summaryrefslogtreecommitdiff
path: root/1979/CH4
diff options
context:
space:
mode:
Diffstat (limited to '1979/CH4')
-rwxr-xr-x1979/CH4/EX4.1/Ex4_1.sce21
-rwxr-xr-x1979/CH4/EX4.10/Ex4_10.sce22
-rwxr-xr-x1979/CH4/EX4.11/Ex4_11.sce40
-rwxr-xr-x1979/CH4/EX4.12/Ex4_12.sce22
-rwxr-xr-x1979/CH4/EX4.13/Ex4_13.sce21
-rwxr-xr-x1979/CH4/EX4.14/Ex4_14.sce28
-rwxr-xr-x1979/CH4/EX4.15/Ex4_15.sce22
-rwxr-xr-x1979/CH4/EX4.16/Ex4_16.sce24
-rwxr-xr-x1979/CH4/EX4.17/Ex4_17.sce19
-rwxr-xr-x1979/CH4/EX4.18/Ex4_18.sce30
-rwxr-xr-x1979/CH4/EX4.19/Ex4_19.sce27
-rwxr-xr-x1979/CH4/EX4.2/Ex4_2.sce28
-rwxr-xr-x1979/CH4/EX4.20/Ex4_20.sce27
-rwxr-xr-x1979/CH4/EX4.21/Ex4_21.sce21
-rwxr-xr-x1979/CH4/EX4.22/Ex4_22.sce26
-rwxr-xr-x1979/CH4/EX4.23/Ex4_23.sce30
-rwxr-xr-x1979/CH4/EX4.24/Ex4_24.sce20
-rwxr-xr-x1979/CH4/EX4.3/Ex4_3.sce20
-rwxr-xr-x1979/CH4/EX4.4/Ex4_4.sce18
-rwxr-xr-x1979/CH4/EX4.5/Ex4_5.sce27
-rwxr-xr-x1979/CH4/EX4.6/Ex4_6.sce30
-rwxr-xr-x1979/CH4/EX4.7/Ex4_7.sce27
-rwxr-xr-x1979/CH4/EX4.8/Ex4_8.sce21
-rwxr-xr-x1979/CH4/EX4.9/Ex4_9.sce48
24 files changed, 619 insertions, 0 deletions
diff --git a/1979/CH4/EX4.1/Ex4_1.sce b/1979/CH4/EX4.1/Ex4_1.sce
new file mode 100755
index 000000000..471712d5b
--- /dev/null
+++ b/1979/CH4/EX4.1/Ex4_1.sce
@@ -0,0 +1,21 @@
+//chapter-4 page 141 example 4.1
+//==============================================================================
+clc;
+clear;
+
+d=0.0049;//Diameter of inner conductor in met
+D=0.0110;//Inner Diameter of outer conductor in met
+er=2.3;//Polyethylene dielectric
+c=3*10^8;//Velocity of Light in m/sec
+
+//CALCULATIONS
+x=log(D/d);
+L=(2*10^(-1)*x);//Inductance per unit lengths in microH/m
+C=(55.56*(er/x));//The Capacitance per unit lengths in picoF/m
+R0=(x*(60/sqrt(er)));//The Characteristic Impedance in ohms
+V=(c/sqrt(er))/(10^3);//The Velocity of propagation in Km/s
+
+//OUTPUT
+mprintf('\nInductance per unit lengths is L=%1.5f microH/m \nThe Capacitance per unit lengths is C=%2.2f picoF/m \nThe Characteristic Impedance is R0=%2.2f ohms \nThe Velocity of propagation is V=%6.2f Km/s',L,C,R0,V);
+
+ //=========================END OF PROGRAM===================================================
diff --git a/1979/CH4/EX4.10/Ex4_10.sce b/1979/CH4/EX4.10/Ex4_10.sce
new file mode 100755
index 000000000..470752df3
--- /dev/null
+++ b/1979/CH4/EX4.10/Ex4_10.sce
@@ -0,0 +1,22 @@
+//chapter-4 page 148 example 4.10
+//==============================================================================
+clc;
+clear;
+
+//For an air filled circular Waveguide in the dominant mode
+c=3*10^10;//Velocity of Light in cm/sec
+disp('For an air filled circular Waveguide TE11 is the dominant mode ie propagated');
+wc=10;//cutoff wave length in cm
+
+//CALCULATION
+r=((1.841*wc)/(2*(%pi)));//radius of circular Waveguide in cm
+A=(%pi)*r^2;//Cross sectional area of the guide in sq.cms
+fc=(c/wc)/10^9;//Cutoff frequency for TE11 mode in GHz
+disp('Cutoff frequency for TE11 mode in GHz is');
+disp(fc);
+disp('Frequncy above 3GHz can be propagated through the waveguide');
+
+//OUTPUT
+mprintf('\nCross sectional area of the guide is A=%2.2f sq.cms',A);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH4/EX4.11/Ex4_11.sce b/1979/CH4/EX4.11/Ex4_11.sce
new file mode 100755
index 000000000..708fe09e1
--- /dev/null
+++ b/1979/CH4/EX4.11/Ex4_11.sce
@@ -0,0 +1,40 @@
+//chapter-4 page 149 example 4.11
+//==============================================================================
+clc;
+clear;
+
+//For a rectangular waveguide
+f=5*10^9;//frequency in Hz
+c=3*10^10;//Velocity of Light in cm/sec
+a=4;//Length of Rectangular Waveguide in cm
+b=3;//Width of Rectangular Waveguide in cm
+
+//CALCULATION
