13;
+x = 3.5;
+Rho = 2.5;
+Eta = 1-(1/r)^(Gamma-1)*[(x*Rho^Gamma-1)/((x-1)+x*Gamma*(Rho-1))];
+Eta = Eta * 100;// in %
+disp(Eta,"Dual engine efficiency in % is");
+
diff --git a/2144/CH5/EX5.8/ex5_8.sce b/2144/CH5/EX5.8/ex5_8.sce
new file mode 100755
index 000000000..00602fd7e
--- /dev/null
+++ b/2144/CH5/EX5.8/ex5_8.sce
@@ -0,0 +1,18 @@
+// Exa 5.8
+clc;
+clear;
+close;
+// Given data
+D = 15;
+L = 25;
+V_s = (%pi/4) * (D)^2 * L;// in cm^3
+V_c = 400;// in cm^3
+V = V_s+V_c;// in cm^3
+r = V/V_c;
+Rho = (V_c +( V_s*(5/100) ))/V_c;
+Gamma = 1.4;
+Eta = 1-((1/r)^(Gamma-1)) * ( (((Rho)^(Gamma))-1)/(Gamma*(Rho-1)) );
+Eta = Eta * 100;// in %
+disp(Eta,"Efficiency of diesel cycle in % is");
+
+// Note: Calculation in the book is wrong, So the answer in the book is wrong
diff --git a/2144/CH5/EX5.9/ex5_9.sce b/2144/CH5/EX5.9/ex5_9.sce
new file mode 100755
index 000000000..3bf163630
--- /dev/null
+++ b/2144/CH5/EX5.9/ex5_9.sce
@@ -0,0 +1,26 @@
+// Exa 5.9
+clc;
+clear;
+close;
+// Given data
+C_P = 0.966;// in kJ/kg-K
+C_v = 0.712;// in kJ/kg-K
+T1 = 83;// in degree C
+T1 =T1 + 273;// in K
+T3 = 1800;// in degree C
+T3 = T3+273;// in K
+r = 13;
+Gamma = 1.4;
+T2 = T1 * (r)^(Gamma-1);// in K
+disp(T2-273,"Temperature at the end of compression in °C is");
+Rho = T3/T2;
+T4 = ((Rho)^(Gamma)) * T1;// in K
+disp(T4-273,"Temperature at the end of expansion in °C is");
+Q = C_P * (T3-T2);// in kJ
+disp(Q,"Heat supplied at constant pressure in kJ is");
+Q1 = C_v * (T4-T1);// in kJ
+disp(Q1,"Heat rejected at constant volume in kJ is");
+Eta = ((Q-Q1)/Q) * 100;// in %
+disp(Eta,"Thermal efficiency in % is");
+
+// Note: The answer in the book is not accurate
diff --git a/2144/CH6/EX6.1/ex6_1.sce b/2144/CH6/EX6.1/ex6_1.sce
new file mode 100755
index 000000000..f2aebdf01
--- /dev/null
+++ b/2144/CH6/EX6.1/ex6_1.sce
@@ -0,0 +1,11 @@
+// Exa 6.1
+clc;
+clear;
+close;
+// Given data
+P = 10;// in bar
+P = P *10^5;// in N/m^2
+V = 2;//volume of water in m^3
+W = P * V;// in J
+W = W * 10^-6;// in MJ
+disp(W,"Work done in MJ is");
diff --git a/2144/CH6/EX6.10/ex6_10.sce b/2144/CH6/EX6.10/ex6_10.sce
new file mode 100755
index 000000000..0031c2e68
--- /dev/null
+++ b/2144/CH6/EX6.10/ex6_10.sce
@@ -0,0 +1,20 @@
+// Exa 6.10
+clc;
+clear;
+close;
+// Given data
+T = 0;// in degree C
+T = T + 273;// in K
+T_sat = 179.9;// in degree C
+T_sat = T_sat + 273;// in K
+x = 0.8;
+h_fg = 2013.8;// in kJ/kg
+c_f = 4.188;
+Phi_wet = c_f*log(T_sat/T)+x*h_fg/T_sat;// in kJ/kg-K
+disp(Phi_wet,"The entropy of wet steam in kJ/kg-K is");
+Phi_g = (c_f*(log(T_sat/T))) + (h_fg/T_sat);// in kJ/kg-K
+disp(Phi_g,"The entropy of dry saturated steam in kJ/kg-K is");
+C_P = 2.3;
+T_sup = 200+273;// in K
+Phi = c_f *log(T_sat/T) + h_fg/T_sat+ C_P*log(T_sup/T_sat);// in kJ/kg-K
+disp(Phi,"The entropy of superheated steam in kJ/kg-K is");
diff --git a/2144/CH6/EX6.11/ex6_11.sce b/2144/CH6/EX6.11/ex6_11.sce
new file mode 100755
index 000000000..64e39c143
--- /dev/null
+++ b/2144/CH6/EX6.11/ex6_11.sce
@@ -0,0 +1,15 @@
+// Exa 6.11
+clc;
+clear;
+close;
+// Given data
+T_sat = 198.3;// in degree C
+T_sat = T_sat + 273;// in K
+T_sup = 300;// in degree C
+T_sup = T_sup + 273;// in K
+c_f = 4.188;
+h_fg = 1945;// in kJ/kg-K
+T = 273;// in K
+C_P = 2.093;// in kJ/kg-K
+Phi_sup =c_f *log(T_sat/T)+h_fg/T_sat+C_P*log(T_sup/T_sat);// in kJ/kg-K
+disp(Phi_sup,"The value of specific entropy in kJ/kg-K is");
diff --git a/2144/CH6/EX6.12/ex6_12.sce b/2144/CH6/EX6.12/ex6_12.sce
new file mode 100755
index 000000000..b2f45a282
--- /dev/null
+++ b/2144/CH6/EX6.12/ex6_12.sce
@@ -0,0 +1,10 @@
+// Exa 6.12
+clc;
+clear;
+close;
+//Given data
+P = 16;// in bar
+m_w = 73;// in gm
+m_s = 980;// in gm
+x = m_s/(m_s+m_w);
+disp(x,"Dryness fraction of steam is");
diff --git a/2144/CH6/EX6.13/ex6_13.sce b/2144/CH6/EX6.13/ex6_13.sce
new file mode 100755
index 000000000..54e0db878
--- /dev/null
+++ b/2144/CH6/EX6.13/ex6_13.sce
@@ -0,0 +1,15 @@
+// Exa 6.13
+clc;
+clear;
+close;
+// Given data
+P1 = 7;// in bar
+P2 = 1.2;// in bar
+h_f1 = 696.9;// in kJ/kg
+h_fg1 = 2065;// in kJ/kg
+h_g2 = 2684.9;// in kJ/kg
+T_sup = 112;// in degree C
+T_sat = 104.77;// in degree C
+C_P = 2.1;// in kJ/kg
+x1 = (h_g2+(C_P*(T_sup-T_sat))-h_f1)/h_fg1;
+disp(x1,"Dryness fraction of steam is");
diff --git a/2144/CH6/EX6.14/ex6_14.sce b/2144/CH6/EX6.14/ex6_14.sce
new file mode 100755
index 000000000..1f717a650
--- /dev/null
+++ b/2144/CH6/EX6.14/ex6_14.sce
@@ -0,0 +1,12 @@
+// Exa 6.14
+clc;
+clear;
+close;
+// Given data
+P1 = 14;// in bar
+P2 = 1.2;// in bar
+h_f1 = 830;
+h_fg1 = 1958;
+h_g2 = 2684.9;
+x = (h_g2-h_f1)/h_fg1;
+disp(x,"Dryness fraction of steam is");
diff --git a/2144/CH6/EX6.15/ex6_15.sce b/2144/CH6/EX6.15/ex6_15.sce
new file mode 100755
index 000000000..29128955c
--- /dev/null
+++ b/2144/CH6/EX6.15/ex6_15.sce
@@ -0,0 +1,17 @@
+// Exa 6.15
+clc;
+clear;
+close;
+// Given data
+m_s = 2.2;// in kg
+m_w = 0.18;// in kg
+x1 = m_s/(m_s+m_w);
+h_f1 = 743;
+h_fg1 = 2031;
+h_g2 = 2685;
+C_P = 2;
+T_sup = 115;// in degree C
+T_sat = 104.8;// in degree C
+x2 = (h_g2 + (C_P*(T_sup-T_sat)) - h_f1)/h_fg1;
+x = x1 * x2;
+disp(x,"The dryness fraction of steam is");
diff --git a/2144/CH6/EX6.16/ex6_16.sce b/2144/CH6/EX6.16/ex6_16.sce
new file mode 100755
index 000000000..95e4f3644
--- /dev/null
+++ b/2144/CH6/EX6.16/ex6_16.sce
@@ -0,0 +1,17 @@
+// Exa 6.16
+clc;
+clear;
+close;
+// Given data
+h_f1 = 232;// in kJ/kg
+h_fg = 2369;// in kJ/kg
+x = 0.8;
+h_f2 = 167.5;// in kJ/kg
+H_wet1 = h_f1 + (x*h_fg);// in kJ/kg
+H_wet = H_wet1 - h_f2;// in kJ/kg
+T1 = 38;// in degree C
+T2 = 25;// in degree C
+T = T1-T2;// in degree C
+SpeHeat = 4.188;// in kJ/kg-K
+m = H_wet/(T*SpeHeat);// in kJ/kg
+disp(round(m),"The quantity of circulating water required of condensed steam in kJ/kg is");
