diff options
Diffstat (limited to '2123/CH3')
-rwxr-xr-x | 2123/CH3/EX3.1/Exa_3_1.sce | 16 | ||||
-rwxr-xr-x | 2123/CH3/EX3.10/Exa_3_10.sce | 24 | ||||
-rwxr-xr-x | 2123/CH3/EX3.11/Exa_3_11.sce | 14 | ||||
-rwxr-xr-x | 2123/CH3/EX3.12/Exa_3_12.sce | 14 | ||||
-rwxr-xr-x | 2123/CH3/EX3.2/Exa_3_2.sce | 22 | ||||
-rwxr-xr-x | 2123/CH3/EX3.3/Exa_3_3.sce | 28 | ||||
-rwxr-xr-x | 2123/CH3/EX3.4/Exa_3_4.sce | 25 | ||||
-rwxr-xr-x | 2123/CH3/EX3.5/Exa_3_5.sce | 14 | ||||
-rwxr-xr-x | 2123/CH3/EX3.6/Exa_3_6.sce | 31 | ||||
-rwxr-xr-x | 2123/CH3/EX3.7/Exa_3_7.sce | 23 | ||||
-rwxr-xr-x | 2123/CH3/EX3.9/Exa_3_9.sce | 31 |
11 files changed, 242 insertions, 0 deletions
diff --git a/2123/CH3/EX3.1/Exa_3_1.sce b/2123/CH3/EX3.1/Exa_3_1.sce new file mode 100755 index 000000000..82b46d076 --- /dev/null +++ b/2123/CH3/EX3.1/Exa_3_1.sce @@ -0,0 +1,16 @@ +//Example No. 3.1
+clc;
+clear;
+close;
+
+//Given Data :
+MoI=0.3;//Kg-m^2
+T=20;//N-m
+MoIshaft=10;//in Kg-m^2
+LostT=10;//%
+
+//Solution :
+MoItotal=MoI+MoIshaft;//in Kg-m^2
+LoadTorque=T-T*LostT/100;//in N-m
+disp(MoItotal,"Total Moment of Inertia in Kg-m^2 : ");
+disp(LoadTorque,"Load Torque in N-m : ");
diff --git a/2123/CH3/EX3.10/Exa_3_10.sce b/2123/CH3/EX3.10/Exa_3_10.sce new file mode 100755 index 000000000..a221006e2 --- /dev/null +++ b/2123/CH3/EX3.10/Exa_3_10.sce @@ -0,0 +1,24 @@ +//Example No. 3.10
+clc;
+clear;
+close;
+format('v',6);
+
+//Given Data :
+MotorSpeed=1440;//rpm
+Jmotor=0.4;//Kg-m^2
+Jdc_load=0.6;//Kg-m^2(Inertia directly coupled load)
+w_tl=100;//kg(weight of transratioonal load)
+F_res=1.2;//N/Kg(Friction resistance for translational load)
+v=10;//m/s
+T_RotLoad=1.5;//N-m
+g=9.81;//gravity constant
+
+//Solution :
+MotorSpeed=MotorSpeed*2*%pi/60;//rad/sec
+F_horz=w_tl*F_res;//N(horizontal force of translational load)
+mass=w_tl*g;//N
+J=Jmotor+Jdc_load+mass*(v/MotorSpeed)^2;//Kg-m^2
+disp(J,"Moment of Inertia at motor shaft in Kg-m^2 : ");
+T=T_RotLoad+F_horz*v/MotorSpeed;//N-m
+disp(T,"Torque at motor shaft in N-m : ");
diff --git a/2123/CH3/EX3.11/Exa_3_11.sce b/2123/CH3/EX3.11/Exa_3_11.sce new file mode 100755 index 000000000..db74c8854 --- /dev/null +++ b/2123/CH3/EX3.11/Exa_3_11.sce @@ -0,0 +1,14 @@ +//Example No. 3.11
+clc;
+clear;
+close;
+format('v',6);
+
+//Given Data :
+//T=0.6+1.9*omega_m
+//TL=2.8*sqrt(omega_m)
+
+//Solution :
+P=[3.61 -5.56 0.36];//Polynomial for omega_m calculated by equating T=TL
+omega_m=roots(P);//rad/sec
+disp(omega_m(2),"Operating speed in rad/sec at which system has steady state stability : ");
diff --git a/2123/CH3/EX3.12/Exa_3_12.sce b/2123/CH3/EX3.12/Exa_3_12.sce new file mode 100755 index 000000000..51b3fab1e --- /dev/null +++ b/2123/CH3/EX3.12/Exa_3_12.sce @@ -0,0 +1,14 @@ +//Example No. 3.12
+clc;
+clear;
+close;
+format('v',6);
+
+//Given Data :
+//T=15-0.5*omega_m
+//TL=0.5*omega_m^2