+disp('The condition for the wave to propagate along a guide is that wc>w0.');
+w0=c/f;//free space wavelength in cm
+disp('Free space wavelength w0 in cm is');
+disp(w0);
+disp('For TE waves, wc=(2ab/sqrt((mb)^2+(na)^2))');
+disp('For TE01 waves');
+m1=0;
+n1=1;
+wc1=((2*a*b)/(sqrt((m1*b)^2+(n1*a)^2)));//Cutoff wavelength for TE01 mode in cm
+disp('Cutoff wavelength for TE01 mode in cm is');
+disp(wc1);
+disp('Since wc for TE01=6cm is not greater than w0 TE01,will not propagate for TE01 mode.');
+disp('For TE10 waves');
+m2=1;
+n2=0;
+wc2=((2*a*b)/(sqrt((m2*b)^2+(n2*a)^2)));//Cutoff wavelength for TE10 mode in cm
+disp('Cutoff wavelength for TE10 mode in cm is');
+disp(wc2);
+disp('Since wc TE10 > w0 TE10 is a possible mode.');
+disp('For TE11 waves');
+m3=1;
+n3=1;
+wc3=((2*a*b)/(sqrt((m3*b)^2+(n3*a)^2)));//Cutoff wavelength for TE11 mode in cm
+disp('Cutoff wavelength for TE11 mode in cm is');
+disp(wc3);
+disp('As wc TE11 < w0 TE11 does not propagate.');
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH4/EX4.12/Ex4_12.sce b/1979/CH4/EX4.12/Ex4_12.sce
new file mode 100755
index 000000000..5dbc4df62
--- /dev/null
+++ b/1979/CH4/EX4.12/Ex4_12.sce
@@ -0,0 +1,22 @@
+//chapter-4 page 149 example 4.12
+//==============================================================================
+clc;
+clear;
+
+//For an air filled circular Waveguide in the dominant mode
+D=4;//Inner diameter of an air filled circular Waveguide in cm
+c=3*10^10;//Velocity of Light in cm/sec
+
+//CALCULATION
+disp('The dominant mode in the circular waveguide would be like TE11,wc is maximum');
+r=D/2;//radius in cm
+wc=((2*(%pi)*r)/1.841);//Cutoff wavelength in cms
+fc=(c/wc)/10^9;//Cutoff frequency in GHz
+mprintf('\nCutoff wavelength is wc=%1.4f cms \nCutoff frequency is fc=%1.3f GHz',wc,fc);
+disp('Since cut-off frequency is 4.395 GHz,frequencies higher than fc will be propagated.Assume a signal of frequency of 5 GHz is being propagated');
+f=5*10^9;//frequency of signal in Hz
+w0=(c/f);//free space wavelength in cm
+wg=(w0/sqrt(1-(w0/wc)^2));//Guide wavelength in cm
+mprintf('\nWave length in the guide is wg=%2.2f cm',wg);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH4/EX4.13/Ex4_13.sce b/1979/CH4/EX4.13/Ex4_13.sce
new file mode 100755
index 000000000..260c41fb0
--- /dev/null
+++ b/1979/CH4/EX4.13/Ex4_13.sce
@@ -0,0 +1,21 @@
+//chapter-4 page 150 example 4.13
+//==============================================================================
+clc;
+clear;
+
+//For a rectangular waveguide in TE10 mode
+a=6;//Length of Rectangular Waveguide in cm
+b=4;//Width of Rectangular Waveguide in cm
+c=3*10^10;//Velocity of Light in cm/sec
+x=4.55;//distance between maximum and minimum in cm
+
+//CALCULATIONS
+wc=2*a;//Cutoff wavelength for a TE10 mode in cms
+wg=4*x;//Guide Wavelength in cm
+w0=(wg/sqrt(1+(wg/wc)^2));////Free space wavelength in cm
+f=(c/w0)/10^9;//Frequency of the wave in GHz
+
+//OUTPUT
+mprintf('\nFrequency of the wave is f=%1.3f GHz',f);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH4/EX4.14/Ex4_14.sce b/1979/CH4/EX4.14/Ex4_14.sce
new file mode 100755
index 000000000..f864aa803
--- /dev/null
+++ b/1979/CH4/EX4.14/Ex4_14.sce
@@ -0,0 +1,28 @@
+//chapter-4 page 151 example 4.14
+//==============================================================================
+clc;
+clear;
+
+//For a rectangular waveguide
+b=2.5;//Length of Rectangular Waveguide in cm
+a=5;//breadth of Rectangular Waveguide in cm
+c=3*10^10;//Velocity of Light in cm/sec
+w0=4.5;//Free space wavelength in cm
+
+//CALCULATION
+disp('For a TE10 mode which is the dominant mode');
+wc=2*a;//Cutoff wavelength in cm
+wg=(w0/sqrt(1-(w0/wc)^2));//Guide wavelength in cm