diff --git a/2144/CH6/EX6.17/ex6_17.sce b/2144/CH6/EX6.17/ex6_17.sce
new file mode 100755
index 000000000..2ce1a922b
--- /dev/null
+++ b/2144/CH6/EX6.17/ex6_17.sce
@@ -0,0 +1,28 @@
+// Exa 6.17
+clc;
+clear;
+close;
+// Given data
+V1 = 0.4;// volume of dry saturated steam
+P1 = 1.5;// in MN/m^2
+disp("Part (i) : For Isothermal operation :")
+Vs = 0.1318;// specific volume of dry steam
+m = V1/Vs;// quantity of steam present in the vessel in kg
+h_f1= 844.6;// in kJ/kg
+x1= 0.5;// dryness fraction
+h_fg1= 1945.2;// in kJ/kg
+Specific_Enth= h_f1+x1*h_fg1;// in kJ/kg
+En= Specific_Enth*m;// kJ
+disp(En,"Enthalpy of the fluid in kJ is : ")
+HeatLost= m*(1-x1)*h_fg1;// in kJ
+disp(HeatLost,"The loss of heat during the constant temperature process in kJ is : ");
+disp("Part (ii) : For Hyperbolic operation :")
+h_f2= 1008.3;// in kJ/kg
+h_fg2= 1794;// in kJ/kg
+Vs= 0.0659;// Specific volume after compression in m^3/kg
+Vs1= 0.0666;// Specific volume of dry saturated steam in m^3/kg
+x2=Vs/Vs1;
+H_wet= h_f2+x2*h_fg2;// in kJ/kg
+H= m*H_wet;// in kJ
+disp(H,"Enthalpy of the fluid in kJ is :")
+
diff --git a/2144/CH6/EX6.18/ex6_18.sce b/2144/CH6/EX6.18/ex6_18.sce
new file mode 100755
index 000000000..60f70350f
--- /dev/null
+++ b/2144/CH6/EX6.18/ex6_18.sce
@@ -0,0 +1,17 @@
+// Exa 6.18
+clc;
+clear;
+close;
+// Given data
+P = 13.5;// power developed by engine in kW
+P1 = 12;// Steam consumption of the engine in kg/kWh
+S_C = P*P1;//steam consumed per hour in kg
+S_C = S_C/60;// in kg/min
+x = 0.85;
+V_g = 1.430;
+Volume = x * V_g;// in m^3/kg
+Volume = S_C * Volume;// in m^3
+d = 15*10^-2;//diameter of exhaust pipe in meter
+A = (%pi/4) * (d)^2;// in m^2
+C = Volume/A;// in meter/minute
+disp(C,"The velocity of steam in metre/minute is");
diff --git a/2144/CH6/EX6.19/ex6_19.sce b/2144/CH6/EX6.19/ex6_19.sce
new file mode 100755
index 000000000..a1ac76495
--- /dev/null
+++ b/2144/CH6/EX6.19/ex6_19.sce
@@ -0,0 +1,11 @@
+// Exa 6.19
+clc;
+clear;
+close;
+// Given data
+P = 2;//pressure of steam in bar
+m = 0.1;//mass of steam in kg
+V = 0.080;//volume of steam in m^3
+V1 = 0.8872;//volume of 1kg dry saturated steam in m^3
+x = V/(m*V1);
+disp(x,"Dryness fraction of steam is");
diff --git a/2144/CH6/EX6.2/ex6_2.sce b/2144/CH6/EX6.2/ex6_2.sce
new file mode 100755
index 000000000..1bd6b982b
--- /dev/null
+++ b/2144/CH6/EX6.2/ex6_2.sce
@@ -0,0 +1,25 @@
+// Exa 6.2
+clc;
+clear;
+close;
+// Given data
+P = 1.013;// atm pressure in bar
+P = P * 10^5;// in N/m^2
+area= 1000*10^-4;// in m^2
+L_w = 1000;// in N
+P_L = L_w/area;// Pressure due to load in N/m^2
+PressOnPiston = P_L+P;// absolute pressure to piston in N/m^2
+a = 10^-3;// in m^2
+disp("Energy required to pump 1 kg of water at 0°C into the cylinder in joules is:")
+U = PressOnPiston*a;// in Joules
+disp(U);
+// Part (b)
+absPressure= 111.3*10^3;// in N/m^2
+increaseInVol= (1.02-1)*10^-3;// in m^3
+disp("Energy required to effect the change in volume in joules is : ")
+u_f= increaseInVol*absPressure;// in joules
+disp(u_f);
+// Part (c)
+increaseInVol= (1.52-0.001);// in m^3
+ExternalWorkDone= absPressure*increaseInVol;// in joules
+disp(ExternalWorkDone*10^-3,"External work done in kJ is :")
diff --git a/2144/CH6/EX6.20/ex6_20.sce b/2144/CH6/EX6.20/ex6_20.sce
new file mode 100755
index 000000000..cd7af8bca
--- /dev/null
+++ b/2144/CH6/EX6.20/ex6_20.sce
@@ -0,0 +1,15 @@
+// Exa 6.20
+clc;
+clear;
+close;
+// Given data
+P1 = 7+ 1;// in bar
+H = 2767;// Enthalpy in kJ/kg
+P2 = 1.5+1;// in bar
+H1 = 2717;// enthalpy of 1kg of dry steam in kJ/kg
+H_sup = H - H1;// Superheated of 1kg of steam in kJ
+S1 = 2.17;// super heated steam in kJ/kg-K
+theta = H_sup/S1;// in degree C
+T_sat = 127.4;// in degree C
+T_sup = T_sat + theta;// in degree C
+disp(T_sup,"The super heated temperature in degree C is");
diff --git a/2144/CH6/EX6.21/ex6_21.sce b/2144/CH6/EX6.21/ex6_21.sce
new file mode 100755
index 000000000..d74e1fe74
--- /dev/null
+++ b/2144/CH6/EX6.21/ex6_21.sce
@@ -0,0 +1,15 @@
+// Exa 6.21
+clc;
+clear;
+close;
+// Given data
+T_sat = 99.6;// in degree C
+h_fg = 2258;// in kJ/kg
+m = 1;// steam output of the boiler in (assumed)
+m1 = 0.03;// exhaust steam
+x = 0.9;
+T1 = 21;// in degree C
+Cp = 4.187;// kJ/kg-K
+// Formula m1*(Cp*(T_sat-t)+x*h_fg)= m*Cp*(t-T1)
+t= (m1*(Cp*T_sat+x*h_fg)+m*Cp*T1)/(Cp*(m+m1))
+disp(t,"Temperature of the feed water leaving the heater in degree C is");
diff --git a/2144/CH6/EX6.22/ex6_22.sce b/2144/CH6/EX6.22/ex6_22.sce
new file mode 100755
index 000000000..44b08cba5
--- /dev/null
+++ b/2144/CH6/EX6.22/ex6_22.sce
@@ -0,0 +1,12 @@
+// Exa 6.22
+clc;
+clear;
+close;
+// Given data
+T = 20;// in degree C
+H1 = 3039;// Enthalpy in kJ/kg
+H2 = 2725;// Enthalpy of 1kg dry saturated steam
+H_sup = H1-H2;// superheat of 1kg of steam in kJ/kg
+H= 2621.4;// heat required for 1kg or water in kJ
+m = H_sup/H;// in kg
+disp(m,"Quantity of water in kg is");
diff --git a/2144/CH6/EX6.23/ex6_23.sce b/2144/CH6/EX6.23/ex6_23.sce
new file mode 100755
index 000000000..68b4baab7
--- /dev/null
+++ b/2144/CH6/EX6.23/ex6_23.sce
@@ -0,0 +1,12 @@
+// Exa 6.23
+clc;
+clear;
+close;
+// Given data
+x = 0.9;
+h_f1 = 1087.4;// in kJ/kg
+h_fg1 = 1712.9;// in kJ/kg
+H_wet1 = h_f1 + (x*h_fg1);// in kJ/kg
+H_sup2 = 3095;// in kJ/kg
+H = H_sup2 - H_wet1;// in kJ/kg
+disp(H,"Heat recieved in kJ/kg is");
diff --git a/2144/CH6/EX6.24/ex6_24.sce b/2144/CH6/EX6.24/ex6_24.sce
new file mode 100755
index 000000000..25dcccfd1
--- /dev/null
+++ b/2144/CH6/EX6.24/ex6_24.sce
@@ -0,0 +1,16 @@
+// Exa 6.24
+clc;
+clear;
+close;
+// Given data
+V_fg =0.1632;// in m^3
+T_sup = 200;// in degree C
+T_sup = T_sup + 273;// in K
+T_sat = 188;// in degree C
+T_sat = T_sat + 273;// in K
+V_sup = (V_fg*T_sup)/T_sat;// in m^3/kg
+V = 0.24;// Capacity of the vessel in m^3
+Q = V/V_sup;// in kg
+V1 = 0.9774;//volume of 1kg dry saturated steam in m^3