+
+//Solution :
+P=[1 1 -30];//Polynomial for omega_m calculated by equating T=TL
+omega_m=roots(P);//rad/sec
+disp(omega_m(2),"Operating speed in rad/sec at which system has steady state stability : ");
diff --git a/2123/CH3/EX3.2/Exa_3_2.sce b/2123/CH3/EX3.2/Exa_3_2.sce new file mode 100755 index 000000000..5485f69e8 --- /dev/null +++ b/2123/CH3/EX3.2/Exa_3_2.sce @@ -0,0 +1,22 @@ +//Example No. 3.2
+clc;
+clear;
+close;
+format('v',8);
+
+//Given Data :
+n=0.1;//teeth ratio
+ETAg=90/100;//efficiency
+J0=0.4;//Kg-m^2
+J1=10;//Kg-m^2
+TL=50;//N-m
+N=1400;//speed in rpm
+
+//Solution :
+J=J0+n^2*J1;//Kg-m^2
+T=n*TL/ETAg;//N-m
+MotorSpeed=2*%pi*N/60;//rad/sec
+Pdev=MotorSpeed*T;//Watt
+disp(J,"Equivalent Inertia in Kg-m^2 : ");
+disp(T,"Load Torque refered to motor side in N-m : ");
+disp(Pdev,"Power developed by motor in watt : ");
diff --git a/2123/CH3/EX3.3/Exa_3_3.sce b/2123/CH3/EX3.3/Exa_3_3.sce new file mode 100755 index 000000000..18a7d8a69 --- /dev/null +++ b/2123/CH3/EX3.3/Exa_3_3.sce @@ -0,0 +1,28 @@ +//Example No. 3.3
+clc;
+clear;
+close;
+format('v',8);
+
+//Given Data :
+v=60;//Km/hr
+w=400;//KN
+friction=5;//N/KN weight
+tan_theta=1/100;//inclination
+g=9.81;// gravity constant
+
+//Solution :
+sin_theta=tan_theta;
+W_sin_theta=w*1000*sin_theta;//N
+R=friction*W_sin_theta/10;//frictional resistance in N
+P=W_sin_theta+R;//N
+v=60*1000/60/60;//m/s
+Power=P*v;//Watt
+disp(Power/1000,"Final KW rating of the motor of train : ");
+Force=P;//down the inclined force in N
+u=v;//initial velocity in m/s
+v=0;//final velocity in m/s
+m=w*1000/g;//in Kg
+KE=1/2*m*u^2;//in Joule
+d=KE/P;//distance in meter
+disp(d,"Distance covered in meter : ");
diff --git a/2123/CH3/EX3.4/Exa_3_4.sce b/2123/CH3/EX3.4/Exa_3_4.sce new file mode 100755 index 000000000..58416902a --- /dev/null +++ b/2123/CH3/EX3.4/Exa_3_4.sce @@ -0,0 +1,25 @@ +//Example No. 3.4
+clc;
+clear;
+close;
+format('v',6);
+
+//Given Data :
+MotorOutput=200;//KW
+v=60;//Km/hr
+w=400;//KN
+friction=5;//N/KN weight
+tan_theta=1/100;//inclination
+g=9.81;// gravity constant
+
+//Solution :
+sin_theta=tan_theta;
+W_sin_theta=w*1000*sin_theta;//N
+R=friction*W_sin_theta/10;//frictional resistance in N
+P=W_sin_theta+R;//N
+v=60*1000/60/60;//m/s
+Power=P*v;//Watt
+Pdash=MotorOutput*1000-Power;//Power causes acceleration in watt or N-m/s
+m=w*1000/g;//in Kg
+a=Pdash/m;//in m/s^2
+disp(a,"Acceleration in m/s^2 : ");
diff --git a/2123/CH3/EX3.5/Exa_3_5.sce b/2123/CH3/EX3.5/Exa_3_5.sce new file mode 100755 index 000000000..797f866eb --- /dev/null +++ b/2123/CH3/EX3.5/Exa_3_5.sce @@ -0,0 +1,14 @@ +//Example No. 3.5
+clc;
+clear;
+close;
+format('v',6);
+
+//Given Data :
+MotorSpeed=200;//rpm
+d1=50;//diameter of motor pulley in cm
+MachineSpeed=100;//rpm
+
+//Solution :
+d2=MotorSpeed/MachineSpeed*d1;//diameter of machine pulley in cm