+Vp=(c/sqrt(1-(w0/wc)^2))/10^10;//Phase Velocity in 10^10 cm/sec
+B=((2*(%pi)*sqrt(wc^2-w0^2))/(w0*wc));//Phase constant in radians
+
+//OUTPUT
+mprintf('\nGuide wavelength is wg=%1.5f cm \nPhase constant is B=%1.3f radians \nPhase Velocity is Vp=%1.2f *10^10 cm/sec',wg,B,Vp);
+
+//=========================END OF PROGRAM===========================================
+
+//Note: Check the answers once
+//Correct answers are
+//Guide wavelength is wg=5.03903 cm
+//Phase constant is B=1.247 radians
+//Phase Velocity is Vp=3.36 *10^10 cm/sec
diff --git a/1979/CH4/EX4.15/Ex4_15.sce b/1979/CH4/EX4.15/Ex4_15.sce
new file mode 100755
index 000000000..83c723a82
--- /dev/null
+++ b/1979/CH4/EX4.15/Ex4_15.sce
@@ -0,0 +1,22 @@
+//chapter-4 page 152 example 4.15
+//==============================================================================
+clc;
+clear;
+
+wcTE10=16;//Critical wavelength of TE10 mode in cm
+wcTM11=7.16;//Critical wavelength of TM11 mode in cm
+wcTM21=5.6;//Critical wavelength of TM21 mode in cm
+disp('For any wave to be propagated, the condition to be met is wc>wo');
+wo1=10;//Free space wavelength in cm
+wo2=5;//Free space wavelength in cm
+disp('Critical wavelength of TE10 mode in cm is');
+disp(wcTE10);
+disp('Critical wavelength of TM11 mode in cm is');
+disp(wcTM11);
+disp('Critical wavelength of TM21 mode in cm is');
+disp(wcTM21);
+disp('For wo1=10cm,The mode that propagates only TE10.Because wcTE10>wo1 and all other modes that is TM11 TM21 donot propagate');
+disp('For wo2=5cm');
+disp('wcTE10>wo2, so TE10 mode propagates');
+disp('wcTM11>wo2, so TE11 mode propagates');
+disp('wcTE21>wo2, so TE21 mode propagates');
diff --git a/1979/CH4/EX4.16/Ex4_16.sce b/1979/CH4/EX4.16/Ex4_16.sce
new file mode 100755
index 000000000..2f18b002c
--- /dev/null
+++ b/1979/CH4/EX4.16/Ex4_16.sce
@@ -0,0 +1,24 @@
+//chapter-4 page 152 example 4.16
+//==============================================================================
+clc;
+clear;
+
+n=120*(%pi);//Intrinsic Impedance
+a=3;//Length of Rectangular Waveguide in cm
+b=2;//Width of Rectangular Waveguide in cm
+f=10^10;//Frequency in Hz
+c=3*10^10;//Velocity of Light in cm/sec
+
+//CALCULATION
+wc=((2*a*b)/sqrt(a^2+b^2));//Cutoff wavelength in TM11 mode in cms
+w0=(c/f);//Free space wavelength in cms
+ZTM=(n*sqrt(1-(w0/wc)^2));//Characteristic Wave Impedance in ohms
+
+//OUTPUT
+mprintf('\nCharacteristic Wave Impedance is ZTM=%2.3f ohms',ZTM);
+
+
+//=========================END OF PROGRAM=================================
+
+//Note: Check the given answer once it is wrong
+ //currect answer is 163.242 ohms
diff --git a/1979/CH4/EX4.17/Ex4_17.sce b/1979/CH4/EX4.17/Ex4_17.sce
new file mode 100755
index 000000000..c16d1c601
--- /dev/null
+++ b/1979/CH4/EX4.17/Ex4_17.sce
@@ -0,0 +1,19 @@
+//chapter-4 page 152 example 4.17
+//==============================================================================
+clc;
+clear;
+
+c=3*10^10;//Velocity of Light in cm/sec
+f=6*10^9;//Frequency in Hz
+
+//CALCULATION
+fc=(0.8*f);//Given Cutoff frequency for TE11 mode in Hz
+wc=(c/fc);//Cutoff wavelength in cms
+D=((1.841*wc)/(%pi));//Diameter of waveguide in cm
+w0=(c/f);//Free space wavelength in cm
+wg=(w0/sqrt(1-(w0/wc)^2));//Guide wavelength in cm
+
+//OUTPUT
+mprintf('\nDiameter of the waveguide is D=%1.4f cm \nGuide wavelength is wg=%1.3f cm',D,wg);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH4/EX4.18/Ex4_18.sce b/1979/CH4/EX4.18/Ex4_18.sce
new file mode 100755
index 000000000..0aee3acdf
--- /dev/null
+++ b/1979/CH4/EX4.18/Ex4_18.sce
@@ -0,0 +1,30 @@
+//chapter-4 page 153 example 4.18
+//==============================================================================