+x = V_sup/V1;
+disp(x,"Dryness fraction of steam is");
diff --git a/2144/CH6/EX6.25/ex6_25.sce b/2144/CH6/EX6.25/ex6_25.sce
new file mode 100755
index 000000000..0b13ce74a
--- /dev/null
+++ b/2144/CH6/EX6.25/ex6_25.sce
@@ -0,0 +1,20 @@
+// Exa 6.25
+clc;
+clear;
+close;
+// Given data
+V = 0.6;// in m^3
+P2 = 2*10^2;// in kN/m^2
+P1 = 10*10^2;// in kN/m^2
+m = V/0.1946;// in kg
+V_s = 0.8872;// Specific volume of dry saturated steam in m^3
+x = 0.1946/V_s;
+h_f1 = 505;// in kJ/kg
+h_fg1 = 2202;// in kJ/kg
+H2 = m*(h_f1 + (x*h_fg1));// in kJ
+H1 = m*2776;// in kJ
+Q = (H2-H1) - (V*(P2-P1));// in kJ
+disp(m,"The mass of steam in the vessel in kg is : ")
+disp(x,"The dryness fraction of steam in the vessel is : ")
+disp(Q,"The amount o heat transferred in kJ is");
+disp("Thus during cooling process there is loss of heat")
diff --git a/2144/CH6/EX6.26/ex6_26.sce b/2144/CH6/EX6.26/ex6_26.sce
new file mode 100755
index 000000000..eeceddc78
--- /dev/null
+++ b/2144/CH6/EX6.26/ex6_26.sce
@@ -0,0 +1,28 @@
+// Exa 6.26
+clc;
+clear;
+close;
+// Given data
+x1 = 0.95;
+P1 = 9;// in bar
+P1= P1*10^2;// in kN/m^2
+h_f1 = 743;// in kJ/kg
+h_fg1 = 2030;// in kJ/kg
+V = 0.204;// in m^3
+x2 = 0.544
+P2 = 5;// in bar
+P2= P2*10^2;// in kN/m^2
+h_f2 = 640;// in kJ/kg
+h_fg2 = 2108;// in kJ/kg
+H_wet1 = h_f1 + (x1*h_fg1);// in kJ/kg
+disp(H_wet1,"Total energy in kJ/kg is");
+U1 = H_wet1 - P1*V;// in kJ/kg
+disp(U1,"The internal energy in kJ/kg is : ")
+V_g1 = 0.204;// in m^3
+V1 = 0.3753;//volume of 1kg of dry stream in m^3
+x2 = V_g1/V1;
+H_wet2 = h_f2 + (x2*h_fg2);// in kJ
+U2 = H_wet2 - P2*V;// in kJ
+del_U = U1-U2;// in kJ
+H = del_U/V;// in kJ
+disp(H,"Heat removed from 1 m^3 of steam in kJ is");
diff --git a/2144/CH6/EX6.27/ex6_27.sce b/2144/CH6/EX6.27/ex6_27.sce
new file mode 100755
index 000000000..56cd4baaa
--- /dev/null
+++ b/2144/CH6/EX6.27/ex6_27.sce
@@ -0,0 +1,33 @@
+// Exa 6.27
+clc;
+clear;
+close;
+// Given data
+P1 = 2.1;// in MN/m^2
+P1= P1*10^3;//in kN/m^2
+P2 = 0.7;// in MN/m^2
+P2= P2*10^3;//in kN/m^2
+V1 = 0.1281;// in m^3
+x = 0.9;
+n = 1.25;
+h_f1= 920;// in kJ/kg
+h_fg1= 1878.6;// in kJ/kg
+h_f2= 697.0;// in kJ/kg
+h_fg2= 2065.0;// in kJ/kg
+V_wet1 = x * 0.0949;// in m^3/kg
+m = V1/V_wet1;// in kg
+disp(m,"Mass of steam in kg is");
+V2 = V1*((P1/P2)^(1/n));//in m^3
+del_W = (P1*V1-P2*V2)/(n-1);// in kJ
+disp(del_W,"External work done in kJ is");
+V_2 = V2/m;// in m^3/kg
+x2 = V_2/0.273;
+H1= h_f1+x*h_fg1;// in kJ/kg
+U1= H1-P1*V_wet1;// in kJ/kg
+H2= h_f2+x2*h_fg2;// in kJ/kg
+U2= H2-P2*V_2;// in kJ/kg
+del_E = m*(U2-U1);//in kJ
+disp(del_E,"Change in internal energy in kJ is");
+Q = del_W +del_E;// in kJ
+disp(Q,"Heat exchange in kJ is");
+disp("Heat is lost to the surroundings.")
diff --git a/2144/CH6/EX6.28/ex6_28.sce b/2144/CH6/EX6.28/ex6_28.sce
new file mode 100755
index 000000000..f8b094aaf
--- /dev/null
+++ b/2144/CH6/EX6.28/ex6_28.sce
@@ -0,0 +1,24 @@
+// Exa 6.28
+clc;
+clear;
+close;
+// Given data
+h_f1 = 670;// in kJ/kg
+h_fg1 = 2085;// in kJ/kg
+h_f2 = 475;// in kJ/kg
+h_fg2 = 2221;// in kJ/kg
+P2 = 6*10^2;// in kJ/kg
+P1 = 1.6*10^2;// in kJ/kg
+n = 1.1;
+x1 = 0.9;
+V1 = 0.3159;// in m^3
+V2 = 1.092;// in m^3
+H_wet = h_f1 + (x1*h_fg1);// in kJ/kg
+V_wet1 = x1*V1;// in m^3
+V_wet2 = V_wet1*(P2/P1)^(1/n);// in m^3
+x2 = V_wet2/V2;
+H_wet2 = h_f2 + (x2*h_fg2);// in kJ/kg
+U2= H_wet2-H_wet+P2*V_wet1-P1*V_wet2;// in kJ/kg
+W= (P2*V_wet1-P1*V_wet2)/(n-1);// in kJ/kg
+Q= U2+W;// in kJ/kg
+disp(Q,"Heat recieved by steam in kJ/kg is");
diff --git a/2144/CH6/EX6.29/ex6_29.sce b/2144/CH6/EX6.29/ex6_29.sce
new file mode 100755
index 000000000..06d8215ab
--- /dev/null
+++ b/2144/CH6/EX6.29/ex6_29.sce
@@ -0,0 +1,15 @@
+// Exa 6.29
+clc;
+clear;
+close;
+// Given data
+P1 = 0.85*10^3;// in kN/m^2
+P2 = 0.17*10^3;// in kN/m^2
+n = 1.13;
+x1 = 0.95;
+V1 = x1*0.227;// in m^3/kg
+V2 = V1 * ((P1/P2)^(1/n));// in m^3/kg
+x2 = V2/1.032;
+disp(x2,"Final dryness fraction of steam is");
+W = (P1*V1-P2*V2)/(n-1);// in kJ/kg
+disp(W,"Change in internal energy in kJ/kg is");
diff --git a/2144/CH6/EX6.3/ex6_3.sce b/2144/CH6/EX6.3/ex6_3.sce
new file mode 100755
index 000000000..2fd3a9667
--- /dev/null
+++ b/2144/CH6/EX6.3/ex6_3.sce
@@ -0,0 +1,11 @@
+// Exa 6.3
+clc;
+clear;
+close;
+// Given data
+m_s = 92.3;// mass of steam in kg
+m_w = 0.78;// mass of water in kg
+m = m_s + m_w;// total mass in kg
+D_s = 92.3;// Dry steam in kg
+D_F = D_s/m;// Dryness fraction
+disp(D_F,"Dryness fraction is");
diff --git a/2144/CH6/EX6.30/ex6_30.sce b/2144/CH6/EX6.30/ex6_30.sce
new file mode 100755
index 000000000..1dd856512
--- /dev/null
+++ b/2144/CH6/EX6.30/ex6_30.sce
@@ -0,0 +1,17 @@
+// Exa 6.30
+clc;
+clear;
+close;
+// Given data
+Cp= 2.3;// in kJ/kg-K
+T_sat= 179.9;// in °C
+T_sat= T_sat+273;// in K
+H= 3052;// enthalpy in kJ/kg
+P= 10*10^2;// in kN/m^2
+h_f= 763;// in kJ/kg
+h_fg= 2015;// in kJ/kg
+V= 0.1944;// in m^3
+// Formula H= h_f+h_fg*Cp*(t_sup-T_sat)-P*V*(t_sup/T_sat)
+t_sup= (h_f+h_fg-Cp*T_sat-H)/(P*V/T_sat-Cp);// in K
+t_sup= t_sup-273;// in °C
+disp(t_sup,"The final temperature of the steam in °C is : ")
diff --git a/2144/CH6/EX6.31/ex6_31.sce b/2144/CH6/EX6.31/ex6_31.sce
new file mode 100755
index 000000000..c7039aa2d
--- /dev/null
+++ b/2144/CH6/EX6.31/ex6_31.sce
@@ -0,0 +1,18 @@
+// Exa 6.31
+clc;
+clear;
+close;
+// Given data
+m1 = 3;// in kg
+m2 = 2;// in kg
+T1 = 10;// in degree C
+T2 = 80;// In Degree C
+T = ((m1*T1)+(m2*T2))/(m1+m2);// in degree C
+T = T + 273;// in K
+T1 = T1 + 273;// in K
+T2 = T2 + 273;// in K
+c_f = 4.188;
+del_phi1 = m1 * c_f*log(T/T1);// in kJ/K
+del_phi2 = m2 * c_f*log(T/T2);// in kJ/K
+Phi = del_phi1 + del_phi2;// in kJ/K
+disp(Phi,"Total change in entropy in kJ/K is")
diff --git a/2144/CH6/EX6.32/ex6_32.sce b/2144/CH6/EX6.32/ex6_32.sce
new file mode 100755