+disp(d2,"Diameter of machine pulley in cm : ");
diff --git a/2123/CH3/EX3.6/Exa_3_6.sce b/2123/CH3/EX3.6/Exa_3_6.sce new file mode 100755 index 000000000..96cb9ee69 --- /dev/null +++ b/2123/CH3/EX3.6/Exa_3_6.sce @@ -0,0 +1,31 @@ +//Example No. 3.6
+clc;
+clear;
+close;
+format('v',6);
+
+//Given Data :
+v=1.2;//belt conveyer speed in m/s
+TransRate=100;//rate of transportation of material in tons/hour
+l=200;//length of belt in meter
+MotorSpeed=1200;//rpm
+MoI=0.1;//Moment of Inertia in Kg-m^2
+
+
+//Solution :
+//Part A
+TransRate=TransRate*1000/60/60;//rate of transportation of material in Kg/sec
+TransTime=l/v;//in sec
+omega=MotorSpeed*2*%pi/60;//rad/sec
+M=TransRate*TransTime;//Kg
+J=M*(v/omega)^2;//Kg-m^2
+disp(J,"Load Inertia in Kg-m^2 : ");
+
+//Part B
+t=8;//sec
+a=v/t;//m/s^2
+TorqueInertai=MoI*omega/t;//N-m
+F=M*a;//N
+Tload=F*v/omega;//N-m
+TotalTorque=Tload+TorqueInertai;//N-m
+disp(TotalTorque,"Total Torque in N-m : ");
diff --git a/2123/CH3/EX3.7/Exa_3_7.sce b/2123/CH3/EX3.7/Exa_3_7.sce new file mode 100755 index 000000000..7dcfb2643 --- /dev/null +++ b/2123/CH3/EX3.7/Exa_3_7.sce @@ -0,0 +1,23 @@ +//Example No. 3.7
+clc;
+clear;
+close;
+format('v',7);
+
+//Given Data :
+w=400;//Kg
+v=1;//m/s
+MotorSpeed=1000;//rpm
+MoI=0.5;//Moment of Inertia in Kg-m^2
+winch=0.3;//Kg-m^2
+Tnl=80;//N-m
+Speed_nl=1000;//rpm
+g=9.81;//gravity constant
+
+//Solution :
+mass=w*g;//N
+omega=MotorSpeed*2*%pi/60;//rad/sec
+TotTorque=Tnl+mass*v/omega;//N-m
+disp(TotTorque,"Total Motor Torque in N-m : ");
+J=MoI+winch+w*(v/omega)^2;//Kg-m^2
+disp(J,"Moment of Inertia refered to motor shaft in Kg-m^2 : ");
diff --git a/2123/CH3/EX3.9/Exa_3_9.sce b/2123/CH3/EX3.9/Exa_3_9.sce new file mode 100755 index 000000000..09cb68a17 --- /dev/null +++ b/2123/CH3/EX3.9/Exa_3_9.sce @@ -0,0 +1,31 @@ +//Example No. 3.9
+clc;
+clear;
+close;
+format('v',7);
+
+//Given Data :
+Jmotor=0.3;//Kg-m^2
+Jgd_load=15;//Kg-m^2(Inertia gear driven load)
+GSRratio=0.1;//gear speed reduction ratio
+Jbd_load=0.6;//Kg-m^2(Inertia belt driven load)
+d1=10;//cm(diameter of driver pulley)
+d2=30;//cm(diameter of driven pulley)
+MotorSpeed=1440;//rpm
+Tload1=100;//N-m
+Tload2=35;//N-m
+
+//Solution :
+MotorSpeed=MotorSpeed*2*%pi/60;//rad/sec
+Speed_gd=GSRratio*MotorSpeed;//rad/sec
+Speed_bd=MotorSpeed*d1/d2;//rad/sec
+//Equating Kinetic Energies
+//1/2*J*MotorSpeed^2=1/2*Jmotor*MotorSpeed^2+1/2*Jgd_load*speed_gd^2+1/2*Jbd_load*speed_bd^2
+J=(1/2*Jmotor*MotorSpeed^2+1/2*Jgd_load*Speed_gd^2+1/2*Jbd_load*Speed_bd^2)*2/MotorSpeed^2
+disp(J,"Moment of Inertia refered to motor shaft in Kg-m^2 : ");
+//Equating power of motor
+//T*(MotorSpeed)=Tload1*Speed_gd+Tload2*Speed_bd
+T=(Tload1*Speed_gd+Tload2*Speed_bd)/MotorSpeed;//N-m
+disp(T,"Torque in N-m : ");
+Pdev=T*MotorSpeed;//watt
+disp(Pdev,"Power developed by the motor in watts : ");
|