+clc;
+clear;
+
+//For a TE10 mode
+a=1.5;//Length of an air filled square Waveguide in m
+b=1;//breadth of an air filled square Waveguide in cm
+c=3*10^10;//Velocity of Light in cm/sec
+f=6*10^9;//Impressed Frequency in Hz
+er=4;//dielectric constant
+
+//CALCULATION
+wc=2*a;//Cutoff wavelength in cm
+fc=(c/wc)/10^9;//Cutoff frequency in GHz
+disp('Cutoff frequency in GHz is');
+disp(fc);
+disp('The impressed frequency of 6 GHz is less than the Cutoff frequency and hence the signal will not pass through the guide');
+w=(c/f);//Wavelength in cm
+disp('Alternatively, the wavelength of the impressed signal in cm is');
+disp(w);
+wair=w;
+disp('which is longer than the cutoff wavelength (3cm) and hence no propagation of the wave');
+w1=wair/sqrt(er);//Wavelength in cm
+disp('If the waveguide is loaded with dielectric of er=4, then the wavelength in cm is');
+disp(w1);
+disp('which is lessthan wair');
+disp('Now the signal with 6 GHz frequency will pass through the dielectric loaded waveguide');
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH4/EX4.19/Ex4_19.sce b/1979/CH4/EX4.19/Ex4_19.sce
new file mode 100755
index 000000000..f742c4d70
--- /dev/null
+++ b/1979/CH4/EX4.19/Ex4_19.sce
@@ -0,0 +1,27 @@
+//chapter-4 page 153 example 4.19
+//==============================================================================
+clc;
+clear;
+
+a=0.015;//Length of hollow Rectangular Waveguide in m
+b=1;//breadth of hollow Rectangular Waveguide in cm
+f=6*10^9;//Frequency in Hz in TE10 mode
+c=3*10^8;//Velocity of Light in m/sec
+m=1;//Value of m in TE10 mode
+n=0;//Value of n in TE10 mode
+u=4*(%pi)*10^(-7);//Permeability in free space in Henry
+e=8.854*10^(-12);//Permittivity in free space in F/m
+
+//CALCULATION
+wc=2*a;//Cutoff wavelength for TE10 mode in m
+fc=c/wc;//Cutoff frequency in Hz
+w=2*(%pi)*f;//Angular frequency in rad/sec
+
+//So 6GHz signal will not pass through waveguide but will get attenuated
+A=(sqrt((m*(%pi)/a)^2+(n*(%pi)/b)^2-(w^2*u*e)));//Attenuation in NP/m
+AdB=A*(20/log(10));//Attenuation in dB/m
+
+//OUTPUT
+mprintf('\Amount of Attenuation is A=%3.1f NP/m \nAttenuation is AdB=%4.2f dB/m',A,AdB);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH4/EX4.2/Ex4_2.sce b/1979/CH4/EX4.2/Ex4_2.sce
new file mode 100755
index 000000000..cade93e14
--- /dev/null
+++ b/1979/CH4/EX4.2/Ex4_2.sce
@@ -0,0 +1,28 @@
+//chapter-4 page 142 example 4.2
+//==============================================================================
+clc;
+clear;
+
+R=0.05;//Resistance in ohm/m
+L=0.16173*10^(-6);//Inductance per unit lengths in H/m
+C=0.15802*10^(-6);//The Capacitance per unit lengths in F/m
+V=197814.14;//The Velocity of propagation in Km/s
+l=50;//Length of Coaxial Line in met
+Pin=480;//Input Power to the System in watts
+f=3*10^9;//Frequency in Hz
+c=3*10^5;//Velocity of Light in Km/sec
+e0=8.854*10^(-12);//Permittivity in free space in F/m
+
+//CALCULATIONS
+Z0=sqrt(L/C);
+A=(R/(2*Z0));//Attenuation Constant in NP/m
+w=(2*(%pi)*f);//Angular Frequency in rad/sec
+B=(w*sqrt(L*C));//Phase Constant in rad/m
+Vp=(1/sqrt(L*C))/(10^3);//Phase Velocity in Km/s
+er=(((c/V)^2)/e0);//Relative Permittivity
+Pl=(2*Pin*l);//Power Loss in watts
+
+//OUTPUT
+mprintf('\nAttenuation Constant is A=%1.4f NP/m \nPhase Constant is B=%4.3f rad/m \nPhase Velocity is Vp=%4.3f Km/s \nRelative Permittivity is er=%12.2f \nPower Loss is Pl=%5.0f watts',A,B,Vp,er,Pl);
+
+//=========================END OF PROGRAM===========================================
diff --git a/1979/CH4/EX4.20/Ex4_20.sce b/1979/CH4/EX4.20/Ex4_20.sce
new file mode 100755
index 000000000..bc0369323
--- /dev/null
+++ b/1979/CH4/EX4.20/Ex4_20.sce