index 000000000..a6db419d6
--- /dev/null
+++ b/2144/CH6/EX6.32/ex6_32.sce
@@ -0,0 +1,50 @@
+// Exa 6.32
+clc;
+clear;
+close;
+// Given data
+P1 = 15;// in bar
+P2 = 0.15;// in bar
+T_sat = 198.3;// in degree C
+T_sat = T_sat + 273;// in K
+h_fg1 = 1947;// in kJ/kg
+h_fg2= 2369;// in kJ/kg
+h_g1 = 845;// in kJ/kg
+h_f2 = 232;// in kJ/kg
+f_g2 = 7.985;// in kJ/kg-K
+x1 = 0.8;
+Phi_f1 = 2.315;// in kJ/kg-K
+Phi_f2 = 0.772;// in kJ/kg-K
+Phi1 = Phi_f1 + ((x1*h_fg1)/T_sat);// in kJ/kg-K
+H1 = h_g1 + (x1*h_fg1);// in kJ/kg-K
+Phi2 = Phi1;// in kJ/kg-K
+x2 = (Phi1 - Phi_f2)/(f_g2 - Phi_f2);
+H2 = h_f2 + (x2*h_fg2);// in kJ/kg
+Eta = ((H1-H2)/(H1-h_f2))*100;// in %
+disp("Part (i) When the steam supply is wet and dryness fraction is 0.8")
+disp(Eta,"Rankine efficiency in % is");
+delH = H1-H2;//theoretical work of steam in kJ/kg
+W = delH*60/100;// in kJ/kg
+Energy_Equivalent= 3600;// in kJ
+Steam_C = Energy_Equivalent/W;// Steam consumption in kg
+disp(Steam_C,"Steam consumption per kW-hr in kg is :")
+disp("Part (ii) When the steam supply is dry and saturated")
+H_1 = 2792;// in kJ/kg
+Phi_g1 = 6.445;// in kJ/kg-K
+x_2 = (Phi_g1-Phi_f2)/(f_g2-Phi_f2);
+H_2 = h_f2 + (x_2*h_fg2);// in kJ/kg
+Eta1 = (H_1-H_2)/(H_1-h_f2);
+disp("Rankine efficiency is "+string(Eta1)+" or "+string(Eta1*100)+" %");
+W1 = (H_1-H_2)*60/100;// in kJ/kg
+Steam_C= Energy_Equivalent/W1;// in kg
+disp(Steam_C,"Steam consumption per kW-hr in kg is :")
+disp("Part (iii) When steam is superheated and temperature is 300°C")
+H_1 = 3039;// in kJ/kg
+Phi_1 = 6.919;// in kJ/kg-K
+x_2 = (Phi_1 - Phi_f2)/(f_g2-Phi_f2);
+H_2 = h_f2 + (x_2 * h_fg2);// in kJ/kg
+Eta = (H_1 - H_2)/(H_1-h_f2);
+disp("Rankine efficiency is "+string(Eta)+" or "+string(Eta*100)+" %");
+W2 = (H_1-H_2)*60/100;// in kJ/kg
+Steam_C= Energy_Equivalent/W2;// in kg
+disp(Steam_C,"Steam consumption per kW-hr in kg is :")
diff --git a/2144/CH6/EX6.33/ex6_33.sce b/2144/CH6/EX6.33/ex6_33.sce
new file mode 100755
index 000000000..2d147146b
--- /dev/null
+++ b/2144/CH6/EX6.33/ex6_33.sce
@@ -0,0 +1,18 @@
+// Exa 6.33
+clc;
+clear;
+close;
+// Given data
+T1 = 400;// in degree C
+T1 = T1 + 273;// in K
+T2 = 72.7;// in degree C
+T2 = T2 + 273;// in K
+Eta = ((T1-T2)/T1)*100;// in %
+disp("For carnot cycle : ")
+disp(Eta,"Rankine efficiency in % is : ")
+H1 = 3248;// in kJ/kg
+h_f2 = 304.5;// in kJ/kg
+del_H = 809.2;// in kJ/kg
+Eta = (del_H/(H1-h_f2))*100;// in %
+disp("For Rankine cycle : ")
+disp(Eta,"Rankine efficiency in % is");
diff --git a/2144/CH6/EX6.34/ex6_34.sce b/2144/CH6/EX6.34/ex6_34.sce
new file mode 100755
index 000000000..6ded34259
--- /dev/null
+++ b/2144/CH6/EX6.34/ex6_34.sce
@@ -0,0 +1,27 @@
+// Exa 6.34
+clc;
+clear;
+close;
+// Given data
+P1 = 15;// in bar
+H1 = 3039;// in kJ/kg
+V_g1 = 0.1697;// in m^3/kg
+Phi1 = 6.919;// in kJ/kg-K
+P2_desh = 3.5*10^2;// in kN/m^2
+Phi_g2 = 6.941;// in kJ/kg-K
+Phi_f2 = 1.727;// in kJ/kg-K
+P2 = 0.15*10^2;// in kN/m^2
+h_f2 = 232;// in kJ/kg
+x = (Phi1-Phi_f2)/(Phi_g2 - Phi_f2);
+h_f = 584;// in kJ/kg
+h_fg = 2148;// in kJ/kg
+H2 = h_f + (x*h_fg);// in kJ/kg
+V = 0.5241;// in m^3
+V2=x*V;// in m^3/kg
+W = (H1-H2) + (P2_desh-P2)*V2;//work output of the cycle in kJ/kg
+Eta = W/(H1-h_f2)*100;// in %
+disp(Eta,"The efficiency of the cycle in % is");
+Energy_equivalent= 3600;// in kJ
+S_consumption = Energy_equivalent/W;// in kg
+V = S_consumption* V_g1;// in m^3
+disp(V,"Total volume of steam in m^3 is");
diff --git a/2144/CH6/EX6.4/ex6_4.sce b/2144/CH6/EX6.4/ex6_4.sce
new file mode 100755
index 000000000..0bcfe60af
--- /dev/null
+++ b/2144/CH6/EX6.4/ex6_4.sce
@@ -0,0 +1,11 @@
+// Exa 6.4
+clc;
+clear;
+close;
+// Given data
+L = 693.3;// Liquid heat in kJ/kg
+L1 = 125.7;// Liquid heat of feed water in kJ/kg
+m = 2;// mass of water in kg
+Q = m * (L-L1);// in kJ
+disp(Q,"Heat required to raise temperature in kJ is");
+disp("The water is still liquid at the end of the heat supply")
diff --git a/2144/CH6/EX6.5/ex6_5.sce b/2144/CH6/EX6.5/ex6_5.sce
new file mode 100755
index 000000000..6f2cd350b
--- /dev/null
+++ b/2144/CH6/EX6.5/ex6_5.sce
@@ -0,0 +1,22 @@
+// Exa 6.5
+clc;
+clear;
+close;
+// Given data
+x = 0.9;
+h_f = 762.2;// in kJ/kg
+h_fg = 2013.8;// in kJ/kg
+H_wet = h_f + (x*h_fg);// in kJ/kg
+En = 125.7;// Enthapy of liquid in kJ/kg
+H_wet = H_wet - En;// in kJ
+disp(H_wet,"When dry fraction is 0.9, Heat required, to convert in kJ is");
+// Part (b) when dry fraction is saturated
+H_sat = h_f + h_fg;// in kJ/kg
+H_sat = H_sat-En;// in kJ
+disp(H_sat,"Heat required when steam is dry and saturated in kJ is");
+C_P = 2.093;// in kJ/kg-K
+t_sup = 300;// in degree C
+t_sat = 179.9;// in degree C
+H_sup = h_f + h_fg + C_P*(t_sup-t_sat);// in kJ
+H_sup1 = H_sup - En;// in kJ
+disp(H_sup1,"Heat required when the steam is super heated in kJ is");
diff --git a/2144/CH6/EX6.6/ex6_6.sce b/2144/CH6/EX6.6/ex6_6.sce
new file mode 100755
index 000000000..84bf842a9
--- /dev/null
+++ b/2144/CH6/EX6.6/ex6_6.sce
@@ -0,0 +1,19 @@
+// Exa 6.6
+clc;
+clear;
+close;
+// Given data
+x = 0.95;
+v_f = 0.001;
+v_g = 0.1238;// in m^3/kg
+V_wet = ((1-x)*v_f)+(x*v_g);// in m^3 correction little diff in ans
+disp(V_wet,"Specific volume of wet steam in m^3 is");
+disp(v_g,"When the steam is dry saturated, the specific volume in m^3/kg is");
+T_sat = 201.3;// in degree C
+T_sat = T_sat + 273;// in K
+T_sup = 300;// in degree C
+T_sup = T_sup + 273;// in K
+V_sup = v_g * (T_sup/T_sat);// in m^3
+disp(V_sup,"When the steam is superheated, the specific volume in m^3 is");
+
+
diff --git a/2144/CH6/EX6.7/ex6_7.sce b/2144/CH6/EX6.7/ex6_7.sce
new file mode 100755
index 000000000..1308f0af1
--- /dev/null
+++ b/2144/CH6/EX6.7/ex6_7.sce
@@ -0,0 +1,22 @@
+// Exa 6.7
+clc;
+clear;
+close;
+// given data
+h_f = 720.7;// in kJ
+h_fg = 2046.6;// in kJ
+v_g = 0.2405;// in m^3
+x = 0.9;