@@ -0,0 +1,27 @@
+//chapter-4 page 154 example 4.20
+//==============================================================================
+clc;
+clear;
+
+a=3;//Length of Rectangular Waveguide in cm
+b=1;//Width of Rectangular Waveguide in cm
+f=9*10^9;//Frequency in Hz in TE10 mode
+c=3*10^10;//Velocity of Light in cm/sec
+Emax=3000;//Max potential gradient in V/cm
+
+//CALCULATION
+w0=(c/f);//Free space wavelength in cms
+disp('Free space Wavelength in cm is');
+disp(w0);
+wc=2*a;//Cutoff wavelength in TE10 mode in cms
+wg=(w0/sqrt(1-(w0/wc)^2));//Guide wavelength in cms
+disp('Guide Wavelength in cm is');
+disp(wg);
+P=((6.63*10^(-4))*(Emax^2)*a*b*(w0/wg))/1000;//Power handling capability of the waveguide in kW
+
+//OUTPUT
+mprintf('\nPower handling capability of the waveguide is P=%2.3f kW',P);
+
+
+//=========================END OF PROGRAM=================================
+
diff --git a/1979/CH4/EX4.21/Ex4_21.sce b/1979/CH4/EX4.21/Ex4_21.sce
new file mode 100755
index 000000000..e47f9c088
--- /dev/null
+++ b/1979/CH4/EX4.21/Ex4_21.sce
@@ -0,0 +1,21 @@
+//chapter-4 page 154 example 4.21
+//==============================================================================
+clc;
+clear;
+
+d=5;//Internal Diameter of circular waveguide in cm
+f=9*10^9;//Frequency in Hz in TE11 mode
+c=3*10^10;//Velocity of Light in cm/sec
+Emax=300;//Max field strength in V/cm
+
+//CALCULATION
+w0=(c/f);//Free space wavelength in cms
+wc=((d*(%pi))/1.841);//Cutoff wavelength in TE11 mode in cms
+wg=(w0/sqrt(1-(w0/wc)^2));//Guide wavelength in cms
+Pmax=(0.498*(Emax^2)*(d^2)*(w0/wg))/1000;//Maximum power in kWatts
+
+//OUTPUT
+mprintf('\nMaximum power is Pmax=%4.2f kWatts',Pmax);
+
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH4/EX4.22/Ex4_22.sce b/1979/CH4/EX4.22/Ex4_22.sce
new file mode 100755
index 000000000..7aca58dc4
--- /dev/null
+++ b/1979/CH4/EX4.22/Ex4_22.sce
@@ -0,0 +1,26 @@
+//chapter-4 page 155 example 4.22
+//==============================================================================
+clc;
+clear;
+
+//For an air filled square waveguide
+a=0.01;//Length of an air filled square Waveguide in m
+b=0.01;//breadth of an air filled square Waveguide in m
+c=3*10^8;//Velocity of Light in m/sec
+f=30*10^9;//Frequency in Hz in TE11 mode
+Pmax=746;//Max power =1 horsepower in W
+n=120*(%pi);//Impedance of freespace in ohms
+
+//CALCULATION
+w0=(c/f);//Free space wavelength in m
+wc=2*a;//Cutoff wavelength in m
+ZTE=(n/sqrt(1-(w0/wc)^2));//Impedance in ohms
+Emax=(sqrt((Pmax*4*ZTE)/(a*b)))/1000;//The Peak value of Electric field occuring in the guide in kV/m
+//From P=(1/2)*Integration(Re(E*H))da
+//and Pmax=(1/(4*ZTE))*Emax^2*a*b
+
+//OUTPUT
+mprintf('\nThe Peak value of Electric field occuring in the guide is Emax=%3.2f kV/m',Emax);
+
+//=========================END OF PROGRAM===============================
+
diff --git a/1979/CH4/EX4.23/Ex4_23.sce b/1979/CH4/EX4.23/Ex4_23.sce
new file mode 100755
index 000000000..1b775bfbf
--- /dev/null
+++ b/1979/CH4/EX4.23/Ex4_23.sce
@@ -0,0 +1,30 @@
+//chapter-4 page 156 example 4.23
+//==============================================================================
+clc;
+clear;
+
+//For an air filled rectangular waveguide
+a=0.023;//Length of an air filled Rectangular Waveguide in m
+b=0.01;//breadth of an air filled Rectangular Waveguide in m
+c=3*10^8;//Velocity of Light in m/sec
+f=9.375*10^9;//Frequency in Hz in TE11 mode
+w0=0.01;//Free space wavelength in m
+wc=0.02;//Cutoff wavelength in m
+Pmax=746;//Max power =1 horsepower in W
+
+//CALCULATION
+wo=(c/f);//Free space wavelength in cm
+Pbd=(597*a*b*sqrt(1-(wo/(2*a))^2));//The breakdown power for the dominant mode ie TE11 in W
+wg=(w0/sqrt(1-(w0/wc)^2));//Guide wavelength in m
+Emax=(sqrt((Pmax*wg)/(6.63*10^(-4)*w0)))/1000;//Max electric field in kV/m
+
+//OUTPUT
+mprintf('\nThe breakdown power for the dominant mode ie TE11 is Pbd=%1.5f W \nMax electric field is Emax=%1.4f kV/m',Pbd,Emax);
+
+//=========================END OF PROGRAM===========================================
+
+
+//Note: Check the answers once
+//Correct answers are
+//The breakdown power for the dominant mode ie TE11 is Pbd=0.09864 W
+//Max electric field is Emax=1.1398 kV/m
diff --git a/1979/CH4/EX4.24/Ex4_24.sce b/1979/CH4/EX4.24/Ex4_24.sce
new file mode 100755
index 000000000..4f0916763
--- /dev/null
+++ b/1979/CH4/EX4.24/Ex4_24.sce
@@ -0,0 +1,20 @@
+//chapter-4 page 156 example 4.24
+//==============================================================================
+clc;
+clear;
+
+a=2.5;//Radius of circular waveguide in cm
+d=5;//Internal Diameter of circular waveguide in cm
+f=9*10^9;//Frequency in Hz in TE11 mode
+c=3*10^10;//Velocity of Light in cm/sec
+
+//CALCULATION
+w0=(c/f);//Free space wavelength in cms
+wc=((d*(%pi))/1.841);//Cutoff wavelength in TE11 mode in cms
+fc=(c/wc);//Cutoff frequency in Hz
+Pbd=(1790*(a^2)*sqrt(1-(fc/f)^2))/1000;//Breakdown Power in TE11 mode in kW
+
+//OUTPUT
+mprintf('\nBreakdown Power in TE11 mode is Pbd=%5.3f kW',Pbd);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH4/EX4.3/Ex4_3.sce b/1979/CH4/EX4.3/Ex4_3.sce
new file mode 100755
index 000000000..88358a739
--- /dev/null
+++ b/1979/CH4/EX4.3/Ex4_3.sce
@@ -0,0 +1,20 @@
+//chapter-4 page 142 example 4.3
+//==============================================================================
+clc;
+clear;
+
+//For an air filled coaxial cable
+f=9.375*10^9;//operating frequency in Hz
+c=3*10^10;//Velocity of Light in cm/sec
+disp('Assuming a ratio of (b/a)=2.3 and (b+a)<(w/pi) to exclude higher order modes and a dominant mode propagating');
+a=0.36432;//length of coaxial cable in cm
+x=2.3;//ratio of b/a
+
+//CALCULATION
+w0=(c/f);//free space wavelength in cm
+Pbd=(3600*(a^2)*log(x));//Breakdown power of a coaxial cable in kW
+
+//OUTPUT
+mprintf('\nBreakdown power of a coaxial cable is Pbd=%3.0f kW',Pbd);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH4/EX4.4/Ex4_4.sce b/1979/CH4/EX4.4/Ex4_4.sce
new file mode 100755
index 000000000..1f25e38aa
--- /dev/null
+++ b/1979/CH4/EX4.4/Ex4_4.sce
@@ -0,0 +1,18 @@
+//chapter-4 page 142 example 4.4
+//==============================================================================
+clc;
+clear;
+
+b=0.3175;//Distance between ground planes of strip line in cm
+d=0.0539;//Diameter of circular conductor in cm
+er=2.32;//Dielectric Constant
+c=3*10^8;//Velocity of Light in m/sec
+
+//CALCULATION
+Z0=((60/sqrt(er))*log((4*b)/(d*(%pi))));//Characteristic Impedance in ohms
+V=(c/sqrt(er))/(10^3);//The Velocity of propagation in Km/s
+
+//OUTPUT
+mprintf('\nCharacteristic Impedance is Z0=%2.2f ohms \nThe Velocity of propagation is V=%5.2f Km/s',Z0,V);
+
+//=========================END OF PROGRAM===================================================
diff --git a/1979/CH4/EX4.5/Ex4_5.sce b/1979/CH4/EX4.5/Ex4_5.sce
new file mode 100755
index 000000000..bd8263990
--- /dev/null
+++ b/1979/CH4/EX4.5/Ex4_5.sce
@@ -0,0 +1,27 @@
+//chapter-4 page 143 example 4.5
+//==============================================================================
+clc;
+clear;
+
+//For a microstrip transmission line
+er=9.7;//relative dielectric constant of an alumina substrate
+x1=0.5;//w/h ratio in first transmission line
+x2=5;//w/h ratio in second transmission line
+c=3*10^8;//Velocity of Light in m/sec
+
+//CALCULATION
+disp('For case1: w/h=0.5');