+P = 8*10^2;// in kN/m^2
+U_sat = h_f+x*h_fg-x*v_g*P;// in kJ
+disp(U_sat,"When the steam is wet, the internal energy in kJ is");
+En = 2767.3;// Enthalpy of dry saturated stream
+U_sat = En-(v_g*P);//in kJ/kg
+disp(U_sat,"When the steam is dry and saturated, the internal energy in kJ/kg is");
+C_P = 2.093;
+del_s = 100;// in degree C
+H_sup = h_f + h_fg + (C_P*del_s);// in kJ/kg
+t_sat = 170.4+273;// in K
+V_sup = (v_g*(t_sat+del_s))/t_sat;// in m^3
+U_sup = H_sup - P*V_sup;// in kJ/kg
+disp(U_sup,"When the steam is super heated, the internal energy in kJ/kg is");
diff --git a/2144/CH6/EX6.8/ex6_8.sce b/2144/CH6/EX6.8/ex6_8.sce
new file mode 100755
index 000000000..821236c78
--- /dev/null
+++ b/2144/CH6/EX6.8/ex6_8.sce
@@ -0,0 +1,14 @@
+// Exa 6.8
+clc;
+clear;
+close;
+// Given data
+x = 0.88;// dryness fraction
+h_fg = 2392.7;// in kJ/kg
+H_wet = x * h_fg;// in kJ/kg
+Vs = 14.67;// Specific volume in m^3/kg
+V_wet = x * Vs;// in m^3/kg
+Q = H_wet/V_wet;// in kJ/m^3
+disp(Q,"Heat to be extracted in kJ/m^3 is");
+
+
diff --git a/2144/CH6/EX6.9/ex6_9.sce b/2144/CH6/EX6.9/ex6_9.sce
new file mode 100755
index 000000000..f7ba11d21
--- /dev/null
+++ b/2144/CH6/EX6.9/ex6_9.sce
@@ -0,0 +1,22 @@
+// Exa 6.9
+clc;
+clear;
+close;
+// Given data
+P = 12*10^2;// in kN/m^2
+h_f = 798.1;// in kJ/kg
+h_fg = 1984.5;// in kJ/kg
+x = 0.8;
+H_wet = h_f + (x*h_fg);// in kJ/kg
+v_f = 0.001;// in m^3
+v_g = 0.1684;// in m^3
+V_wet = ((1-x)*v_f) + (x*v_g);// in m^3
+En = H_wet/V_wet;// kJ/m^3
+disp(En,"The enthalpy in kJ/m^3 is");
+U_wet = H_wet - ( V_wet * P );// in kJ
+U_wet1 = (U_wet/V_wet);// in kJ/m^3
+disp(U_wet1,"Internal energy in kJ/m^3 is");
+
+// Note: There is calculation error to find the value of V_wet.( the correct value of V_wet is 0.13492 not 0.1308), so there is some difference between the output of coding and the answer of the book
+
+
diff --git a/2144/CH7/EX7.1/ex7_1.sce b/2144/CH7/EX7.1/ex7_1.sce
new file mode 100755
index 000000000..92f446f37
--- /dev/null
+++ b/2144/CH7/EX7.1/ex7_1.sce
@@ -0,0 +1,15 @@
+// Exa 7.1
+clc;
+clear;
+close;
+// Given data
+H1 = 2600;// in kJ/kg
+H2 = 1850;// in kJ/kg
+g = 9.81;
+C1 = 10;// in meter/second
+C2 = 20;// in meter/secon
+Q = 120;// in kJ/kg
+Z1 = 30;// in meter
+Z2 = 10;// in meter
+W = g*(Z1-Z2)/1000+H1-H2+(C1^2-C2^2)/(2*1000)+Q
+disp(W,"The work done in kJ/kg is");
diff --git a/2144/CH7/EX7.2/ex7_2.sce b/2144/CH7/EX7.2/ex7_2.sce
new file mode 100755
index 000000000..d33edda71
--- /dev/null
+++ b/2144/CH7/EX7.2/ex7_2.sce
@@ -0,0 +1,18 @@
+// Exa 7.2
+clc;
+clear;
+close;
+// Given data
+H1 = 3100;// in kJ/kg
+H2 = 1950;// in kJ/kg
+C1 = 20;// in meter/second
+C2 = 30;// in meter/secon
+Q = 0;// in kJ/kg
+Q_desh= 20;// in kJ/kg
+Vs= 1.1;// in m^3/kg
+W = H1-H2+(C1^2-C2^2)/(2*1000)+Q-Q_desh;// in kJ/kg
+m= 2;//mass flow rate in kg/sec
+Power= m*W;// in kW
+disp(Power,"Power output of the turbine in kW is : ")
+Area= m*Vs/C2;// in m^2
+disp(Area,"Area of exhaust pipe in m^2 is : ")
diff --git a/2144/CH7/EX7.3/ex7_3.sce b/2144/CH7/EX7.3/ex7_3.sce
new file mode 100755
index 000000000..beba70c7f
--- /dev/null
+++ b/2144/CH7/EX7.3/ex7_3.sce
@@ -0,0 +1,9 @@
+// Exa 7.3
+clc;
+clear;
+close;
+// Given data
+H1 = 2940;// in kJ/kg
+H2 = 2630;// in kJ/kg
+C = sqrt((H1-H2)*1000*2);// in m/sec
+disp(C,"Velocity of the steam leaving the nozzle in m/sec is");
diff --git a/2144/CH7/EX7.4/ex7_4.sce b/2144/CH7/EX7.4/ex7_4.sce
new file mode 100755
index 000000000..e2c487a14
--- /dev/null
+++ b/2144/CH7/EX7.4/ex7_4.sce
@@ -0,0 +1,13 @@
+// Exa 7.4
+clc;
+clear;
+close;
+// Given data
+H1 = 2800;// in kJ/kg
+H2 = 2600;// in kJ/kg
+C2 = sqrt(2*(H1-H2)*1000);// in m/s
+disp(C2,"Exit velocity in m/s is ");
+m_f = 25;// mass flow rate in kg/sec
+V = 0.154;// in m^3/kg
+A = (m_f*V)/C2;// in m^2
+disp(A,"Total exit area in m^2 is");
diff --git a/2144/CH7/EX7.5/ex7_5.sce b/2144/CH7/EX7.5/ex7_5.sce
new file mode 100755
index 000000000..3c369bcdf
--- /dev/null
+++ b/2144/CH7/EX7.5/ex7_5.sce
@@ -0,0 +1,14 @@
+// Exa 7.5
+clc;
+clear;
+close;
+// Given data
+Q = 20;// in kJ/kg
+P = 10;// in MW
+P = P * 10^3;// in kW
+H1 = 3248;// in kJ/kg
+H2 = 2552;// in kJ/kg
+C1 = 20;// m/s
+C2 = 40;// m/s
+m = P/((H1-H2+(C1^2-C2^2)/(2*1000))-Q);// in kg/s
+disp(m,"Mass in kg is");
diff --git a/2144/CH7/EX7.6/ex7_6.sce b/2144/CH7/EX7.6/ex7_6.sce
new file mode 100755
index 000000000..2ebedfe36
--- /dev/null
+++ b/2144/CH7/EX7.6/ex7_6.sce
@@ -0,0 +1,21 @@
+// Exa 7.6
+clc;
+clear;
+close;
+// Given data
+h_f1 = 2584;// in kJ/kg
+h_fg1 = 2392;// in kJ/kg
+H2 = 192;// in kJ/kg
+x = 0.2;
+H1 = round(h_f1- (x*h_fg1));// in kJ/kg
+x1 = 0.8;
+Vs = 14.67;// in m^3
+V1 = x1*Vs;// in m^3/kg
+A = 0.45;// in m^2
+C1 = V1/A;// in m/s
+Q = 5;// kJ/s
+C2 = 0;
+W = 0;
+Q_desh = W-H1 - C1^2/(2*1000)-Q+H2+C2^2/2;// in kJ/s
+disp(Q_desh,"Rate of heat transfer in kJ/s is");
+
diff --git a/2144/CH8/EX8.1/ex8_1.sce b/2144/CH8/EX8.1/ex8_1.sce
new file mode 100755
index 000000000..995376682
--- /dev/null
+++ b/2144/CH8/EX8.1/ex8_1.sce
@@ -0,0 +1,16 @@
+// Exa 8.1
+clc;
+clear;
+close;
+// Given data
+C= 85;// in %
+H= 12.5;// in %
+H1 = 35000;// heat liberated by carbon in kJ
+H2 = 143000;// heat liberated by hydrogen in kJ
+HCV = (C*H1+H*H2)/100;// Higher calorific value in kJ/kg
+disp(HCV,"Higher calorific value in kJ/kg is");
+ms = 9;
+LCV= HCV -(ms*H*2442)/100 ;// Lower calorific value in kJ/kg
+disp(LCV,"Lower calorific value in kJ/kg is");
+
+// Note: The calculated value in the book is not accurate
diff --git a/2144/CH8/EX8.10/ex8_10.sce b/2144/CH8/EX8.10/ex8_10.sce
new file mode 100755
index 000000000..d4f8bfb5c
--- /dev/null
+++ b/2144/CH8/EX8.10/ex8_10.sce
@@ -0,0 +1,37 @@
+// Exa 8.10
+clc;
+clear;
+close;
+// Given data
+mC= 0.88;//mass of carbon in kg
+mH2= 0.03;//mass of H2 in kg
+mS= 0.005;//mass of S in kg
+O2_mass= 2.66*mC + 8*mH2 + 2*mS;// in kg
+Air_mass= O2_mass/0.23;// in kg
+Air_mass= 1.5*Air_mass;// in kg (as 50% excess air is supplied)
+disp(Air_mass,"Actula mass of air required per kg of fuel for complete combustion in kg is : ")
+// The flue gases per kg of fuel will be:
+CO2= 3.226;// in kg
+N2= 13.04;// in kg
+O2= 1.298;// in kg
+total_mass= CO2+N2+O2;// in kg
+CO2_per_by_mass= CO2/total_mass*100;// in %
+O2_per_by_mass= O2/total_mass*100;// in %
+N2_per_by_mass= N2/total_mass*100;// in %
+disp(CO2_per_by_mass,"Percentage of CO2 by mass is : ")
+disp(O2_per_by_mass,"Percentage of O2 by mass is : ")
+disp(N2_per_by_mass,"Percentage of N2 by mass is : ")
+M_wt_CO2= 44;
+CO2_Per_M_com_M_wt= CO2_per_by_mass/M_wt_CO2;// % Mass composition molecular weight
+M_wt_O2= 32;
+O2_Per_M_com_M_wt= O2_per_by_mass/M_wt_O2;// % Mass composition molecular weight
+M_wt_N2= 28;
+N2_Per_M_com_M_wt= N2_per_by_mass/M_wt_N2;// % Mass composition molecular weight
+total= CO2_Per_M_com_M_wt + O2_Per_M_com_M_wt + N2_Per_M_com_M_wt;
+CO2_per_by_vol= CO2_Per_M_com_M_wt/total*100;// in %
+O2_per_by_vol= O2_Per_M_com_M_wt/total*100;// in %
+N2_per_by_vol= N2_Per_M_com_M_wt/total*100;// in %
+disp(CO2_per_by_vol,"Percentage of CO2 by volume is : ")
+disp(O2_per_by_vol,"Percentage of O2 by volume is : ")
+disp(N2_per_by_vol,"Percentage of N2 by volume is : ")
+
diff --git a/2144/CH8/EX8.11/ex8_11.sce b/2144/CH8/EX8.11/ex8_11.sce
new file mode 100755
index 000000000..64488761e
--- /dev/null
+++ b/2144/CH8/EX8.11/ex8_11.sce
@@ -0,0 +1,45 @@
+// Exa 8.11
+clc;
+clear;
+close;
+// Given data
+Cp= 1;// in kJ/kg
+H= 2.7*10^3;// total heat of vaport in flue gas in kJ/kg
+CoalCalorific= 32.82*10^3;// in kJ/kg
+T1= 310;// final gas flue temp. in °C
+T2= 25;// boiler house temp. in °C
+mC= 0.84;//mass of carbon in kg
+mH2= 0.05;//mass of H2 in kg
+O2_mass= 2.66*mC + 9*mH2;// in kg
+Air_mass= O2_mass/0.23;// in kg
+Air_mass= 1.5*Air_mass;// in kg (as 50% excess air is supplied)
+disp(Air_mass,"Actual mass of air required per kg of fuel for complete combustion in kg is : ")
+// Analysis of dry flue gas by weight
+CO2= 3.08;// in kg
+N2= 13.24;// in kg
+O2= 1.32;// in kg
+total_mass= CO2+N2+O2;// in kg
+CO2_per_by_mass= CO2/total_mass*100;// in %
+O2_per_by_mass= O2/total_mass*100;// in %
+N2_per_by_mass= N2/total_mass*100;// in %
+disp(CO2_per_by_mass,"Percentage of CO2 by mass is : ")
+disp(O2_per_by_mass,"Percentage of O2 by mass is : ")
+disp(N2_per_by_mass,"Percentage of N2 by mass is : ")
+M_wt_CO2= 44;
+CO2_Per_M_com_M_wt= CO2_per_by_mass/M_wt_CO2;// % Mass composition molecular weight
+M_wt_O2= 32;
+O2_Per_M_com_M_wt= O2_per_by_mass/M_wt_O2;// % Mass composition molecular weight
+M_wt_N2= 28;
+N2_Per_M_com_M_wt= N2_per_by_mass/M_wt_N2;// % Mass composition molecular weight
+total= CO2_Per_M_com_M_wt + O2_Per_M_com_M_wt + N2_Per_M_com_M_wt;
+CO2_per_by_vol= CO2_Per_M_com_M_wt/total*100;// in %
+O2_per_by_vol= O2_Per_M_com_M_wt/total*100;// in %
+N2_per_by_vol= N2_Per_M_com_M_wt/total*100;// in %
+disp(CO2_per_by_vol,"Percentage of CO2 by volume is : ")
+disp(O2_per_by_vol,"Percentage of O2 by volume is : ")
+disp(N2_per_by_vol,"Percentage of N2 by volume is : ")
+H_w_v= 9*mH2*H;//heat carried away by water vapour in kJ
+H_dry_flue= total_mass*Cp*(T1-T2);// in kJ
+H_total= H_w_v+H_dry_flue;// in kJ
+H_available= CoalCalorific-H_total;// in kJ
+disp(H_available,"Heat available for steam generation in kJ is : ")
diff --git a/2144/CH8/EX8.12/ex8_12.sce b/2144/CH8/EX8.12/ex8_12.sce
new file mode 100755
index 000000000..3e76b2f95
--- /dev/null
+++ b/2144/CH8/EX8.12/ex8_12.sce
@@ -0,0 +1,28 @@
+// Exa 8.12
+clc;
+clear;
+close;
+// Given data
+mC= 0.86;//mass of carbon in kg
+mH2= 0.14;//mass of H2 in kg
+maBYmf= (2.66*mC + 8*mH2)/0.23;// in kg/kg of fuel
+Air_supp_deficiency= maBYmf/10;// in kg/kg of fuel
+Air_saved= 16/(12*0.23);// in kg/kg of carbon
+m1= Air_supp_deficiency/Air_saved;// mass of coal burns to carbon monoxide
+m2= mC-m1;// mass of coal burns to carbon diooxide
+CO2_formed= m2*3.66;// in kg
+CO_formed= m1*28/12;// in kg
+N2_formed= Air_supp_deficiency*0.77*9;// in kg
+M_wt_CO2= 44;// molecular weight
+M_wt_CO= 28;
+M_wt_N2= 28;
+CO2_rel_vol= CO2_formed/M_wt_CO2;
+CO_rel_vol= CO_formed/M_wt_CO;
+N2_rel_vol= N2_formed/M_wt_N2;
+total_rel_vol=CO2_rel_vol+CO_rel_vol+N2_rel_vol;
+CO2_vol= CO2_rel_vol/total_rel_vol*100;// in %
+CO_vol= CO_rel_vol/total_rel_vol*100;// in %
+N2_vol= N2_rel_vol/total_rel_vol*100;// in %
+disp(CO2_vol,"Volumetric analysis of CO2 in % is : ")
+disp(CO_vol,"Volumetric analysis of CO in % is : ")
+disp(N2_vol,"Volumetric analysis of N2 in % is : ")
diff --git a/2144/CH8/EX8.13/ex8_13.sce b/2144/CH8/EX8.13/ex8_13.sce
new file mode 100755
index 000000000..9d7e6188c
--- /dev/null
+++ b/2144/CH8/EX8.13/ex8_13.sce
@@ -0,0 +1,14 @@
+// Exa 8.13
+clc;
+clear;
+close;
+// Given data
+N = 83;//compositon of nitrogen in %
+C = 81;//carbon mass in the fuel in %
+C1 = 11;//compositon of CO2 in %
+C2 = 2;// compositon of CO in %
+O = 4;// composition of O2 in %
+AirSupplied =N*C/(33*(C1+C2));// in kg/kg
+disp(AirSupplied,"The amount of air supplied in kg per kg of fuel is : ")
+ExcessAir =79*O*C/(21*33*(C1+C2));// in kg/kg
+disp(ExcessAir,"Weight of excess air in kg per kg of fuel is : ")
diff --git a/2144/CH8/EX8.14/ex8_14.sce b/2144/CH8/EX8.14/ex8_14.sce
new file mode 100755
index 000000000..c9bd0dbb4
--- /dev/null
+++ b/2144/CH8/EX8.14/ex8_14.sce
@@ -0,0 +1,17 @@
+// Exa 8.14
+clc;
+clear;
+close;
+// Given data
+CO2= 10;// in %
+O2= 6;// in %
+N2= 84;// in %
+// a= x/12 and b= (1-x)/2
+// 0.23*y/32= a+b/2+c
+abyc= CO2/O2;
+// a/(0.77*y/28)= CO2/N2
+x=0.835;
+carbon_per= x*100;// in %
+hydrogen_per= 100-carbon_per;// in %
+disp("The fuel consists of "+string(carbon_per)+" % carbon and "+string(hydrogen_per)+" % hydrogen.")