+disp('Since x1=0.5<1, for this we use high impedance analysis');
+Eeff1=(((er+1)/2)+((er-1)/2)*(1/((sqrt(1+(12/x1)))+(0.04*(1-x1)^2))));//Effective dielectric constant
+Zo1=((60/sqrt(Eeff1))*log((8/x1)+(x1/4)));//Characteristic impedance in ohms
+V1=(c/sqrt(Eeff1))/10^8;//Velocity of propagation in 10^8 m/sec
+mprintf('\nEffective dielectric constant is Eeff1=%1.2f \nCharacteristic impedance is Zo1=%2.2f ohms \nVelocity of propagation is V1=%1.1f *10^8 m/sec',Eeff1,Zo1,V1);
+
+disp('For case2: w/h=5');
+disp('here x2>1');
+Eeff2=(((er+1)/2)+((er-1)/2)*(1/(sqrt(1+(12/x2)))));//Effective dielectric constant
+Zo2=((120*(%pi)/sqrt(Eeff2))*(1/(x2+1.393+(0.667*log(1.444+x2)))));//Characteristic impedance in ohms
+V2=(c/sqrt(Eeff2))/10^8;//Velocity of propagation in 10^8 m/sec
+mprintf('\nEffective dielectric constant is Eeff2=%1.2f \nCharacteristic impedance is Zo2=%2.2f ohms \nVelocity of propagation is V2=%1.2f *10^8 m/sec',Eeff2,Zo2,V2);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH4/EX4.6/Ex4_6.sce b/1979/CH4/EX4.6/Ex4_6.sce
new file mode 100755
index 000000000..d88170f5d
--- /dev/null
+++ b/1979/CH4/EX4.6/Ex4_6.sce
@@ -0,0 +1,30 @@
+//chapter-4 page 144 example 4.6
+//==============================================================================
+clc;
+clear;
+
+//To calculate the ratio of circular waveguide cross-sectional area to the rectangular waveguide cross section
+disp('Assuming that both these waveguides have similar or equal cutoff frequencies/wavelengths');
+
+disp('Case1: When TE wave is propagated');
+disp('For standard rectangular waveguides a=2b and For TE11 dominant mode in circular waveguide wc1=(2(pi)r)/1.841');
+disp('where r is the radius of the circular waveguide and wc1 is the cutoff wavelength for circular waveguide');
+disp('It is given wc1=wc2 where wc2 is the cutoff wavelength for rectangular waveguide');
+disp('For TE10(dominant mode) of propagation in rectangular waveguide wc2=2a');
+disp('Since wc2=(2ab)/(sqrt((mb)^2+(nb)^2)) as m=1;n=0 for TE10 wc2=2ab/b=2a');
+disp('By equating wc1=wc2, we get a=1.70645r');
+disp('For a standard waveguide a=2b therefore, b=a/2');
+disp('Now the area of rectangular waveguide=a*b=a*a/2=1.70645r*1.70645r/2=1.456r^2');
+disp('Area of rectangular waveguide=1.456r^2 ,Area of circular waveguide=(pi)*r^2');
+disp('Ratio of area of circular to area of rectangular waveguide=(Area of circular waveguide/Area of rectangular waveguide)=(pi*r^2)/(1.456r^2)=2.1576873=2.2');
+disp('This clearly shows that the space occupied by a rectangular waveguide system is less compared to that for a circular waveguide system.Hence circular waveguides are not preferred in some applications');
+
+disp('Case2: When TM wave is propagated');
+disp('For TM01 mode wc1=(2*pi*r)/(Pnm)min=(2*pi*r)/Pnm=(2*pi*r)/2.405 where r is the radius of circular waveguide wc1=2.6155r');
+disp('Now if wc2 is the wavelength for TM11 wave propagating in a standard rectangular waveguide wc2=wc1 but wc2=(2ab)/sqrt(a^2+b^2)');
+disp('For standard waveguides,we know a=2b, wc2=(2*2b*b)/sqrt(4b^2+b^2)=(4b^2)/sqrt(5b^2)=4b/sqrt(5)');
+disp('By equating wc1=wc2, we get 2.6155r=4b/sqrt(5)=>b=1.4621r');
+disp('Area of rectangular waveguide=b*b=b^2 but b=1.4621r, so Area of rectangular waveguide=(1.4621r)^2=2.132r^2 and Area of circular waveguide= pi*r^2');
+disp('Ratio of area of circular to area of rectangular waveguide=(Area of circular waveguide/Area of rectangular waveguide)=(pi*r^2)/(2.132r^2)=1.5');
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH4/EX4.7/Ex4_7.sce b/1979/CH4/EX4.7/Ex4_7.sce
new file mode 100755
index 000000000..8e7fc58eb
--- /dev/null
+++ b/1979/CH4/EX4.7/Ex4_7.sce
@@ -0,0 +1,27 @@
+//chapter-4 page 146 example 4.7
+//==============================================================================
+clc;
+clear;
+
+//For a rectangular waveguide
+disp('For a rectangular waveguide the dominant mode is the TE10 mode.TE10 mode can propagate at a lower frequency');
+f=9*10^9;//frequency in Hz
+wg=4;//guide wavelength in cm
+c=3*10^10;//Velocity of Light in cm/sec
+disp('For TE10 mode wc=2a');
+
+//CALCULATION
+w0=(c/f);//free space wavelength in cm
+wc=(w0/sqrt(1-(w0/wg)^2));//Cutoff wavelength for TE10 mode in cm
+disp('Free space wavelength w0 in cm is');
+disp(w0);
+disp('Cutoff wavelength wc in cm is');
+disp(wc);
+disp('Since wc>w0, the wave propagates');
+a=(wc/2);//length of the guide in cm
+b=(wc/4);//breadth of the guide in cm
+
+//OUTPUT
+mprintf('\nlength of the guide is a=%1.0f cm \nbreadth of the guide is b=%1.1f cm',a,b);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH4/EX4.8/Ex4_8.sce b/1979/CH4/EX4.8/Ex4_8.sce
new file mode 100755
index 000000000..850d61c5a
--- /dev/null
+++ b/1979/CH4/EX4.8/Ex4_8.sce
@@ -0,0 +1,21 @@
+//chapter-4 page 147 example 4.8
+//==============================================================================
+clc;
+clear;
+
+a=10;//breadth of a rectangular waveguide in cm
+f=2.5*10^9;//Frequency in Hz in TE10 mode
+c=3*10^10;//Velocity of Light in cm/sec
+
+//CALCULATION
+wc=2*a;//Cutoff wavelength for TE10 mode in cm
+w0=(c/f);//Free space wavelength in cm
+x=sqrt(1-(w0/wc)^2);
+wg=(w0/x);//Guide wavelength in cm
+Vp=(c/x)/10^5;//Phase Velocity in Km/sec
+Vg=((c^2)/Vp)/10^10;//Group Velocity in Km/sec
+
+//OUTPUT
+mprintf('\nCutoff wavelength for TE10 mode is wc=%2.0f cm \nGuide wavelength is wg=%2.0f cm \nPhase Velocity is Vp=%7.2f Km/sec \nGroup Velocity is Vg=%6.2f Km/sec',wc,wg,Vp,Vg);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH4/EX4.9/Ex4_9.sce b/1979/CH4/EX4.9/Ex4_9.sce
new file mode 100755
index 000000000..59db7cd15
--- /dev/null
+++ b/1979/CH4/EX4.9/Ex4_9.sce
@@ -0,0 +1,48 @@
+//chapter-4 page 147 example 4.9
+//==============================================================================
+clc;
+clear;
+
+f=8.6*10^9;//frequency in Hz
+c=3*10^10;//Velocity of Light in cm/sec
+a=2.5;//Length of a Waveguide in cm
+b=1;//Width of a Waveguide in cm
+
+//CALCULATION
+disp('The condition for the wave to propagate along a guide is that wc>w0.');
+w0=c/f;//free space wavelength in cm
+disp('Free space wavelength w0 in cm is');
+disp(w0);
+disp('For TE waves, wc=(2ab/sqrt((mb)^2+(na)^2))');
+disp('For TE01 waves');
+m1=0;
+n1=1;
+wc1=((2*a*b)/(sqrt((m1*b)^2+(n1*a)^2)));//Cutoff wavelength for TE01 mode in cm
+disp('Cutoff wavelength for TE01 mode in cm is');
+disp(wc1);
+disp('Since wc for TE01=2cm is not greater than w0 TE01,will not propagate for TE01 mode.');
+disp('For TE10 waves');
+m2=1;
+n2=0;
+wc2=((2*a*b)/(sqrt((m2*b)^2+(n2*a)^2)));//Cutoff wavelength for TE10 mode in cm
+disp('Cutoff wavelength for TE10 mode in cm is');
+disp(wc2);
+disp('Since wc TE10 > w0 TE10 is a possible mode.');
+fc=(c/wc2)/10^9;//Cutoff frequency in GHz
+disp('For TE11 and TM11 waves');
+m3=1;
+n3=1;
+wc3=((2*a*b)/(sqrt((m3*b)^2+(n3*a)^2)));//Cutoff wavelength for TE11 mode in cm
+disp('Cutoff wavelength for TE11 and TM11 modes in cm is');
+disp(wc3);
+disp('As wc for TE11 and TM11 is < w0 both TE11 and TM11 do not propagate as higher modes.');
+wg=(w0/sqrt(1-(w0/wc2)^2));//Guide wavelength in cm
+disp('From the above analysis we conclude that only TE10 mode is possible');
+
+//OUTPUT
+mprintf('\nCutoff frequency is fc=%1.0f GHz \nGuide wavelength is wg=%1.3f cm',fc,wg);
+
+//=========================END OF PROGRAM===============================
+
+
+