+
diff --git a/2144/CH8/EX8.15/ex8_15.sce b/2144/CH8/EX8.15/ex8_15.sce
new file mode 100755
index 000000000..8368612a1
--- /dev/null
+++ b/2144/CH8/EX8.15/ex8_15.sce
@@ -0,0 +1,11 @@
+// Exa 8.15
+clc;
+clear;
+close;
+// Given data
+H2 = 50;// in %
+CO = 5;// in %
+CH4 = 35;// in %
+disp("Quantity of air required for complete combustion of 1m^3 of gas in m^3 is:")
+V = ((0.5*(H2+CO))+(2*CH4))/21;// in m^3
+disp(V)
diff --git a/2144/CH8/EX8.16/ex8_16.sce b/2144/CH8/EX8.16/ex8_16.sce
new file mode 100755
index 000000000..61ecc535a
--- /dev/null
+++ b/2144/CH8/EX8.16/ex8_16.sce
@@ -0,0 +1,15 @@
+// Exa 8.16
+clc;
+clear;
+close;
+// Given data
+H2= 0.4;// in m^3
+CH= 0.425;// in m^3
+C2H4= 0.0253;// in m^3
+C4H8= 0.0127;// in m^3
+CO= 0.075;// in m^3
+O2_vol= 0.5*H2 + 2*CH + 3*C2H4 + 6*C4H8 + 0.5*CO;// in m^3
+Air_vol= O2_vol/0.21;// in m^3
+disp(Air_vol,"The volume of air required for complete combustion in m^3 is");
+actualAirSupplied= 1.3*Air_vol;// in m^3
+disp(actualAirSupplied,"The actual quantity of air supplied in m^3 is : ")
diff --git a/2144/CH8/EX8.17/ex8_17.sce b/2144/CH8/EX8.17/ex8_17.sce
new file mode 100755
index 000000000..d598cfcca
--- /dev/null
+++ b/2144/CH8/EX8.17/ex8_17.sce
@@ -0,0 +1,30 @@
+// Exa 8.17
+clc;
+clear;
+close;
+// Given data
+V_H2= 0.15;// in m^3
+V_CH4= 0.02;// in m^3
+V_CO= 0.20;// in m^3
+V_CO2= 0.06;// in m^3
+V_O2= 0.03;// in m^3
+V_N2= 0.54;// in m^3
+V1= 0.5*V_H2;// quantity of O2 required for complete combustion of H2
+V2= 2*V_CH4;// in m^3
+V3= 0.5*V_CO;// in m^3
+V= V1+V2+V3;// total oxygen required in m^3
+O2_supp= V-V_O2;// O2 to be supplied by air in m^3
+Air_req_min= O2_supp/0.21;// minimum quantity of air required in m^3
+Actual_Air_Supp= 1.5*Air_req_min;// m^3 of air
+disp(Actual_Air_Supp,"The volume of air supplied in m^3")
+Vol_Carbondioxide_inFlue= V_CO2+V_CH4+V_CO;//total volume of carbon dioxide
+Vol_O2_inFlue= (Actual_Air_Supp-Air_req_min)*0.21;// in m^3
+N2_from_air_Supp= 0.79*Actual_Air_Supp;// in m^3
+Vol_N2_inFlue= N2_from_air_Supp+V_N2;// in m^3
+total= Vol_Carbondioxide_inFlue+Vol_O2_inFlue+Vol_N2_inFlue;// in m^3
+Per_CarbonDioxide= Vol_Carbondioxide_inFlue/total*100;// in %
+Per_Oxygen= Vol_O2_inFlue/total*100;// in %
+Per_Nitrogen= Vol_N2_inFlue/total*100;// in %
+disp(Per_CarbonDioxide,"% Carbon dioxide is : ")
+disp(Per_Oxygen,"% Carbon dioxide is : ")
+disp(Per_Nitrogen,"% Carbon dioxide is : ")
diff --git a/2144/CH8/EX8.18/ex8_18.sce b/2144/CH8/EX8.18/ex8_18.sce
new file mode 100755
index 000000000..2c4363f34
--- /dev/null
+++ b/2144/CH8/EX8.18/ex8_18.sce
@@ -0,0 +1,36 @@
+// Exa 8.18
+clc;
+clear;
+close;
+// Given data
+V_CH4= 0.14;// in m^3
+V_CO= 0.35;// in m^3
+V_CO2= 0.06;// in m^3
+V_N2= 0.03;// in m^3
+V_H2= 0.42;// in m^3
+a= V_CH4+V_CO2+V_CO;
+b= 2*V_CH4+V_H2;
+// a+0.5*b+c= V_CO2+V_CO/2+0.21*5
+c= V_CO2+V_CO/2+0.21*5-a-0.5*b;
+d=V_N2+5*0.79;
+total= a+c+d;
+Vol_per_CO2= a/total*100;// in %
+Vol_per_O2= c/total*100;// in %
+Vol_per_N2= d/total*100;// in %
+disp(Vol_per_CO2,"Volume percentage of CO2 is : ")
+disp(Vol_per_O2,"Volume percentage of O2 is : ")
+disp(Vol_per_N2,"Volume percentage of N2 is : ")
+m_CO2= 44;// molecular mass
+m_O2= 32;// molecular mass
+m_N2=28;// molecular mass
+mass_ratio_CO2= Vol_per_CO2/m_CO2;
+mass_ratio_O2= Vol_per_O2/m_O2;
+mass_ratio_N2= Vol_per_N2/m_N2;
+total_mass_ratio= mass_ratio_CO2+mass_ratio_O2+mass_ratio_N2;
+mass_per_CO2= mass_ratio_CO2/total_mass_ratio*100;
+mass_per_O2= mass_ratio_O2/total_mass_ratio*100;
+mass_per_N2= mass_ratio_N2/total_mass_ratio*100;
+disp(mass_per_CO2,"Mass percentage of CO2 is : ")
+disp(mass_per_O2,"Mass percentage of O2 is : ")
+disp(mass_per_N2,"Mass percentage of N2 is : ")
+
diff --git a/2144/CH8/EX8.19/ex8_19.sce b/2144/CH8/EX8.19/ex8_19.sce
new file mode 100755
index 000000000..2ef49e77c
--- /dev/null
+++ b/2144/CH8/EX8.19/ex8_19.sce
@@ -0,0 +1,31 @@
+// Exa 8.19
+clc;
+clear;
+close;
+// Given data
+GCR= 110;// gas consumption rate in m^3/hour
+rpm= 300;// round per minute
+Vs= 0.1;// swept volume of engine in m^3
+V_H2=0.50;// in m^3
+V_CO= 0.05;// in m^3
+V_CH4=0.25;// in m^3
+V_CO2= 0.10;// in m^3
+V_N2= 0.10;// in m^3
+V_O2= 5.8;// in m^3
+AirRequired= (0.5*(V_H2+V_CO)+2*V_CH4)/0.21;// in m^3
+CO2_formed= V_CO+V_CH4;// in m^3
+total_CO2= CO2_formed+V_CO2;// in m^3
+N2_of_air= 0.79*AirRequired;// in m^3
+total_N2= N2_of_air+V_N2;// in m^3
+TotalVolume= total_N2+total_CO2;// in m^3
+V= TotalVolume;// in m^3
+ExcessAirSupplied= (V_O2*V)/(21-V_O2);// in m^3
+TotalAirSupplied= ExcessAirSupplied+AirRequired;// in m^3
+AirFuel_ratio= round(TotalAirSupplied)/1;
+disp(AirFuel_ratio,"Air fuel ratio by volume is : ")
+// Let V1= Volume of air + gas aspirated per hour
+V1= GCR*6;// in m^3
+Vs_out= Vs*rpm/2*60;// in m^3
+Ratio= V1/Vs_out;
+disp("The value of Ratio i.e.")
+disp(Ratio,"(Volume of air + gas aspirted per hour)/Volume swept out by piston per hour")
diff --git a/2144/CH8/EX8.2/ex8_2.sce b/2144/CH8/EX8.2/ex8_2.sce
new file mode 100755
index 000000000..82a3829ad
--- /dev/null
+++ b/2144/CH8/EX8.2/ex8_2.sce
@@ -0,0 +1,20 @@
+// Exa 8.2
+clc;
+clear;
+close;
+// Given data
+CH4 = 77;// in %
+C2H6 = 22.5;//in %
+H1 = 40.08;// heat liberated by CH4 in MJ/nm^3
+H2 = 69.52;// heat liberated by C2H6 in MJ/nm^3
+HCV = (CH4*H1+C2H6*H2)/100;// Higher calorific value in kJ/kg
+disp(HCV,"The higher calorific value in MJ/nm^3")
+V1= CH4*2/100;// volume of water due to combustion of CH4 in m^3
+V2= C2H6*3/100;// volume of water due to combustion of C2H6 in m^3
+V= V1+V2;// total volume in m^3
+ms= 18/22.41;// in kg
+LCV= HCV-ms*V*2.242;// in MJ/nm^3
+disp(LCV,"The lower calorific value in MJ/nm^3")
+disp("The word nm^3 means that cubic metre at normal temperature and pressure")
+
+// Note: The calculated value in the book is not accurate
diff --git a/2144/CH8/EX8.20/ex8_20.sce b/2144/CH8/EX8.20/ex8_20.sce
new file mode 100755
index 000000000..54e5333c2
--- /dev/null
+++ b/2144/CH8/EX8.20/ex8_20.sce
@@ -0,0 +1,45 @@
+// Exa 8.20
+clc;
+clear;
+close;
+// Given data
+CO2= 9.9;// in %
+CO= 7.2;// in %
+H2= 3.3;// in %
+CH4= 0.3;// in %
+N2= 79.3;// in %
+O2= N2*21/79;// in %
+disp("Method 1 : By Carbon balance : ")
+Z= (CO2+CO+CH4)/8;
+x= 8*Z;
+measured_air_fuel_ratio= 11.3;
+mm1= 29;// molecular mass of air
+mm2= 12*8+17;// molecular mass of C8H17
+massOf_air= (O2+N2)*mm1;
+massOf_fuel= Z*mm2;
+air_fuel_ratio= massOf_air/massOf_fuel;
+disp(air_fuel_ratio,"The air fuel ratio by mass is : ")
+Per_error= (air_fuel_ratio - measured_air_fuel_ratio)/measured_air_fuel_ratio*100;
+disp(Per_error,"Percentage error is : ")
+disp("Method 2 : By Hydrogen balance : ")
+X= (O2-CO2-CO/2)*2;
+Z= (4*CH4+2*H2+X*2)/17;
+massOf_air= (O2+N2)*mm1;
+massOf_fuel= Z*mm2;
+air_fuel_ratio= massOf_air/massOf_fuel;
+disp(air_fuel_ratio,"The air fuel ratio by mass is : ")
+Per_error= (air_fuel_ratio - measured_air_fuel_ratio)/measured_air_fuel_ratio*100;
+disp(Per_error,"Percentage error is : ")
+disp("Method 3 : By Carbon-Hydrogen balance : ")
+y= (4*CH4+2*H2+X*2);
+massOf_air= (O2+N2)*mm1;
+massOf_fuel= x*12+y;
+air_fuel_ratio= massOf_air/massOf_fuel;
+disp(air_fuel_ratio,"The air fuel ratio by mass is : ")
+Per_error= (air_fuel_ratio - measured_air_fuel_ratio)/measured_air_fuel_ratio*100;
+disp(Per_error,"Percentage error is : ")
+
+
+
+
+
diff --git a/2144/CH8/EX8.3/ex8_3.sce b/2144/CH8/EX8.3/ex8_3.sce
new file mode 100755
index 000000000..e2f91a8be
--- /dev/null
+++ b/2144/CH8/EX8.3/ex8_3.sce
@@ -0,0 +1,16 @@
+// Exa 8.3
+clc;
+clear;
+close;
+// Given data
+mw = 2.5;//mass of water in kg
+mc= 0.744;//water equivalen of apparatus in kg
+CoalMass = 1.01*10^-3;// in kg
+T_r = 2.59;//temp. rise in degree C
+C_c = 0.016;// Cooling correction in degree C
+theta = T_r +C_c;//corrected temp. rise in degree C
+Cp = 4.1868;// in kJ/kg-K
+m = mw+mc;// in kg
+Qw = m * Cp*theta;//heat received by water in kJ
+C = (Qw/CoalMass);// in kJ/kg
+disp(C,"Calorific value of the fuel in kJ/kg is");
diff --git a/2144/CH8/EX8.4/ex8_4.sce b/2144/CH8/EX8.4/ex8_4.sce
new file mode 100755
index 000000000..2e3c66681
--- /dev/null
+++ b/2144/CH8/EX8.4/ex8_4.sce
@@ -0,0 +1,24 @@
+// Exa 8.4
+clc;
+clear;
+close;
+// Given data
+T_r = 2.912;// temp. rise in degree C
+C_c = 0.058;//cooling correction in degree C
+theta = T_r + C_c;// in degree C
+HyCon= 14/100;// Hydrogen content
+C_P = 4.1868;// in J/gm-K
+Cc = 16750;//calorific value of cotton in J/gm
+m_w = 1400;// in gm
+m_c = 500;// in gm
+m = m_w+m_c;// in gm
+m1 = 0.005;//mass of cotton in gm
+m2 = 0.579;//mass of oil in gm
+Qw = m*C_P*theta ;// in J
+H1= m1*Cc;// heat given out by combustion of cotton in J
+Qin= Qw-H1;// in J
+C= Qin/m2;// J/gm or kJ/kg
+LCV= C-2442*9*HyCon;// in J/gm or kJ/kg
+disp(C,"Higher Calorific value of the fuel in J/gm or kJ/kg is :")
+disp(LCV,"Lower Calorific value of the fuel in J/gm or kJ/kg is :")
+
diff --git a/2144/CH8/EX8.5/ex8_5.sce b/2144/CH8/EX8.5/ex8_5.sce
new file mode 100755
index 000000000..37454afda
--- /dev/null
+++ b/2144/CH8/EX8.5/ex8_5.sce
@@ -0,0 +1,20 @@
+// Exa 8.5
+clc;
+clear;
+close;
+// Given data
+W_c = 500*10^-3;//water collected in kg
+C_P = 4.1868;// in kJ/kg-K
+T_o = 28.3;//outlet temp. in °C
+T_i = 14;//inlet temp. in °C
+P_bero= 785;// barometric pressure in mm
+P_gas= P_bero+90/13.6;// in mm
+T1=17+273;// gas temp. in K
+T2= 15+273;// in K
+theta = T_o-T_i;//temp. rise in °C
+Qw = W_c * C_P*theta;// in kJ
+Vgs= 2.8*10^-3;//volume of gas consumed in m^3
+E = Qw/Vgs;// in kJ
+V1= P_gas/760*(T2/T1);// in m^3
+CalorificValue= E/V1;// in kJ/standard m^3
+disp(CalorificValue,"Calorific value in kJ/m^3 is : ")
diff --git a/2144/CH8/EX8.6/ex8_6.sce b/2144/CH8/EX8.6/ex8_6.sce
new file mode 100755
index 000000000..a54fa8bc8
--- /dev/null
+++ b/2144/CH8/EX8.6/ex8_6.sce
@@ -0,0 +1,11 @@
+// Exa 8.6
+clc;
+clear;
+close;
+// Given data
+C = 0.83;// in kg
+H = 0.05;// in kg
+O = 0.02;// in kg
+S = 0.002;// in kg
+AbyF_min = (11.6 * C) + +(34.8*(H-(O/8))) + (4.35 * S);// in kg
+disp(AbyF_min,"The therotical mass of air in kg is");
diff --git a/2144/CH8/EX8.7/ex8_7.sce b/2144/CH8/EX8.7/ex8_7.sce
new file mode 100755
index 000000000..0c0390080
--- /dev/null
+++ b/2144/CH8/EX8.7/ex8_7.sce
@@ -0,0 +1,15 @@
+// Exa 8.7
+clc;
+clear;
+close;
+// Given data
+C = 0.86;// in kg
+H = 0.14;// in kg
+S = 0;// in kg
+O = 0;// in kg
+Vair = 0.77;//volume of 1kg of air in m^3
+Spe_Gravity = 0.8;// specific gravity of petrol
+maBYmf = (11.6*C)+(34.8*(H-O/8)) + (4.35*S);// in kg
+disp(maBYmf,"The therotical mass of air in kg is");
+V = maBYmf *Spe_Gravity*Vair ;// in m^3/litre
+disp(V,"Volume of air required in m^3/litre is");
diff --git a/2144/CH8/EX8.8/ex8_8.sce b/2144/CH8/EX8.8/ex8_8.sce
new file mode 100755
index 000000000..c066e7e4f
--- /dev/null
+++ b/2144/CH8/EX8.8/ex8_8.sce
@@ -0,0 +1,20 @@
+// Exa 8.8
+clc;
+clear;
+close;
+// Given data
+C = 0.75;// in kg
+H = 0.08;// in kg
+O = 0.03;// in kg
+S = 0;// in kg
+P = 1.1;// in bar
+P = P*10^5;// in N/m^2
+maBYmf = (11.6*C) + (34.8 * (H-(O/8))) + (4.35 *S);// in kg
+disp(maBYmf ,"The mass of air in kg is");
+m = 1.5*(maBYmf );// in kg
+T = 20+273;// in K
+R = 29.27;
+V = (m*R*T)/P;// in m^3
+disp(V,"Volume in m^3 is");
+
+// Note: The calculated value of V in the book is wrong.
diff --git a/2144/CH8/EX8.9/ex8_9.sce b/2144/CH8/EX8.9/ex8_9.sce
new file mode 100755
index 000000000..979f6f48f
--- /dev/null
+++ b/2144/CH8/EX8.9/ex8_9.sce
@@ -0,0 +1,12 @@
+// Exa 8.9
+clc;
+clear;
+close;
+// Given data
+C = 0.82;// in kg
+H2 = .12;// in kg
+O2 = 0.02;// in kg
+a = C/12;
+b = H2/2;
+y = (32*(a+(0.5*b))-O2)/0.23;
+disp(y,"Minimum quantity of air in kg is");